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By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert
and Gupta (1978), the abstract result on the existence and uniqueness of the solution in Lp(Ω) of
the generalized Capillarity equation with nonlinear Neumann boundary value conditions, where
2N/(N+1) < p < +∞ andN(≥ 1) denotes the dimension ofRN , is studied. The equation discussed
in this paper and the methods here are a continuation of and a complement to the previous
corresponding results. To obtain the results, some new techniques are used in this paper.

1. Introduction and Preliminary

Since the p-Laplacian operator −Δp with p /= 2 arises from a variety of physical phenomena,
such as nonNewtonian fluids, reaction-diffusion problems, and petroleum extraction, it
becomes a very popular topic in mathematical fields.

We began our study on this topic in 1995. We used a perturbation result of ranges for
m-accretive mappings in Calvert and Gupta [1] to obtain a sufficient condition in Wei and He
[2] so that the following zero boundary value problem,

−Δpu + g(x, u(x)) = f(x), a.e. on Ω,

−∂u
∂n

= 0, a.e. on Γ,
(1.1)

has solutions in Lp(Ω), where 2 ≤ p < +∞. Later on, a series work of ours has been done from
different angles on this kind of equations, cf. [3–7], and so forth.
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Especially, in 2008, as a summary of the work done in [2–6], we use some new
techniques to work for the following problem with so-called generalized p-Laplacian
operator:

−div
[(
C(x) + |∇u|2

)(p−2)/2∇u
]

+ ε|u|q−2u + g(x, u(x)) = f(x), a.e. in Ω,

−
〈
ϑ,
(
C(x) + |∇u|2

)(p−2)/2∇u
〉

∈ βx(u(x)), a.e. on Γ,

(1.2)

where 0 ≤ C(x) ∈ Lp(Ω), ε is a nonnegative constant and ϑ denotes the exterior normal
derivative of Γ. We showed in Wei and Agarwal [7] that (1.2) has solutions in Ls(Ω) under
some conditions, where 2N/(N + 1) < p ≤ s < +∞, 1 ≤ q < +∞ if p ≥ N, and 1 ≤ q ≤
Np/(N − p) if p < N, forN ≥ 1.

Capillarity equation is another important equation appeared in the capillarity
phenomenon and we notice that in Chen and Luo [8], the authors studied the eigenvalue
problem for the following generalized Capillarity equations:

−div

⎡
⎢⎣
⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

⎤
⎥⎦ = λ

(
|u|q−2u + |u|r−2u

)
, in Ω,

u = 0, a.e. on ∂Ω.

(1.3)

Their work inspired us and one idea came to our mind. Can we borrow the main
ideas dealing with the nonlinear elliptic boundary value problems with the generalized
p-Laplacian operator to study the nonlinear generalized Capillarity equation with Neumann
boundary conditions?

We will answer the question in this paper. By using the perturbation results of ranges
for m-accretive mappings in Calvert and Gupta [1] again, we will study the following one:

− div

⎡
⎢⎣
⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

⎤
⎥⎦ + λ

(
|u|q−2u + |u|r−2u

)
+ g(x, u(x))

= f(x), a.e. in Ω,

−
〈
ϑ,

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

〉
∈ βx(u(x)), a.e. on Γ.

(1.4)

More details on (1.4) will be given in Section 2. Our methods and techniques are
different from those in Chen and Luo [8].

Now, we list some basic knowledge we need in sequel.
Let X be a real Banach space with a strictly convex dual space X∗. We use “→ ” and

“w − lim′′ to denote strong and weak convergence, respectively. For any subset G of X,
we denote by intG its interior and G its closure, respectively. Let “X ↪→↪→ Y ′′ denote that
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space X is embedded compactly in space Y and “X ↪→ Y ′′ denote that space X is embedded
continuously in space Y. A mapping T : D(T) = X → X∗ is said to be hemicontinuous on X
if w − limt→ 0T(x + ty) = Tx, for any x, y ∈ X. Let J denote the duality mapping from X into
2X

∗
defined by

J(x) =
{
f ∈ X∗ :

(
x, f
)
= ‖x‖ · ∥∥f∥∥,∥∥f∥∥ = ‖x‖}, x ∈ X, (1.5)

where (·, ·) denotes the generalized duality pairing between X and X∗. It is wellknown that J
is a single-valued mapping since X∗ is strictly convex.

Let A : X → 2X be a given multivalued mapping. We say that A is boundedly-
inversely compact if for any pair of bounded subsets G and G′ of X, the subset G

⋂
A−1(G′)

is relatively compact in X. The mapping A : X → 2X is said to be accretive if (v1 − v2, J(u1 −
u2)) ≥ 0, for any ui ∈ D(A) and vi ∈ Aui, i = 1, 2. The accretive mapping A is said to be
m-accretive if R(I + μA) = X, for some μ > 0.

Let B : X → 2X
∗
be a given multi-valued mapping. The graph of B, G(B), is defined

by G(B) = {[u,w] | u ∈ D(B), w ∈ Bu}. Then B : X → 2X
∗
is said to be monotone if G(B) is

a monotone subset of X ×X∗ in the sense that

(u1 − u2, w1 −w2) ≥ 0, (1.6)

for any [ui,wi] ∈ G(B), i = 1, 2. The monotone operator B is said to be maximal monotone
if G(B) is maximal among all monotone subsets of X × X∗ in the sense of inclusion. The
mapping B is said to be strictly monotone if the equality in (1.6) implies that u1 = u2. The
mapping B is said to be coercive if limn→+∞((xn, x∗

n)/‖xn‖) = ∞ for all [xn, x∗
n] ∈ G(B) such

that limn→+∞‖xn‖ = +∞.

Definition 1.1. The duality mapping J : X → 2X
∗
is said to be satisfying Condition (I) if there

exists a function η : X → [0,+∞) such that

‖Ju − Jv‖ ≤ η(u − v), for ∀ u, v ∈ X. (I)

Definition 1.2. Let A : X → 2X be an accretive mapping and J : X → X∗ be a duality
mapping. We say that A satisfies Condition (∗) if, for any f ∈ R(A) and a ∈ D(A), there
exists a constant C(a, f) such that

(
v − f, J(u − a)) ≥ C(a, f), for any u ∈ D(A), v ∈ Au. (∗)

Lemma 1.3 (Li and Guo [9]). LetΩ be a bounded conical domain inRN . Then we have the following
results.

(a) If mp > N, then Wm,p(Ω) ↪→ CB(Ω); if mp < N and q = Np/(N − mp), then
Wm,p(Ω) ↪→ Lq(Ω); ifmp =N and p > 1, then for 1 ≤ q < +∞,Wm,p(Ω) ↪→ Lq(Ω).

(b) If mp > N, thenWm,p(Ω) ↪→↪→ CB(Ω); if 0 < mp ≤ N and q0 = Np/(N −mp), then
Wm,p(Ω) ↪→↪→ Lq(Ω), 1 ≤ q < q0.
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Lemma 1.4 (Pascali and Sburlan [10]). If B : X → 2X
∗
is an everywhere defined, monotone and

hemicontinuous operator, then B is maximal monotone. If B : X → 2X
∗
is maximal monotone and

coercive, then R(B) = X∗.

Lemma 1.5 (Pascali and Sburlan [10]). If Φ : X → (−∞,+∞] is a proper convex and lower-
semicontinuous function, then ∂Φ is maximal monotone from X to X∗.

Lemma 1.6 (Pascali and Sburlan [10]). IfA and B are two maximal monotone operators in X such
that (intD(A))

⋂
D(B)/= ∅, then A + B is maximal monotone.

Proposition 1.7 (Calvert and Gupta [1]). Let X = Lp(Ω) and Ω be a bounded domain in RN .
For 2 ≤ p < +∞, the duality mapping Jp : Lp(Ω) → Lp

′
(Ω) defined by Jpu = |u|p−1 sgnu‖u‖2−pp ,

for u ∈ Lp(Ω), satisfies Condition (I); for 2N/(N + 1) < p ≤ 2 and N ≥ 1, the duality mapping
Jp : Lp(Ω) → Lp

′
(Ω) defined by Jpu = |u|p−1sgnu, for u ∈ Lp(Ω), satisfies Condition (I), where

(1/p) + (1/p ′ ) = 1.

Lemma 1.8 (see Calvert and Gupta [1]). Let Ω be a bounded domain in RN and g : Ω × R → R
be a function satisfying Caratheodory’s conditions such that

(i) g(x, ·) is monotonically increasing on R;

(ii) the mapping u ∈ Lp(Ω) → g(x, u(x)) ∈ Lp(Ω) is well defined, where 2N/(N + 1) < p <
+∞ andN ≥ 1.

Let Jp : Lp(Ω) → Lp
′
(Ω), (1/p) + (1/p ′ ) = 1 be the duality mapping defined by

Jpu =

⎧⎨
⎩
|u|p−1 sgnu, if

2N
N + 1

< p ≤ 2,

|u|p−1 sgnu‖u‖2−pp , if 2 ≤ p < +∞,
(1.7)

for u ∈ Lp(Ω). Then the mapping B : Lp(Ω) → Lp(Ω) defined by (Bu)(x) = g(x, u(x)), for any
x ∈ Ω satisfies Condition (∗).

Theorem 1.9 (Calvert and Gupta [1]). Let X be a real Banach space with a strictly convex dual
X∗. Let J : X → X∗ be a duality mapping on X satisfying Condition (I). Let A,B1 : X → 2X be
accretive mappings such that

(i) either both A, B1 satisfy Condition (∗) or D(A) ⊂ D(B1) and B1 satisfies Condition (∗),

(ii) A + B1 is m-accretive and boundedly inversely compact.

If B2 : X → X be a bounded continuous mapping such that, for any y ∈ X, there is a constant
C(y) satisfying (B2(u + y), Ju) ≥ −C(y) for any u ∈ X. Then.

(a) [R(A) + R(B1)] ⊂ R(A + B1 + B2).

(b) int[R(A) + R(B1)] ⊂ intR(A + B1 + B2).



Abstract and Applied Analysis 5

2. The Main Results

2.1. Notations and Assumptions of (1.4)

Next in this paper, we assume 2N/(N + 1) < p < +∞, 1 ≤ q, r < +∞ if p ≥ N, and 1 ≤ q, r ≤
Np/(N − p) if p < N, where N ≥ 1. We use ‖ · ‖p, ‖ · ‖q, ‖ · ‖r , and ‖ · ‖1,p,Ω to denote the
norms in Lp(Ω), Lq(Ω), Lr(Ω) and W1,p(Ω). Let (1/p) + (1/p′) = 1, (1/q) + (1/q′) = 1, and
(1/r) + (1/r ′) = 1.

In (1.4),Ω is a bounded conical domain of a Euclidean space RN with its boundary Γ ∈
C1, (c.f. [4]). We suppose that the Green’s Formula is available. Let | · | denote the Euclidean
norm in RN , 〈·, ·〉 the Euclidean inner-product and ϑ the exterior normal derivative of Γ. λ is
a nonnegative constant.

Let ϕ : Γ × R → R be a given function such that, for each x ∈ Γ,

(i) ϕx = ϕ(x, ·) : R → R is a proper, convex, lower-semicontinuous function with
ϕx(0) = 0.

(ii) βx = ∂ϕx (: subdifferential of ϕx) is maximalmonotonemapping onRwith 0 ∈ βx(0)
and for each t ∈ R, the function x ∈ Γ → (I + μβx)

−1(t) ∈ R is measurable for μ > 0.

Let g : Ω × R → R be a given function satisfying Caratheodory’s conditions such
that for 2N/(N + 1) < p < +∞ and N ≥ 1, the mapping u ∈ Lp(Ω) → g(x, u(x)) ∈ Lp(Ω)
is defined. Further, suppose that there is a function T(x) ∈ Lp(Ω) such that g(x, t)t ≥ 0, for
|t| ≥ T(x), x ∈ Ω.

2.2. Existence and Uniqueness of the Solution of (1.4)

Definition 2.1 (Calvert and Gupta [1]). Define g+(x) = lim inft→+∞ g(x, t) and g−(x) =
lim supt→−∞ g(x, t).

Further, define a function g1 : Ω × R → R by

g1(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
inf
s≥t
g(x, s)

)
∧ (t − T(x)), ∀t ≥ T(x),

0, ∀t ∈ [−T(x), T(x)],(
sup
s≤t

g(x, s)

)
∨ (t + T(x)), ∀t ≤ −T(x).

(2.1)

Then for all x ∈ Ω, g1(x, t) is increasing in t and limt→±∞ g1(x, t) = g±(x). Moreover, g1 :
Ω×R → R satisfies Caratheodory’s conditions and the functions g±(x) are measurable onΩ.
And, if g2(x, t) = g(x, t) − g1(x, t) then g2(x, t)t ≥ 0, for |t| ≥ T(x), x ∈ Ω.

Proposition 2.2 (see Calvert and Gupta [1]). For 2N/(N + 1) < p < +∞ andN ≥ 1, define the
mapping B1 : Lp(Ω) → Lp(Ω) by (B1u)(x) = g1(x, u(x)), for all u ∈ Lp(Ω) and x ∈ Ω, then B1 is
a bounded, continuous, and m-accretive mapping.

Moreover, Lemma 1.8 implies that B1 satisfies Condition (∗).
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Define B2 : Lp(Ω) → Lp(Ω) by (B2u)(x) = g2(x, u(x)), where g2(x, t) = g(x, t)−g1(x, t),
then B2 satisfies the inequality:

(
B2
(
u + y

)
, Jpu
) ≥ −C(y), (2.2)

for any u, y ∈ Lp(Ω), where C(y) is a constant depending on y and Jp : Lp(Ω) → Lp
′
(Ω)

denotes the duality mapping, where (1/p) + (1/p′) = 1.

Lemma 2.3 (Wei and Agarwal [7]). The mapping Φp :W1,p(Ω) → R defined by

Φp(u) =
∫
Γ
ϕx(u|Γ(x))dΓ(x), (2.3)

for any u ∈W1,p(Ω), is a proper, convex, and lower-semicontinuous mapping onW1,p(Ω).

Moreover, Lemma 1.5 implies that ∂Φp, the subdifferential of Φp, is maximal
monotone.

Lemma 2.4 (Wei and He [2]). Let X0 denote the closed subspace of all constant functions in
W1,p(Ω). Let X be the quotient space W1,p(Ω)/X0. For u ∈ W1,p(Ω), define the mapping P :
W1,p(Ω) → X0 by Pu = (1/meas(Ω))

∫
Ω udx. Then, there is a constant C > 0, such that for

all u ∈W1,p(Ω),

‖u − Pu‖p ≤ C‖∇u‖(Lp(Ω))N . (2.4)

Lemma 2.5. Define the mapping Bp,q,r :W1,p(Ω) → (W1,p(Ω))∗ by

(
v, Bp,q,ru

)
=
∫
Ω

〈⎛⎜⎝1 +
|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u,∇v

〉
dx

+ λ
∫
Ω
|u(x)|q−2u(x)v(x)dx + λ

∫
Ω
|u(x)|r−2u(x)v(x)dx,

(2.5)

for any u, v ∈ W1,p(Ω). Then Bp,q,r is everywhere defined, strictly monotone, hemicontinuous, and
coercive.

Proof. Step 1. Bp,q,r is everywhere defined.
From Lemma 1.3, we know that W1,p(Ω) ↪→ CB(Ω), when p > N. And, W1,p(Ω) ↪→

Lq(Ω), W1,p(Ω) ↪→ Lr(Ω), when p ≤ N. Thus, for all v ∈ W1,p(Ω), ‖v‖q ≤ k1‖v‖1,p,Ω, ‖v‖r ≤
k2‖v‖1,p,Ω, where k1, k2 are positive constants.
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For u, v ∈W1,p(Ω), we have

∣∣(v, Bp,q,ru)∣∣ ≤ 2
∫
Ω
|∇u|p−1|∇v|dx + λ

∫
Ω
|u|q−1|v|dx + λ

∫
Ω
|u|r−1|v|dx

≤ 2‖|∇u|‖p/p′p ‖|∇v|‖p + λ‖v‖q‖u‖q/q
′

q + λ‖v‖r‖u‖r/r
′

r

≤ 2‖u‖p/p′1,p,Ω‖v‖1,p,Ω + k′1λ‖v‖1,p,Ω‖u‖
q/q′

1,p,Ω + k′2λ‖v‖1,p,Ω‖u‖r/r
′

1,p,Ω,

(2.6)

where k′1 and k
′
2 are positive constants. Thus Bp,q,r is everywhere defined.

Step 2. Bp,q,r is strictly monotone.
For u, v ∈W1,p(Ω), we have

∣∣(u − v, Bp,q,ru − Bp,q,rv
)∣∣

=
∫
Ω

〈⎛⎜⎝1 +
|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u −

⎛
⎜⎝1 +

|∇v|p√
1 + |∇v|2p

⎞
⎟⎠|∇v|p−2∇v,∇u − ∇v

〉
dx

+ λ
∫
Ω

(
|u|q−2u − |v|q−2v

)
(u − v)dx + λ

∫
Ω

(
|u|r−2u − |v|r−2v

)
(u − v)dx

=
∫
Ω

⎧⎪⎨
⎪⎩

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p −

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u∇v

−

⎛
⎜⎝1 +

|∇v|p√
1 + |∇v|2p

⎞
⎟⎠|∇v|p−2∇u∇v +

⎛
⎜⎝1 +

|∇v|p√
1 + |∇v|2p

⎞
⎟⎠|∇v|p

⎫⎪⎬
⎪⎭dx

+ λ
∫
Ω

(
|u|q−2u − |v|q−2v

)
(u − v)dx + λ

∫
Ω

(
|u|r−2u − |v|r−2v

)
(u − v)dx

≥
∫
Ω

⎧⎪⎨
⎪⎩

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−1 −

⎛
⎜⎝1 +

|∇v|p√
1 + |∇v|2p

⎞
⎟⎠|∇v|p−1

⎫⎪⎬
⎪⎭(|∇u| − |∇v|)dx

+ λ
∫
Ω

(
|u|q−1 − |v|q−1

)
(|u| − |v|)dx + λ

∫
Ω

(
|u|r−1 − |v|r−1

)
(|u| − |v|)dx.

(2.7)

If, we let h(t) = (1 + (t/
√
1 + t2))t(p−1)/p, for t ≥ 0. Then we know that

h′(t) =
t(p−1)/p

(1 + t2)3/2
+ t−(1/p)

(
1 +

t√
1 + t2

)
p − 1
p

≥ 0, (2.8)
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since t ≥ 0. And, h′(t) = 0 if and only if t = 0. Then h(t) is strictly monotone. Thus we can
easily know that Bp,q,r is strictly monotone.

Step 3. Bp,q,r is hemicontinuous.
In fact, it suffices to show that, for any u, v,w ∈ W1,p(Ω) and t ∈ [0, 1], (w,Bp,q,r(u +

tv) − Bp,q,ru) → 0, as t → 0.
By Lebesque’s dominated convergence theorem, it follows that

0 ≤ lim
t→ 0

∣∣(w,Bp,q,r(u + tv) − Bp,q,ru
)∣∣

≤
∫
Ω
lim
t→ 0

∣∣∣∣∣∣∣

⎛
⎜⎝1 +

|∇u + t∇v|p√
1 + |∇u + t∇v|2p

⎞
⎟⎠|∇u + t∇v|p−2(∇u + t∇v)

−

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

∣∣∣∣∣∣∣
|∇w|dx

+ λ
∫
Ω
lim
t→ 0

∣∣∣|u + tv|q−2(u + tv) − |u|q−2u
∣∣∣|w|dx

+ λ
∫
Ω
lim
t→ 0

∣∣∣|u + tv|r−2(u + tv) − |u|r−2u
∣∣∣|w|dx = 0,

(2.9)

and hence Bp,q,r is hemicontinuous.

Step 4. Bp,q,r is coercive.
Now, for u ∈ W1,p(Ω), Lemma 2.4 implies that ‖u‖1,p,Ω → ∞ is equivalent to

‖u − (1/meas(Ω))
∫
Ω udx‖1,p,Ω → ∞ and hence we have the following result:

(
u, Bp,q,ru

)
‖u‖1,p,Ω

=

∫
Ω

(
1 +
(
|∇u|p/

√
1 + |∇u|2p

))
|∇u|pdx

‖u‖1,p,Ω
+ λ

∫
Ω |u|qdx
‖u‖1,p,Ω

+ λ

∫
Ω |u|rdx
‖u‖1,p,Ω

=

∫
Ω

(
|∇u|p +

√
1 + |∇u|2p

)
dx − ∫Ω

(
1/
√
1 + |∇u|2p

)
dx

‖u‖1,p,Ω

+ λ

∫
Ω |u|qdx
‖u‖1,p,Ω

+ λ

∫
Ω |u|rdx
‖u‖1,p,Ω

≥
2
∫
Ω |∇u|pdx − ∫Ω

(
1/
√
1 + |∇u|2p

)
dx

‖u‖1,p,Ω
+ λ

∫
Ω |u|qdx
‖u‖1,p,Ω

+ λ

∫
Ω |u|rdx
‖u‖1,p,Ω

−→ +∞,

(2.10)

as ‖u‖1,p,Ω → +∞, which implies that Bp,q,r is coercive.
This completes the proof.
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Remark 2.6. Lemma 2.5 is a key result for later use.

Definition 2.7. Define a mapping Ap : Lp(Ω) → 2L
p(Ω) as follows:

D
(
Ap

)
=
{
u ∈ Lp(Ω) | there exists an f ∈ Lp(Ω), such that f ∈ Bp,q,ru + ∂Φp(u)

}
. (2.11)

For u ∈ D(Ap), let Apu = {f ∈ Lp(Ω) | f ∈ Bp,q,ru + ∂Φp(u)}.

Proposition 2.8. The mapping Ap : Lp(Ω) → 2L
p(Ω) is m-accretive.

Proof. Step 1. Ap is accretive.
Case 1. If p ≥ 2, the duality mapping Jp :Lp(Ω) → Lp

′
(Ω) is defined by Jpu = |u|p−1 sgnu‖u‖2−pp

for u ∈ Lp(Ω). It then suffices to prove that for any ui ∈ D(Ap) and vi ∈ Apui, i = 1, 2,

(
v1 − v2, Jp(u1 − u2)

) ≥ 0. (2.12)

To this, we are left to prove that both

(
|u1 − u2|p−1 sgn(u1 − u2)‖u1 − u2‖2−pp , Bp,q,ru1 − Bp,q,ru2

)
≥ 0,

(
|u1 − u2|p−1 sgn(u1 − u2)‖u1 − u2‖2−pp , ∂Φp(u1) − ∂Φp(u2)

)
≥ 0

(2.13)

are available.
Now take for a constant k > 0, χk : R → R is defined by χk(t) = |(t∧k)∨(−k)|p−1 sgn t.

Then χk is monotone, Lipschitz with χk(0) = 0 and χ′
k
is continuous except at finitely many

points on R. This gives that

(
|u1 − u2|p−1 sgn(u1 − u2)‖u1 − u2‖2−pp , ∂Φp(u1) − ∂Φp(u2)

)

= lim
k→+∞

‖u1 − u2‖2−pp

(
χk(u1 − u2), ∂Φp(u1) − ∂Φp(u2)

) ≥ 0.
(2.14)

Also,

(
|u1 − u2|p−1 sgn(u1 − u2)‖u1 − u2‖2−pp , Bp,q,ru1 − Bp,q,ru2

)

= ‖u1 − u2‖2−pp × lim
k→+∞

∫
Ω

〈⎛⎜⎝1 +
|∇u1|p√
1 + |∇u1|2p

⎞
⎟⎠|∇u1|p−2∇u1

−

⎛
⎜⎝1 +

|∇u2|p√
1 + |∇u2|2p

⎞
⎟⎠|∇u2|p−2∇u2,∇u1 − ∇u2

〉
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× χ′
k(u1 − u2)dx + λ‖u1 − u2‖2−pp

∫
Ω

(
|u1|q−2u1 − |u2|q−2u2

)
|u1 − u2|p−1 sgn(u1 − u2)dx

+ λ‖u1 − u2‖2−pp

∫
Ω

(
|u1|r−2u1 − |u2|r−2u2

)
|u1 − u2|p−1 sgn(u1 − u2)dx ≥ 0,

(2.15)

the last inequality is available since χk is monotone and χk(0) = 0.
Case 2. If 2N/(N + 1) < p < 2, the duality mapping Jp : Lp(Ω) → Lp

′
(Ω) is defined by

Jpu = |u|p−1 sgnu, for u ∈ Lp(Ω). It then suffices to prove that for any ui ∈ D(Ap) and vi ∈
Apui, i = 1, 2,

(
v1 − v2, Jp(u1 − u2)

) ≥ 0. (2.16)

To this, we define the function χn : R → R by

χn(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|t|p−1 sgn t, if |t| ≥ 1
n
,

(
1
n

)p−2
t, if |t| ≤ 1

n
.

(2.17)

Then χn is monotone, Lipschitz with χn(0) = 0 and χ′
n is continuous except at finitely many

points on R. So (χn(u1 − u2), ∂Φp(u1) − ∂Φp(u2)) ≥ 0.
Then, for ui ∈ D(Ap), vi ∈ Apui, i = 1, 2, we have

(
v1 − v2, Jp(u1 − u2)

)

=
(
|u1 − u2|p−1 sgn(u1 − u2), Bp,q,ru1 − Bp,q,ru2

)

+
(
|u1 − u2|p−1 sgn(u1 − u2), ∂Φp(u1) − ∂Φp(u2)

)

=
(
|u1 − u2|p−1 sgn(u1 − u2), Bp,q,ru1 − Bp,q,ru2

)

+ lim
n→∞
(
χn(u1 − u2), ∂Φp(u1) − ∂Φp(u2)

) ≥ 0.

(2.18)

Step 2. R(I + μAp) = Lp(Ω), for every μ > 0.
First, define the mapping Ip : W1,p(Ω) → (W1,p(Ω))∗ by Ipu = u and

(v, Ipu)(W1,p(Ω))∗×W1,p(Ω) = (v, u)L2(Ω) for u, v ∈ W1,p(Ω), where (·, ·)L2(Ω) denotes the inner
product of L2(Ω). Then Ip is maximal monotone [7].

Secondly, for any μ > 0, define the mapping Tμ : W1,p(Ω) → 2(W
1,p(Ω))∗ by Tμu =

Ipu+μBp,q,ru+μ∂Φp(u), for u ∈W1,p(Ω). Then similar to that in [7], by using Lemmas 1.4, 1.6,
2.3, and 2.5, we know that Tμ is maximal monotone and coercive, so that R(Tμ) = (W1,p(Ω))∗,
for any μ > 0.
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Therefore, for any f ∈ Lp(Ω), there exists u ∈W1,p(Ω), such that

f = Tμu = u + μBp,q,ru + μ∂Φp(u). (2.19)

From the definition of Ap, it follows that R(I + μAp) = Lp(Ω), for all μ > 0.
This completes the proof.

Lemma 2.9. The mapping Ap : Lp(Ω) → 2L
p(Ω) has a compact resolvent for 2N/(N + 1) < p < 2

andN ≥ 1.

Proof. SinceAp ism-accretive by Proposition 2.8, it suffices to prove that if u+μApu = f(μ > 0)
and {f} is bounded in Lp(Ω), then {u} is relatively compact in Lp(Ω). Now define functions
χn, ξn : R → R by

χn(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|t|p−1 sgn t, if |t| ≥ 1
n(

1
n

)p−2
t, if |t| ≤ 1

n
,

ξn(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|t|2−(2/p) sgn t, if |t| ≥ 1
n
,

(
1
n

)1−(2/p)
t, if |t| ≤ 1

n
.

(2.20)

Noticing that χ′
n(t) = (p − 1) × (p′/2)p × (ξ′n(t))

p, for |t| ≥ 1/n, where (1/p) + (1/p′) = 1
and χ′

n(t) = (ξ′n(t))
p, for |t| ≤ 1/n. We know that (χn(u), ∂Φp(u)) ≥ 0 for u ∈ W1,p(Ω) since

χn is monotone, Lipschitz with χn(0) = 0, and χ′
n is continuous except at finitely many points

on R. Then

(
|u|p−1 sgnu,Apu

)

= lim
n→∞
(
χn(u), Apu

) ≥ lim
n→∞
(
χn(u), Bp,q,ru

)

= lim
n→∞

∫
Ω

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|pχ′

n(u)dx

+ λ lim
n→∞

∫
Ω
|u|q−2uχn(u)dx + λ lim

n→∞

∫
Ω
|u|r−2uχn(u)dx

≥ lim
n→∞

∫
Ω
|∇u|pχ′

n(u)dx

≥ const · lim
n→∞

∫
Ω

∣∣grad(ξn(u))∣∣pdx

≥ const
∫
Ω

∣∣∣grad(|u|2−(2/p) sgnu)∣∣∣pdx.

(2.21)
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We now have from f = u + μApu that

∥∥f∥∥p
∥∥∥|u|2−(2/p) sgnu∥∥∥p2/2(p−1)p′

p2/2(p−1)

≥
(
|u|p−1 sgnu, f

)
=
(
|u|p−1 sgnu, u

)
+ μ
(
|u|p−1 sgnu,Apu

)

≥
∥∥∥|u|2−(2/p) sgnu∥∥∥p2/2(p−1)

p2/2(p−1)
+ μ · const ·

∥∥∥grad |u|2−(2/p) sgnu
∥∥∥p
p
,

(2.22)

which gives that

∥∥∥|u|2−(2/p) sgnu∥∥∥p/2(p−1)
p

≤
∥∥∥|u|2−(2/p) sgnu∥∥∥p/2(p−1)

p2/2(p−1)
∥∥f∥∥p ≤ const, (2.23)

in view of the fact that p < p2/2(p − 1) when 2N/(N + 1) < p < 2 for N ≥ 1. Again from
(2.22), we have ‖grad(|u|2−(2/p) sgnu)‖p ≤ const. Hence {f} bounded in Lp(Ω) implies that

{|u|2−(2/p) sgnu} is bounded inW1,p(Ω).
We notice thatW1,p(Ω) ↪→↪→ Lp

2/2(p−1)(Ω)whenN ≥ 2 andW1,p(Ω) ↪→↪→ CB(Ω)when
N = 1 by Lemma 1.3, hence{|u|2−(2/p) sgnu} is relatively compact in Lp

2/2(p−1)(Ω). This gives
that {u} is relatively compact in Lp(Ω) since the Nemytskii mapping u ∈ Lp

2/2(p−1)(Ω) →
|u|p/2(p−1) sgnu ∈ Lp(Ω) is continuous.

This completes the proof.

Remark 2.10. Since Φp(u + α) = Φp(u), for any u ∈ W1,p(Ω) and α ∈ C∞
0 (Ω), we have f ∈ Apu

implies that f = Bp,q,ru in the sense of distributions.

Proposition 2.11. For f ∈ Lp(Ω), if there exists u ∈ Lp(Ω) such that f ∈ Apu, then u is the unique
solution of (1.4).

Proof. First, we show that

−div

⎡
⎢⎣
⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

⎤
⎥⎦ + λ|u|q−2u + λ|u|r−2u = f(x), a.e. x ∈ Ω (2.24)

is available.
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Now f ∈ Apu implies that f = Bp,q,ru+ ∂Φp(u). For all ϕ ∈ C∞
0 (Ω), by Remark 2.10, we

have

(
ϕ, f
)
=
(
ϕ, Bp,q,ru + ∂Φp(u)

)

=
(
ϕ, Bp,q,ru

)
=
∫
Ω

〈⎛⎜⎝1 +
|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u,∇ϕ

〉
dx

+ λ
∫
Ω
|u|q−2uϕdx + λ

∫
Ω
|u|r−2uϕdx

=
∫
Ω
−div

⎡
⎢⎣
⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

⎤
⎥⎦ϕdx

+ λ
∫
Ω
|u|q−2uϕdx + λ

∫
Ω
|u|r−2uϕdx,

(2.25)

which implies that (2.24) is true.
Secondly, we show that

−
〈
ϑ,

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

〉
∈ βx(u(x)), a.e. x ∈ Γ. (2.26)

We will prove (2.26) under the additional condition |βx(u)| ≤ a|u|p/p′ + b(x), where b(x) ∈
Lp

′
(Γ) and a ∈ R. Refer to the result of Brezis [11] for the general case.

Now, from (2.24), f ∈Apu implies that f(x)= −div[(1+|∇u|p/
√
1 + |∇u|2p)|∇u|p−2∇u]+

λ|u(x)|q−2u(x) + λ|u|r−2u ∈ Lp(Ω). By using Green’s Formula, we have that for any v ∈
W1,p(Ω),

∫
Γ

〈
ϑ,

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

〉
v|ΓdΓ(x)

=
∫
Ω
div

⎡
⎢⎣
⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

⎤
⎥⎦v dx

+
∫
Ω

〈⎛⎜⎝1 +
|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u,∇v

〉
dx.

(2.27)

Then −〈ϑ, (1 + |∇u|p/
√
1 + |∇u|2p)|∇u|p−2∇u〉 ∈ W−(1/p),p′(Γ) = (W1/p,p(Γ))∗, where

W1/p,p(Γ) is the space of traces ofW1,p(Ω).
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Now let the mapping B : Lp(Γ) → Lp
′
(Γ) be defined by Bu = g(x), for any u ∈

Lp(Γ), where g(x) = βx(u(x)) a.e. on Γ. Clearly, B = ∂Ψ where Ψ(u) =
∫
Γ ϕx(u(x))dΓ(x) is a

proper, convex, and lower-semicontinuous function on Lp(Γ). Now define the mapping K :
W1,p(Ω) → Lp(Γ) by K(v) = v|Γ for any v ∈ W1,p(Ω). Then K∗BK : W1,p(Ω) → (W1,p(Ω))∗

is maximal monotone since bothK,B are continuous. Finally, for any u, v ∈W1,p(Ω), we have

Ψ(Kv) −Ψ(Ku) =
∫
Γ

[
ϕx(v|Γ(x)) − ϕx(u|Γ(x))

]
dΓ(x)

≥
∫
Γ
βx(u|Γ(x))(v|Γ(x) − u|Γ(x))dΓ(x)

= (BKu,Kv −Ku) = (K∗BKu, v − u).

(2.28)

Hence we get K∗BK ⊂ ∂Φp and so K∗BK = ∂Φp. Therefore, we have

−
〈
ϑ,

⎛
⎜⎝1 +

|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u

〉
∈ βx(u(x)), a.e. on Γ. (2.29)

Finally, we will show that u is unique.
If f ∈ Apu and f ∈ Apv, where u, v ∈ D(Ap). Then

0 ≤ (u − v, Bp,q,ru − Bp,q,rv
)
=
(
u − v, ∂Φp(v) − ∂Φp(u)

) ≤ 0, (2.30)

since Bp,q,r is strictly monotone and ∂Φp is maximal monotone, which implies that u(x) =
v(x).

This completes the proof.

Remark 2.12. If βx ≡ 0 for any x ∈ Γ, then ∂Φp(u) ≡ 0, for all u ∈W1,p(Ω).

Proposition 2.13. If βx ≡ 0 for any x ∈ Γ, then {f ∈ Lp(Ω) | ∫Ω f dx = 0} ⊂ R(Ap).

Proof. We can easily know that R (Bp,q,r) = (W1,p(Ω))∗ in view of Lemmas 1.4 and 2.5. Note
that for any f ∈ Lp(Ω) with

∫
Ω f dx = 0, the linear function u ∈ W1,p(Ω) → ∫

Ω fudx is an
element of (W1,p(Ω))∗. So there exists a u ∈W1,p(Ω) such that

∫
Ω
fv dx =

∫
Ω

〈⎛⎜⎝1 +
|∇u|p√
1 + |∇u|2p

⎞
⎟⎠|∇u|p−2∇u,∇v

〉
dx

+ λ
∫
Ω
|u|q−2uv dx + λ

∫
Ω
|u|r−2uv dx,

(2.31)

for any v ∈W1,p(Ω). So f = Apu in view of Remark 2.12.
This completes the proof.
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Definition 2.14 (see [1, 7]). For t ∈ R, x ∈ Γ, let β0x(t) ∈ βx(t) be the element with least absolute
value if βx(t)/= ∅ and β0x(t) = ±∞, where t > 0 or < 0, respectively, in case βx(t) = ∅. Finally, let
β±(x) = limt→±∞β0x(t) (in the extended sense) for x ∈ Γ. β±(x) define measurable functions on
Γ, in view of our assumptions on βx.

Proposition 2.15. Let f ∈ Lp(Ω) such that

∫
Γ
β−(x)dΓ(x) <

∫
Ω
f dx <

∫
Γ
β+(x)dΓ(x). (2.32)

Then f ∈ Int R(Ap).

Proof. Let f ∈ Lp(Ω) and satisfy (2.32), by Proposition 2.8, there exists un ∈ Lp(Ω) such that,
for each n ≥ 1, f = (1/n)un +Apun. In the same reason as that in [1], we only need to prove
that ‖un‖p ≤ const, for all n ≥ 1.

Indeed, suppose to the contrary that 1 ≤ ‖un‖p → ∞, as n → ∞. Let vn = un/‖un‖p.
Let ψ : R → R be defined by ψ(t) = |t|p, ∂ψ : R → R be its subdifferential and for μ > 0, ∂ψμ :
R → R denote the Yosida-approximation of ∂ψ. Let θμ : R → R denote the indefinite

integral of [(∂ψμ)
′]1/p with θμ(0) = 0 so that (θ′μ)

p = (∂ψμ)
′. In view of Calvert and Gupta [1],

we have

(
∂ψμ(vn), ∂Φp(un)

) ≥
∫
Γ
βx
((

1 + μ∂ψ
)−1(un|Γ(x))

)
× ∂ψμ(vn|Γ(x))dΓ(x) ≥ 0. (2.33)

Now multiplying the equation f = (1/n)un +Apun by ∂ψμ(vn), we get that

(
∂ψμ(vn), f

)
=
(
∂ψμ(vn),

1
n
un

)
+
(
∂ψμ(vn), Bp,q,run

)
+
(
∂ψμ(vn), ∂Φp(un)

)
. (2.34)

Since ∂ψμ(0) = 0, it follows that (∂ψμ(vn), un) ≥ 0. Also, we can know that

(
∂ψμ(vn), Bp,q,run

)
=
∫
Ω

〈⎛⎜⎝1 +
|∇un|p√
1 + |∇un|2p

⎞
⎟⎠|∇un|p−2∇un,∇vn

〉(
∂ψμ
)′(vn)dx

+ λ
∫
Ω
|un|q−2un∂ψμ(vn)dx + λ

∫
Ω
|un|r−2un∂ψμ(vn)dx

≥
∫
Ω

|∇u|p
‖un‖p

(
∂ψμ
)′(vn)dx = ‖un‖p−1p

∫
Ω

∣∣grad(θμ(vn))∣∣pdx.

(2.35)

Then we get from (2.33) that

‖un‖p−1p

∫
Ω

∣∣grad(θμ(vn))∣∣pdx +
∫
Γ
βx
((

1 + μ∂ψ
)−1(un|Γ(x))

)
× ∂ψμ(vn|Γ(x))dΓ(x)

≤ (∂ψμ(vn), f).
(2.36)
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Since |∂ψμ(t)| ≤ |∂ψ(t)| for any t ∈ R and μ > 0, we see from ‖vn‖p = 1 for n ≥ 1, that
‖∂ψμ(vn)‖p′ ≤ C, for μ > 0, where C is a constant which does not depend on n or μ and
(1/p) + (1/p′) = 1.

From (2.36), we have

∫
Ω

∣∣grad(θμ(vn))∣∣pdx ≤ C

‖un‖p−1p

, for μ > 0, n ≥ 1. (2.37)

Now we easily know that (θ′μ)
p = (∂ψμ)

′ → (∂ψ)′ as μ → 0 a.e. on R.
Letting μ → 0, we see from Fatou’s lemma and (2.37) that

∫
Ω

∣∣∣grad(|vn|2−(2/p) sgnvn
)∣∣∣pdx ≤ C

‖un‖p−1p

. (2.38)

From (2.38), we know that |vn|2−(2/p) sgnvn → k (a constant) in Lp(Ω), as n → +∞.
Next we will show that k /= 0 is in Lp(Ω) from two aspects.

(i) If p ≥ 2, since ‖|vn|2−(2/p) sgnvn‖p = ‖vn‖2−(2/p)2p−2 ≥ ‖vn‖2−(2/p)p = 1, it follows that k /= 0
in Lp(Ω),

(ii) if 2N/(N + 1) < p < 2, ‖|vn|2−(2/p) sgnvn‖p = ‖vn‖2−(2/p)2p−2 ≥ ‖vn‖2−(2/p)p = 1, then

{|vn|2−(2/p) sgnvn} is bounded in W1,p(Ω). By Lemma 1.3, W1,p(Ω) ↪→↪→ CB(Ω)
when N = 1 and W1,p(Ω) ↪→↪→ Lp

2/2(p−1)(Ω), when N ≥ 2. So {|vn|2−(2/p) sgnvn}
is relatively compact in Lp

2/2(p−1)(Ω). Then there exists a subsequence of
{|vn|2−(2/p) sgnvn}, for simplicity, we denote it by {|vn|2−(2/p) sgnvn}, satisfying
|vn|2−(2/p) sgnvn → g in Lp

2/2(p−1)(Ω). Noticing that p ≤ p2/2(p − 1) when
2N/(N + 1) < p < 2, it follows that k = g a.e. on Ω. Now,

1 = ‖vn‖pp =
∫
Ω

∣∣∣|vn|2−(2/p) sgnvn
∣∣∣p2/2(p−1)dx

≤ const
∫
Ω

∣∣∣|vn|2−(2/p) sgnvn − g
∣∣∣p2/2(p−1)dx + const

∥∥g∥∥p2/2(p−1)
p2/2(p−1),

(2.39)

it follows that g /= 0 in Lp(Ω) and then k /= 0 in Lp(Ω). Assume, now, k > 0, we see from (2.36)
that

∫
Γ
βx
((

1 + μ∂ψ
)−1(un|Γ(x))

)
× ∂ψμ(vn|Γ(x))dΓ(x) ≤

(
∂ψμ(vn), f

)
. (2.40)

Choosing a subsequence so that un|Γ(x) → +∞ a.e. on Γ, we see letting n → +∞ that∫
Γ β+(x)dΓ(x) ≤ ∫Ω f(x)dx, which is a contradiction with (2.32). Similarly, if k < 0, it also
leads to a contradiction. Thus f ∈ intR(Ap).

This completes the proof.

Proposition 2.16. Ap + B1 : Lp(Ω) → Lp(Ω) is m-accretive and has a compact resolvent.



Abstract and Applied Analysis 17

Proof. Using a theorem in Corduneanu [12], we know that Ap + B1 : Lp(Ω) → Lp(Ω) is
m-accretive.

To show that Ap + B1 : Lp(Ω) → Lp(Ω) has a compact resolvent, we only need to
prove that ifw ∈ Apu + B1uwith {w} and {u} being bounded in Lp(Ω), then {u} is relatively
compact in Lp(Ω). Now we discuss it from two aspects.

(i) If p ≥ 2, since

∫
Ω
|∇u|pdx ≤ (u, Bp,q,ru) = (u,Apu

) − (u, ∂Φp(u)
)

≤ (u,Apu
)
+ (u, B1u) = (u,w) ≤ ‖u‖p‖u‖p′ ≤ const,

(2.41)

it follows that {u} is bounded in W1,p(Ω), where (1/p) + (1/p′) = 1. Then {u} is
relatively compact in Lp(Ω) sinceW1,p(Ω) ↪→↪→ Lp(Ω);

(ii) if 2N/(N + 1) < p < 2, since w ∈ Apu + B1u with {w} and {u} being bounded
in Lp(Ω), we have w − B1u ∈ Apu with {w − B1u} and {u} being bounded in
Lp(Ω) which gives that {u} is relatively compact in Lp(Ω) since Ap is m-accretive
by Proposition 2.8 and has a compact resolvent by Lemma 2.9.

This completes the proof.

Theorem 2.17. Let f ∈ Lp(Ω) be such that

∫
Γ
β−(x)dΓ(x) +

∫
Ω
g−(x)dx <

∫
Ω
f(x)dx <

∫
Γ
β+(x)dΓ(x) +

∫
Ω
g+(x)dx, (2.42)

then (1.4) has a unique solution in Lp(Ω), where 2N/(N + 1) < p < +∞ andN ≥ 1.

Proof . We want to use Theorem 1.9 to finish our proof. From Propositions 1.7, 2.2, 2.8, and
2.16, we can see that all of the conditions in Theorem 1.9 are satisfied. It then suffices to show
that f ∈ int[R(Ap) + R(B1)] which ensures that f ∈ R(Ap + B1 + B2). Thus Proposition 2.11
tells us (1.4) has a unique solution in Lp(Ω).

Using the similar methods as those in [2, 4, 7], by dividing it into two cases and using
Propositions 2.13 and 2.15, respectively, we know that f ∈ int[R(Ap) + R(B1)].

This completes the proof.

Remark 2.18. Compared to the work done in [1–7], not only the existence of the solution of
(1.4) is obtained but also the uniqueness of the solution is obtained.
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