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The differential transform method (DTM) is based on the Taylor series for all variables, but
it differs from the traditional Taylor series in calculating coefficients. Even if the DTM is an
effective numerical method for solving many nonlinear partial differential equations, there are
also some difficulties due to the complex nonlinearity. To overcome difficulties arising in DTM,
we present the new modified version of DTM, namely, the projected differential transform
method (PDTM), for solving nonlinear partial differential equations. The proposed method is
applied to solve the various nonlinear Klein-Gordon and Schrödinger equations. Numerical
approximations performed by the PDTM are presented and compared with the results obtained
by other numerical methods. The results reveal that PDTM is a simple and effective numerical
algorithm.

1. Introduction

The solutions of linear and nonlinear partial differential equations play an important role
in many fields of science and engineering such as solid-state physics, nonlinear optics,
plasma physics, fluid dynamics, chemical kinetics, and biology. In this work, we consider
two nonlinear partial differential equations. One is the Klein-Gordon equation with power
nonlinearity:

utt + αuxx + βu + γun = f, (1.1)
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with the constant n = 2 or 3, and another is the nonlinear Schrödinger equation:

iut + αΔu + βuψ + γ |u|2u = 0, (1.2)

with a trapping potential ψ and i2 = −1. Here, α, β, and γ are real constants andΔu = uxx+uyy.
For solving nonlinear partial differential equations including, above nonlinear problems,
many powerful methods have been developed such as Bäcklund the transformation [1],
Darboux’s transformation [2, 3], Tanh function [4], homogeneous balance [5], Jacobi’s elliptic
method [6, 7], F-expansion method [8, 9], and auxiliary equation [10–12]. Recently, iterative-
type methods such as Adomian decomposition [13–16], homotopy perturbation [17–20],
and variational iteration [21–24] have been used to find accurate approximations by using
symbolic mathematical packages: Mathematica, Maple, and Matlab. For solving nonlinear
Schrödinger equations, many efficient discretized numerical schemes have been proposed
such as split-step finite-difference method (SSFD) [25, 26], split-step Fourier pseudospectral
method [25], pseudospectral method based on Hermit functions [26], and the method [27] in
one-dimensional problems.

Here, we propose the differential transform method to solve our model problems in
(1.1), (1.2). The DTM is close to the Taylor series, but it is different from the conventional
high-order Taylor series in determining coefficients. The basic idea of DTM was introduced
by Zhou [28] in solving initial value problems in electrical circuit analysis. The DTM has
been employed to solve many important problems science and engineering fields and obtain
highly accurate approximations [28–39]. However, it also have some difficulties due to the
nonlinearity. Here, we introduce the modified version of the standard DTM, the projected
DTM, which is a simple and effective method comparing with the standard DTM.

This paper is organized as follows. A detail description of the projected DTM will
be given in Section 2. To our model problems, nonlinear Klein-Gordon and Schrödinger
equations, both the standard DTM and the projected DTM, are applied and the corresponding
algebraic equations are presented in Section 3. In Section 4, various numerical examples are
demonstrated. For each illustrative example, numerical results obtained by DTM, PDTM, and
other numerical method are compared. The conclusion will be made in the last section.

2. Description of the Projected Differential Transform Method

In this section, we describe the definition and some properties of the standard DTM.
Moreover, we present the basic idea of the projected differential transform method. Suppose
a function w(x, y, t) is analytic in the given domain T and (x0, y0, t0) ∈ T . Let us define the
differential transformW(k, h,m) of w(x, y, t) at (x0, y0, t0) by

W(k, h,m) =
1

k!h!m!

[
∂k+h+mw(x, y, t)
∂xk∂yh∂tm

]
x=x0,y=y0,t=t0

. (2.1)

The differential inverse transform ofW(k, h,m) is defined by

w
(
x, y, t

)
=

∞∑
k=0

∞∑
h=0

∞∑
m=0

W(k, h,m)(x − x0)k
(
y − y0

)h(t − t0)m. (2.2)
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For (x0, y0, t0) = (0, 0, 0), we have

w
(
x, y, t

)
=

∞∑
k=0

∞∑
h=0

∞∑
m=0

1
k!h!m!

[
∂k+h+mw(x, y, t)
∂xk∂yh∂tm

]
x=0,y=0,t=0

xkyhtm. (2.3)

In other words,

w
(
x, y, t

)
=

∞∑
k=0

∞∑
h=0

∞∑
m=0

W(k, h,m)xkyhtm. (2.4)

Some fundamental operations for the standard DTM are presented in Table 1. It has been
proved that the standard DTM is an efficient tool for solving many linear and nonlinear
problems [28–39]. However, there are also some difficulties in DTM. Let us consider the
differential transform for u3 which involves six summations in the Table 1. Thus, it is
necessary to have a lot of computational work to calculate such differential transform
U(k, h,m) for the large numbers k, h,m.

In what follows, we introduce the basic idea of modified version of the DTM, the
projected DTM. The DTM is based on the Taylor series for all variables. Here, we consider the
Talyor series of the function u with respect to the specific variable. Assume that the specific
variable is the variable t. Then we have the Taylor series expansion of the function u at t = t0
as follows:

u
(
x, y, t

)
=

∞∑
m=0

1
m!

[
∂m

∂tm
u
(
x, y, t

)]
(t − t0)m. (2.5)

Definition 2.1. The projected differential transform U(x, y,m) of u(x, y, t) with respect to the
variable t at t0 is defined by

U
(
x, y,m

)
=

1
m!

[
∂m

∂tm
u(x, y, t)

]
t=t0

. (2.6)

Definition 2.2. The projected differential inverse transform of U(x, y,m) with respect to the
variable t at t0 is defined by

u
(
x, y, t

)
=

∞∑
m=0

U
(
x, y,m

)
(t − t0)m. (2.7)

Since the PDTM results from the Taylor series of the function with respect to the specific
variable, it is expected that the corresponding algebraic equation from the given problem is
much simpler than the result obtained by the standard DTM. The detail description of the
corresponding algebraic equation will be followed in the next section.
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Table 1: Fundamental operations for the three-dimensional DTM.

Original function
w(x, y, t) Transformed functionW(k, h,m)

u(x, y, t) ± v(x, y, t) U(k, h,m) ± V (k, h,m)
cu(x, y, t) cU(k, h,m)
∂r+s+pu(x, y, t)
∂xr∂ys∂tp

(k + r)!
k!

(h + s)!
s!

(m + p)!
p!

U(k + r, h + s,m + p)

∂u(x, y, t)
∂x

∂v(x, y, t)
∂y

∑k
r=0
∑h

s=0
∑m

p=0(k − r + 1)(h − s + 1)U(k − r + 1, s, p)U(r, h − s + 1,m − p)

u(x, y, t)v(x, y, t)
∑j

r=0
∑h

s=0
∑m

p=0U(r, h − s,m − p)V (k − r, s, p)
u(x, y, t)v(x, y, t)g(x, y, t)

∑k
r=0
∑k−r

τ=0
∑h

s=0
∑h−s

p=0
∑m

l=0
∑m−l

q=0 U(r, h−s−p, l)V (τ, s,m−l−q)G(k−r−τ, p, q)

3. Comparison of the Standard and Projected DTMs

In this section, we present the comparison of the standard DTM and the projected DTM for
solving ourmodel problems, the nonlinear Klein-Gordon and Schrödinger equations. As seen
in the previous section, it is the key to obtain the corresponding algebraic equation of the
differential transform for the given problems in DTM. For the model problems, we present
the corresponding algebraic equations of the differential transform in the standard DTM and
the projected DTM at (x, y, t) = (0, 0, 0). Firstly, let us consider the following one-dimensional
nonlinear Klein-Gordon equation:

utt + αuxx + βu + γun = f(x, t), x ∈ (a, b), (3.1)

with initial conditions

u(x, 0) = g1(x), ut(x, 0) = g2(x), (3.2)

where α, β, and γ are known constants and the constant n = 2 or 3. The standard DTM for the
(3.1) gives the following algebraic equation:

(h + 1)(h + 2)U(k, h + 2) + α(k + 1)(k + 2)U(k + 2, h)

+βU(k, h) + γG(k, h) = F(k, h),
(3.3)

where

G(k, h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∑
r=0

h∑
s=0

U(r, h − s)U(k − r, s) n = 2

k∑
r=0

k−r∑
τ=0

h∑
s=0

h−s∑
p=0

U
(
r, h − s − p)U(τ, s)U

(
k − r − τ, p) n = 3,

(3.4)
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and F(k, h) is the differential transform for the function f(x, y). The initial conditions give
U(k, 0) = G1(k), U(k, 1) = G2(k), where G1(k), G2(k) are the differential transforms for the
function g1(x), g2(x), respectively.

The projected DTM with respect to variable t gives the following algebraic equation:

(h + 1)(h + 2)U(x, h + 2) + αUxx(x, h) + βU(x, h) + γG(x, h) = F(x, h), (3.5)

where

G(x, h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h∑
s=0

U(x, h − s)U(x, s) n = 2

h∑
s=0

h−s∑
p=0

U
(
x, h − s − p)U(x, s)U

(
x, p
)

n = 3,
(3.6)

and F(x, h) is the projected differential transform of f(x, t)with respect to the variable t. The
initial conditions giveU(x, 0) = g1(x) andU(x, 1) = g2(x).

Here, we apply the DTM to solve the following Schrödinger equation:

iut + αΔu + βuψ + γ |u|2u = 0, (3.7)

with an initial condition u(x, y, 0) = g(x, y). Then the standard DTM gives the following

iU(k, h,m + 1) + α[(k + 1)(k + 2)U(k + 2, h,m) + (h + 1)(h + 2)U(k, h + 2, m)]

+ β
k∑
r=0

h∑
s=0

m∑
p=0

U
(
r, h − s,m − p)Ψ(k − r, s, p)

+ γ
k∑
r=0

k−r∑
τ=0

h∑
s=0

h−s∑
p=0

m∑
l=0

m−l∑
q=0

U
(
r, h − s − p, l)

×U(τ, s,m − l − q)U(k − r − τ, p, q) = 0,

(3.8)

withU(k, h, 0) = G(k, h); G(k, h) is the differential transform of g(x, y).
The projected DTM with respect to the variable t gives the following algebraic

equation:

i(m + 1)U
(
x, y,m + 1

)
+ α
(
Uxx +Uyy

)(
x, y,m

)
+ β

m∑
p=0

U
(
x, y,m − p)Ψ(x, y, p)

+ γ
m∑
l=0

m−l∑
q=0

U
(
x, y,m − l − q)U(x, y, l)U

(
x, y, q

)
= 0,

(3.9)

where Ψ is the differential transform for the trapping potential function ψ and U(x, y, 0) =
g(x, y).
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4. Illustrative Examples

In order to show the effectiveness of the PDTM for solving the nonlinear Klein-Gordon and
Schrödinger equations, several examples are demonstrated. For all illustrative examples, we
consider the projected differential transform with respect to the variable t. To compare with
numerical results obtained by DTM and PDTM, we define the partial sum of both methods
as follows:

Sdtm
p,q,r =

p∑
k=0

q∑
h=0

r∑
m=0

U(k, h,m)xkyhtm,

S
pdtm
r =

r∑
m=0

U
(
x, y,m

)
tm.

(4.1)

Example 4.1. Let us consider the nonlinear Klein-Gordon equation (3.1) with quadratic
nonlinearity n = 2 with constants α = −1, β = 0, and γ = 1 in the interval (0, 1) [35]. The
initial conditions are given by

u(x, 0) = 1 + sinx, ut(x, 0) = 0. (4.2)

That is, g1(x) = 1 + sinx and g2(x) = 0 in (3.2).

The Standard DTM. Using initial conditions gi(x), i = 1, 2 yields the following
differential transformsU(k, 0), U(k, 1), k = 0, 1, 2, . . .:

U(1, 0) = 1, U(2k + 1, 0) =
(−1)k

(2k + 1)!
,

U(2k, 0) = 0, U(k, 1) = 0.

(4.3)

Substituting (4.3) into (3.3) gives the solution in the following form:

u(x, t) =
∞∑
k=0

∞∑
h=0

U(k, h)xkth = 1 +

(
x − x3

3!
+
x5

5!
+ · · ·

)

+
(
−1
2
− 3
2
x − 1

2
x2 +

1
4
x3 +

1
6
x4 − 1

80
x5 + · · ·

)
t2

+
(
11
24
x +

1
2
x2 +

11
144

x3 − 1
6
x4 − 109

2880
x5 + · · ·

)
t4 + · · · .

(4.4)
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Table 2: Comparison for the approximate values obtained by ADM, VIM, DTM, and PDTM at various
values of x and t.

x
t = 0.1

ADM VIM DTM PDTM
0.2 1.190502988 1.190503087 1.190602734 1.190503088
0.4 1.377844211 1.377844710 1.378073322 1.377844757
0.6 1.549620480 1.549621939 1.550000812 1.549622051
0.8 1.699081273 1.699084244 1.699640074 1.699084436

x
t = 0.2

ADM VIM DTM PDTM
0.2 1.166134875 1.166138050 1.166138150 1.166138093
0.4 1.343423788 1.343432104 1.343438811 1.343435073
0.6 1.505052082 1.505073495 1.505124251 1.505080633
0.8 1.644954933 1.644997540 1.645259446 1.645009691

x
t = 0.3

ADM VIM DTM PDTM
0.2 1.125945576 1.125974851 1.125975665 1.125975548
0.4 1.287943874 1.287088824 1.287130047 1.287122513
0.6 1.432404521 1.432497282 1.432663372 1.432577763
0.8 1.557040327 1.557215916 1.557830079 1.557352520

The Projected DTM. The initial conditions gi(x), i = 1, 2 yield U(x, 0) = 1 + sinx and
U(x, 1) = 0. SubstitutingU(x, 0) andU(x, 1) into (3.5) gives

u(x, t) =
∞∑
h=0

U(x, h)th = 1 + sinx +
1
4
(−3 + cos 2x − 6 sinx)t2

+
1
48

(12 − 12 cos 2x + 25 sinx − sin 3x)t4 + · · · .
(4.5)

Table 2 shows the numerical results obtained by various methods. Here, the five
terms of Adomian decomposition method (ADM), the fourth iteration of variational iteration
method (VIM), the partial sum Sdtm

5,5 of DTM, and the partial sum S
pdtm
5 of PDTM are tested to

compare with numerical results at various values of x for each t = 0.1, 0.2, and 0.3. For all test
points (x, t), numerical approximations obtained by the PDTM agree in three decimal places.

Example 4.2. Let us consider the nonlinear Klein-Gordon equation (3.1) with cubic
nonlinearity n = 3 with constants α = −1, β = 1 and γ = 1 in the interval (−1, 1) [40]. The
initial conditions are given by

u(x, 0) = x2 coshx, ut(x, 0) = x2 sinhx. (4.6)

That is, g1(x) = x2 coshx and g2(x) = x2 sinhx in (3.2). The right-hand side function f(x, t)
in (3.1) is

f(x, t) =
(
x2 − 2

)
cosh(x + t) − 4x sinh(x + t) + x6cosh3(x + t). (4.7)



8 Abstract and Applied Analysis

The Standard DTM. From the Taylor series expansion of sinh(x) and cosh(x), initial
conditions gi(x), i = 1, 2 give the following nonzero differential transforms U(k, 0), U(k, 1),
k = 0, 1, 2, . . .:

U(2k + 2, 0) =
1

(2k)!
,

U(2k + 3, 1) =
1

(2k + 1)!
.

(4.8)

Substituting (4.8) into (3.3) gives the solution in the following form:

u(x, t) =
∞∑
k=0

∞∑
h=0

U(k, h)xkth =

(
x2 +

x4

2
+
x6

24
+
x8

720
+ · · ·

)

+

(
x3 +

x5

6
+
x7

120
+ · · ·

)
t +

(
x2

2
+
x4

4
+
x6

48
+ · · ·

)
t2 + · · · .

(4.9)

The Projected DTM. The initial conditions gi(x), i = 1, 2 yield U(x, 0) = x2 cosh(x) and
U(x, 1) = x2 sinh(x). SubstitutingU(x, 0) andU(x, 1) into (3.5) gives

u(x, t) =
∞∑
h=0

U(x, h)th = x2 cosh(x) + x2 sinh(x)t +
1
2
x2 cosh(x)t2

+
1
6
x2 sinh(x)t3 +

1
24
x2 cosh(x)t4 + · · · .

(4.10)

In both methods, DTM and PDTM, the exact solution u(x, t) can be obtained immediately
from (4.9), (4.10) as

u(x, t) = x2 cosh(x + t). (4.11)

Table 3 shows the L∞ and L2 error estimates of the numerical results obtained by the radial
basis function method (RBF) [40], DTM, and PDTM at several values of t. In RBF,Δt = 0.0001
andΔx = 0.01 are used to obtain approximate solutions. In DTM and PDTM, the partial sums
Sdtm
10,10 and S

pdtm
10 are tested. Since the DTM and PDTM are based on the Taylor series for the

solution at (x, t) = (0, 0) and t = 0, respectively, it is obvious that the more closer to t = 0,
the more accurate numerical approximation can be obtained. This can be shown in Table 3.
Moreover, the DTM and PDTM give inaccurate approximated solutions at t = 5, but it can be
easily improved by adding more terms in the partial sum. In fact, the partial sum S

pdtm
20 gives

1.4961 × 10−5 in L∞ and 6.2667 × 10−6 in L2.

Example 4.3. Let us consider the following one-dimensional nonlinear Schrödinger equation
(3.7) with α = 1/2, β = γ = −1 in the interval (0, 2π) [41, 42]. Here, the trapping potential is
ψ(x) = cos2x and the initial condition u(x, 0) = sinx.
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Table 3: Comparison for the L∞ and L2 error estimates of the approximate solutions obtained by RBF,
DTM, and PDTM at each time.

t
L∞

RBF DTM PDTM
1 5.0705 × 10−5 3.7295 × 10−6 3.2870 × 10−8

2 5.0260 × 10−4 8.6492 × 10−5 7.5361 × 10−5

3 2.0612 × 10−3 7.3602 × 10−3 7.3229 × 10−3

4 6.5720 × 10−3 1.9639 × 10−1 1.9630 × 10−1

5 1.9067 × 10−2 2.6050 × 100 2.6048 × 100

t
L2

RBF DTM PDTM
1 2.9474 × 10−4 9.8387 × 10−7 1.5413 × 10−8

2 2.7082 × 10−3 3.5433 × 10−5 3.2860 × 10−5

3 9.7246 × 10−3 3.0402 × 10−3 3.0333 × 10−3

4 2.7881 × 10−2 7.8423 × 10−2 7.8405 × 10−2

5 7.7337 × 10−2 1.0171 × 100 1.0170 × 100

The Standard DTM. From the initial condition it is easy to obtain the following
differential transformsU(k, 0), k = 0, 1, 2, . . .:

U(2k + 1, 0) =
(−1)k

(2k + 1)!
, U(2k, 0) = 0. (4.12)

Given trapping potential function ψ(x) yields the nonzero differential transforms Ψ(2k, 0),
k = 0, 1, . . .. A few values of Ψ(2k, 0) are listed as follows:

Ψ(2, 0) = −1, Ψ(4, 0) =
1
3
, Ψ(6, 0) = − 2

45
, . . . . (4.13)

By substituting all coefficientsU(k, 0) andΨ(k, h) into (3.8), all values ofU(k, h) can be easily
obtained. A few values ofU(k, h) are presented as follows:

U(2k, h) = 0, U(2k + 1, 1) = −3i
2

(−1)k
(2k + 1)!

, U(2k + 1, 2) = −9
8

(−1)k
(2k + 1)!

+ · · · . (4.14)

Thus, we have

u(x, t) =
∞∑
k=0

∞∑
h=0

U(k, h)xkth =

(
x − x3

6
+
x5

120
− · · ·

)
− 3i

2

(
x − x3

6
+
x5

120
− · · ·

)
t

− 9
8

(
x − x3

6
+
x5

120
− · · ·

)
t2 +

9i
16

(
x − x3

6
+
x5

120
− · · ·

)
t3 + · · · .

(4.15)
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The projected DTM. The initial condition u(x, 0) givesU(x, 0) = sin(x) and the trapping
potential function yields

Ψ(x, h) =

{
cos2(x), h = 0
0, otherwise.

(4.16)

SubstitutingU(x, 0) and Ψ(x, h) into (3.9) gives

u(x, t) =
∞∑
h=0

U(x, h)th = sin(x) − 3i
2
sin(x)t − 9

8
sin(x)t2 +

9i
16

sin(x)t3 + · · · . (4.17)

From (4.15) and (4.17), the DTM and PDTM yield the following closed form:

u(x, t) = sinx exp
(
−3i
2
t

)
, (4.18)

which is the exact solution. Here, we compare the numerical results obtained by the spectral
collocation method with preconditioning (SCMP) [41] and the proposed method. The test
point xi is the Chebyshev-Gauss-Lobatto points in (0, 2π); xi = π cos(iπ/n) + π, n = 16.
Suppose that the exact solution u = v +wi, then the absolute errors of the real and imaginary
parts between the exact and approximation, |Ev| and |Ew|, are defined by

|Ev(x, t)| = |v(x, t) − ṽ(x, t)|, |Ew(x, t)| = |w(x, t) − w̃(x, t)|, (4.19)

where ṽ, w̃ are the approximations obtained by numerical methods. Table 4 shows the
absolute error estimates |Ev| and |Ew| at each test point xi for the fixed value t = 1. In SCMP,
Δt = 0.01 and the partial sum Sdtm

15,15 of DTM and the partial sum S
pdtm
15 of PDTM are tested

to obtain numerical approximations. It is shown that the standard DTM gives less accurate
approximations at x3 and x7 compared with those obtained by PDTM. This is because the
standard DTM is the Taylor series expansion at (x, t) = (0, 0) and x3 ≈ 5.75 and x7 ≈ 3.75 are
far away from x = 0. However, it does not occur in the PDTM at any value of xi because the
PDTM depends on variable t, not space variable x.

Example 4.4. Let us consider the following two-dimensional nonlinear Schrödinger equation
(3.7) with α = 1/2, β = γ = −1 in the interval (0, 2π)2 [41, 42]. Here, the trapping potential is
ψ(x, y) = 1 − sin2xsin2y and the initial condition u(x, y, 0) = sinx siny.

The Standard DTM. From the initial condition we have only nonzero U(k, h, 0), k, h =
0, 1, 2, . . .:

U(2k + 1, 2h + 1, 0) =
(−1)k+h

(2k + 1)!(2h + 1)!
. (4.20)
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Table 4: Comparison for the absolute errors |Ev| and |Ew| of the approximate solutions obtained by SCMP,
DTM, and PDTM at various test point xi with fixed time t = 1.

x
|Ev(xi, 0)|

SCMP DTM PDTM
x3 1.3281 × 10−9 1.5029 × 10−3 1.5739 × 10−11

x7 2.2164 × 10−9 1.1175 × 10−6 1.7926 × 10−11

x11 2.2164 × 10−9 3.0748 × 10−11 3.0690 × 10−11

x14 2.3774 × 10−9 7.3818 × 10−12 7.3817 × 10−12

x
|Ew(xi, 0)|

SCMP DTM PDTM
x3 9.4638 × 10−10 2.1193 × 10−2 1.3898 × 10−12

x7 4.0901 × 10−10 1.5759 × 10−5 1.5830 × 10−12

x11 4.0901 × 10−10 2.7100 × 10−12 2.7101 × 10−12

x14 1.4319 × 10−9 6.5184 × 10−13 6.5184 × 10−13

Given trapping potential function ψ(x, y) gives the only nonzeroΨ(2k, 2h, 0), k, h = 0, 1, 2, . . ..
A few values of Ψ(2k, 2h, 0) are listed as follows:

Ψ(2, 0, 0) = −1, Ψ(4, 0, 0) =
1
3
,

Ψ(2, 2, 0) = 1, Ψ(4, 2, 0) = −1
3
, Ψ(6, 2, 0) =

2
45
.

(4.21)

Substituting all coefficients U(k, h, 0) and Ψ(k, h, 0) into (3.8) gives all values of U(k, h,m).
Table 5 lists the some values of the differential transformU(k, h,m). Thus, we have

u
(
x, y, t

)
=

∞∑
k=0

∞∑
h=0

∞∑
m=0

U(k, h,m)xkthtm

=

(
x − x3

6
+
x5

120
− · · ·

)
y − 1

6

(
x − x3

6
+
x5

120
− · · ·

)
y3 + · · ·

+

{
−2i
(
x − x3

6
+
x5

120
− · · ·

)
y +

i

3

(
x − x3

6
+
x5

120
− · · ·

)
y3 + · · ·

}
t

+

{
−2
(
x − x3

6
+
x5

120
− · · ·

)
y +

1
3

(
x − x3

6
+
x5

120
− · · ·

)
y3 + · · ·

}
t2 + · · · .

(4.22)
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Table 5: Some values ofU(k, h,m) in Example 4.4.

U(1, 1, 1) = −2i U(1, 1, 2) = −2 U(1, 1, 3) =
4i
3

U(5, 1, 1) = − i

60
U(5, 1, 2) = −1

6
U(5, 1, 3) =

i

90

U(1, 3, 1) =
i

3
U(1, 3, 2) =

1
3

U(1, 3, 3) = −2i
9

U(5, 3, 1) =
i

360
U(5, 3, 2) =

1
360

U(5, 3, 3) = − i

540

U(1, 5, 1) = − i

60
U(1, 5, 2) = − 1

60
U(1, 5, 3) =

i

90

U(5, 5, 1) = − i

7200
U(5, 5, 2) = − 1

7200
U(5, 5, 3) =

i

22680

Table 6: Comparison for the L∞ errors between the exact solution and approximate solutions obtained by
SSFD, DTM, and PDTM at t = 4.

SSFD DTM PDTM
8.115 × 10−4 7.203 × 10−4 7.203 × 10−4

The Projected DTM. The initial condition gives U(x, y, 0) = sinx siny and the trapping
potential function yields Ψ(x, y, 0) = 1 − sin2xsin2y and Ψ(x, y,m) = 0, m/= 0. Substituting
U(x, y, 0) and Ψ(x, y,m) into (3.9) gives

u
(
x, y, t

)
=

∞∑
k=0

∞∑
h=0

∞∑
m=0

U(k, h,m)xkyhtm

=
(
1 − 2it − 2t2 +

4i
3
t3 +

2
3
t4 − 4i

15
t5 + · · ·

)
sinx siny.

(4.23)

Both methods, DTM and PDTM, give directly the exact solution from (4.22) and (4.23):

u
(
x, y, t

)
= sinx siny exp(−2it). (4.24)

Table 6 shows the L∞ error estimates between the exact and numerical solutions
obtained by the split-step finite difference method (SSFD) [42] and the (P)DTM at t = 4.
In SSFD, Δt = 0.01 is used to obtain approximated solutions. Since all numerical results
are tested at t = 4, a large number of partial sum in DTM and PDTM is considered. Here,
the partial sum Sdtm

25,25,25 of DTM and the partial sum S
pdtm
25 are tested to obtain numerical

approximations. It is worth noting that both DTM and PDTM yield accurate approximate
solutions, different from the previous example. This is because of using the large number
of partial sum in DTM. In other words, with 25-term partial sum the errors of approximate
solutions obtained by DTM in the domain (0, 2π)2 are almost negligible.
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5. Conclusion

In this work, we have developed the new modified version of differential transform method,
the projected differential transform method, for solving the nonlinear Klein-Gorgon and
Schrödinger equations. The PDTM uses the Taylor series on specific variable so that the
corresponding algebraic equation is simple and easy to implement. It is concluded that,
comparing with the standard DTM, the PDTM reduces computational cost in obtaining
approximated solutions. Several illustrative examples are demonstrated to show the
effectiveness for the PDTM. In all examples, the PDTM yields the exact solutions with simple
calculation. Also, numerical results with partial sum in PDTM are compared with those
obtained by various numerical methods such as ADM, VIM, RBF, SCMP, and SSFD. From all
illustrative examples, it is shown that the PDTM yields very accurate approximate solutions.
Thus, it is concluded that the PDTM is a powerful tool for solving linear and nonlinear
problems. Here, all algebraic computations are performed by using Mathematica 7.0.

Acknowledgments

B. Jang is supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(no. 2010-0013297), and Y. Do is supported by the WCU (World Class University) Program
through the Korea Science and Engineering Foundation funded by theMinistry of Education,
Science and Technology (no. R32-2009-000-20021-0).

References
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