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The main purpose of this paper is by using a hybrid algorithm to find a common element of the
set of solutions for a generalized mixed equilibrium problem, the set of solutions for variational
inequality problems, and the set of common fixed points for a infinite family of total quasi-φ-
asymptotically nonexpansive multivaluedmapping in a real uniformly smooth and strictly convex
Banach space with Kadec-Klee property. The results presented in this paper improve and extend
some recent results announced by some authors.

1. Introduction

Throughout this paper, we always assume that X is a real Banach space with the dual X∗, C
is a nonempty closed convex subset of X, and J : X → 2X is the normalized duality mapping
defined by

J(x) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖2 = ∥∥f∗∥∥2}, ∀x ∈ E. (1.1)

In the sequel, we use F(T) to denote the set of fixed points of a mapping T and useR andR+

to denote the set of all real numbers and the set of all nonnegative real numbers, respectively.
We denote by xn → x and xn ⇀ x the strong convergence and weak convergence of a
sequence {xn}, respectively.
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LetΘ : C×C → R be a bifunction, ψ : C → R a real valued function, andA : C → X∗

a nonlinear mapping. The so-called generalized mixed equilibrium problem is to find u ∈ C such
that

Θ
(
u, y
)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions to (1.2) is denoted by Ω, that is,

Ω =
{
u ∈ C : Θ

(
u, y
)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C}. (1.3)

Special examples are follows.

(i) If A ≡ 0, the problem (1.2) is equivalent to finding u ∈ C such that

Θ
(
u, y
)
+ ψ
(
y
) − ψ(u) ≥ 0, ∀y ∈ C, (1.4)

which is called the mixed equilibrium problem (MEP) [1].

(ii) If Θ ≡ 0, the problem (1.2) is equivalent to finding u ∈ C such that

〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C, (1.5)

which is called the mixed variational inequality of Browder type (VI) [2].

A Banach space X is said to be strictly convex if ‖x + y‖/2 < 1 for all x, y ∈ U = {z ∈
X : ‖z‖ = 1}with x /=y. X is said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0
such that ‖x + y‖/2 < 1 − δ for all x, y ∈ U with ‖x − y‖ ≥ ε. X is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.6)

exists for all x, y ∈ U. X is said to be uniformly smooth if the above limit is attained uniformly
in x, y ∈ U.

Remark 1.1. The following basic properties of a Banach space X can be found in Cioranescu
[3].

(i) If X is uniformly smooth, then J is uniformly continuous on each bounded subset
of X.

(ii) If X is a reflexive and strictly convex Banach space, then J−1 is norm-weak-
continuous.

(iii) IfX is a smooth, strictly convex, and reflexive Banach space, then J is single-valued,
one-to-one and onto.

(iv) A Banach space X is uniformly smooth if and only if X∗ is uniformly convex.

(v) Each uniformly convex Banach space X has the Kadec-Klee property, that is, for any
sequence {xn} ⊂ X, if xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x.
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Let X be a smooth Banach space. We always use φ : X × X → R+ to denote the
Lyapunov functional defined by

φ
(
x, y
)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y∥∥2, ∀x, y ∈ X. (1.7)

It is obvious from the definition of the function φ that

(‖x‖ − ∥∥y∥∥)2 ≤ φ(x, y) ≤ (‖x‖ + ∥∥y∥∥)2, ∀x, y ∈ X. (1.8)

Following Alber [4], the generalized projection ΠC : X → C is defined by

ΠC(x) = arg inf
y∈C

φ
(
y, x
)
, ∀x ∈ X. (1.9)

Lemma 1.2 (see [4]). Let X be a smooth, strictly convex, and reflexive Banach space and C a
nonempty closed convex subset of X. Then, the following conclusions hold:

(a) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y) for all x ∈ C and y ∈ X,

(b) if x ∈ X and z ∈ C, then

z = ΠCx iff
〈
z − y, Jx − Jz〉 ≥ 0, ∀y ∈ C, (1.10)

(c) for x, y ∈ X, φ(x, y) = 0 if and only if x = y.

Let X be a smooth, strictly convex, and reflexive Banach space, C a nonempty closed convex
subset of X, and T : C → C a mapping. A point p ∈ C is said to be an asymptotic fixed point of T if
there exists a sequence {xn} ⊂ C such that xn ⇀ p and ‖xn − Txn‖ → 0. We denoted the set of all
asymptotic fixed points of T by F̃(T).

Definition 1.3. (1) A mapping T : C → C is said to be relatively nonexpansive [5] if
F(T)/= ∅, F(T) = F(T̃) and

φ
(
p, Tx

) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (1.11)

(2) A mapping T : C → C is said to be closed if, for any sequence {xn} ⊂ C with
xn → x and Txn → y, Tx = y.

LetC be a nonempty closed convex subset of a Banach spaceX. LetN(C) be the family
of nonempty subsets of C.
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Definition 1.4. (1) Let T : C → N(C) be a multivalued mapping and q a point in C. The
definitions of Tq, T2q, T3q, . . . , Tnq, n ≥ 1 are as follows:

Tq :=
{
q1 : q1 ∈ T

(
q
)}
,

T2q = T
(
T
(
q
))

:=
⋃

q1∈T(q)
T
(
q1
)
,

T3q = T
(
T2(q)

)
:=

⋃
q2∈T2(q)

T
(
q2
)
,

...

Tnq = T
(
Tn−1

(
q
))

:=
⋃

qn−1∈Tn−1(q)
T
(
qn−1
)
, n ≥ 1.

(1.12)

(2) Let T : C → N(C) be a multivalued mapping. A point p ∈ C is said to be
an asymptotic fixed point of T if there exists a sequence {xn} ⊂ C such that xn ⇀ p and
limn→∞d(xn, T(xn)) = 0. We denoted the set of all asymptotic fixed points of T by F̃(T).

(3) A multivalued mapping T : C → N(C) is said to be relatively nonexpansive [5] if
F(T)/= ∅, F(T) = F̃(T) and

φ
(
p,w

) ≤ φ(p, x), ∀x ∈ C, w ∈ Tx, p ∈ F(T). (1.13)

(4) A multivalued mapping T : C → N(C) is said to be closed if, for any sequence
{xn} ⊂ C with xn → x and wn ∈ T(xn)with wn → y, then y ∈ Tx.

Definition 1.5. (1) Amultivalued mapping T : C → N(C) is said to be quasi-φ-nonexpansive if
F(T)/= ∅ and

φ
(
p,w

) ≤ φ(p, x), ∀x ∈ C, w ∈ Tx, p ∈ F(T). (1.14)

(2) A multivalued mapping T : C → N(C) is said to be quasi-φ-asymptotically
nonexpansive if F(T)/= ∅ and there exists a real sequence {kn} ⊂ [1,∞) with kn → 1 such
that

φ
(
p,wn

) ≤ knφ
(
p, x
)
, ∀n ≥ 1, x ∈ C, wn ∈ Tnx, p ∈ F(T). (1.15)

(3) A multivalued mapping T : C → N(C) is said to be total quasi-φ-asymptotically
nonexpansive if F(T)/= ∅ and there exist nonnegative real sequences {νn}, {μn} with νn →
0, μn → 0 (as n → ∞) and a strictly increasing continuous function ζ : R+ → R+ with
ζ(0) = 0 such that for all x ∈ C, p ∈ F(T)

φ
(
p,wn

) ≤ φ(p, x) + νnζ
(
φ
(
p, x
))

+ μn, ∀n ≥ 1, wn ∈ Tnx. (1.16)
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Definition 1.6. (1) Let {Ti}∞i=1 : C → N(C) be a sequence of mappings. {Ti}∞i=1 is said to be a
family of uniformly total quasi-φ-asymptotically nonexpansive multivalued mappings if ∩∞

i=1F(Ti)/= ∅
and there exist nonnegative real sequences {νn}, {μn} with νn → 0, μn → 0 (as n → ∞)
and a strictly increasing continuous function ζ : R+ → R+ with ζ(0) = 0 such that for all
i ≥ 1, x ∈ C, p ∈ ∩∞

i=1F(Ti)

φ
(
p,wn,i

) ≤ φ(p, x) + νnζ
(
φ
(
p, x
))

+ μn, ∀wn,i ∈ Tni x, ∀n ≥ 1. (1.17)

(2)A total quasi-φ-asymptotically nonexpansivemultivaluedmapping T : C → N(C)
is said to be uniformly L-Lipschitz continuous if there exists a constant L > 0 such that

‖wn − sn‖ ≤ L∥∥x − y∥∥, ∀x, y ∈ C, wn ∈ Tnx, sn ∈ Tny, n ≥ 1. (1.18)

In 2005, Matsushita and Takahashi [5] proved weak and strong convergence theorems
to approximate a fixed point of a single relatively nonexpansive mapping in a uniformly
convex and uniformly smooth Banach space X. In 2008, Plubtieng and Ungchittrakool [6]
proved the strong convergence theorems to approximate a fixed point of two relatively
nonexpansive mappings in a uniformly convex and uniformly smooth Banach space X.
In 2010, Chang et al. [7] obtained the strong convergence theorem for an infinite family
of quasi-φ-asymptotically nonexpansive mappings in a uniformly smooth and strictly
convex Banach space X with Kadec-Klee property. In 2011, Chang et al. [8] proved some
approximation theorems of common fixed points for countable families of total quasi-φ-
asymptotically nonexpansive mappings in a uniformly smooth and strictly convex Banach
space X with Kadec-Klee property. In 2011, Homaeipour and Razani [9] proved weak and
strong convergence theorems for a single relatively nonexpansive multivalued mapping
in a uniformly convex and uniformly smooth Banach space X. On the other hand, In
2009, Zhang [10] proved the strong convergence theorem for finding a common element
of the set of solutions of a generalized mixed equilibrium problem, the set of solutions
for variational inequality problems, and the set of fixed points of a finite family of quasi-
φ-asymptotically nonexpansive mappings in a uniformly smooth and uniformly convex
Banach space. Recently, Tang [11], Cho et al. [12–21], and Noor et al. [22–26] extended the
finite family of quasi-φ-asymptotically nonexpansive mappings to infinite family of quasi-φ-
asymptotically nonexpansive mappings.

Motivated and inspired by the researches going on in this direction, the purpose
of this paper is by using the hybrid iterative algorithm to find a common element of
the set of solutions of a generalized mixed equilibrium problem, the set of solutions for
variational inequality problems, and the set of fixed points of a infinite family of total quasi-
φ-asymptotically nonexpansive multivalued mappings in a uniformly smooth and strictly
convex Banach space with Kadec-Klee property. In order to get the strong convergence
theorems, the hybrid algorithms are presented and used to approximate the fixed point. The
results presented in the paper improve and extend some recent results announced by some
authors.
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2. Preliminaries

Lemma 2.1 (see [8]). LetX be a real uniformly smooth and strictly convex Banach space with Kadec-
Klee property and C a nonempty closed convex set ofX. Let {xn} and {yn} be two sequences in C such
that xn → p and φ(xn, yn) → 0, where φ is the function defined by (1.7), and then yn → p.

Lemma 2.2. Let X and C be as in Lemma 2.1. Let T : C → N(C) be a closed and total quasi-φ-
asymptotically nonexpansive multivalued mapping with nonnegative real sequences {νn}, {μn} and a
strictly increasing continuous function ζ : R+ → R+ such that νn → 0, μn → 0 (as n → ∞), and
ζ(0) = 0. If μ1 = 0, then the fixed point set F(T) is a closed and convex subset of C.

Proof. Letting {xn} be a sequence in F(T) with xn → p (as n → ∞), we prove that p ∈ F(T).
In fact, by the assumption that T is a total quasi-φ-asymptotically nonexpansive multivalued
mapping and μ1 = 0, we have

φ(xn, u) ≤ φ
(
xn, p

)
+ ν1ζ

(
φ
(
xn, p

))
, ∀u ∈ Tp. (2.1)

Furthermore, we have

φ
(
p, u
)
= lim

n→∞
φ(xn, u)

≤ lim
n→∞

(
φ
(
xn, p

)
+ ν1ζ

(
φ
(
xn, p

)))
= 0, ∀u ∈ Tp.

(2.2)

By Lemma 1.2(c), p = u. Hence, p ∈ Tp. This implies that p ∈ F(T), that is, F(T) is closed.
Next, we prove that F(T) is convex. For any x, y ∈ F(T), t ∈ (0, 1), putting q = tx +

(1 − t)y, we prove that q ∈ F(T). Indeed, let {un} be a sequence generated by

u1 ∈ Tq,

u2 ∈ Tu1 ⊂ T2q,

u3 ∈ Tu2 ⊂ T3q,

...

un ∈ Tun−1 ⊂ Tnq,
...

(2.3)

In view of the definition of φ(x, y), for all un ∈ Tun−1 ⊂ Tnq, we have

φ
(
q, un

)
=
∥∥q∥∥2 − 2

〈
q, Jun

〉
+ ‖un‖2

=
∥∥q∥∥2 − 2t〈x, Jun〉 − 2(1 − t)〈y, Jun

〉
+ ‖un‖2

=
∥∥q∥∥2 + tφ(x, un) + (1 − t)φ(y, un

) − t‖x‖2 − (1 − t)∥∥y∥∥2
(2.4)
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since

tφ(x, un) + (1 − t)φ(y, un
)

≤ t(φ(x, q) + νnζ
(
φ
(
x, q
))

+ μn
)
+ (1 − t)(φ(y, q) + νnζ

(
φ
(
y, q
))

+ μn
)

= t
(
‖x‖2 − 2

〈
x, Jq

〉
+
∥∥q∥∥2 + νnζ

(
φ
(
x, q
))

+ μn
)

+ (1 − t)
(∥∥y∥∥2 − 2

〈
y, Jq

〉
+
∥∥q∥∥2 + νnζ

(
φ
(
y, q
))

+ μn
)

= t‖x‖2 + (1 − t)∥∥y∥∥2 − ∥∥q∥∥2 + tνnζ
(
φ
(
x, q
))

+ (1 − t)νnζ
(
φ
(
y, q
))

+ μn.

(2.5)

Substituting (2.5) into (2.4) and simplifying it, we have

φ
(
q, un

) ≤ tνnζ
(
φ
(
x, q
))

+ (1 − t)νnζ
(
φ
(
y, q
))

+ μn −→ 0 (n −→ ∞). (2.6)

By Lemma 2.1, we have un → q (as n → ∞). This implies that un+1 → q (as n → ∞). Since
T is closed, we have q ∈ Tq, that is, q ∈ F(T).

This completes the proof of Lemma 2.2.

Lemma 2.3 (see [7]). LetX be a uniformly convex Banach space, r > 0, a positive number, and Br(0)
a closed ball ofX. Then, for any given sequence {xn}∞n=1 ⊂ Br(0) and for any given sequence {λn}∞n=1 of
positive numbers with Σ∞

n=1λn = 1, there exists a continuous, strictly increasing, and convex function
g : [0, 2r) → [0,∞) with g(0) = 0 such that for any positive integers i, j with i < j,

∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥). (2.7)

For solving the generalized mixed equilibrium problem, let us assume that the function ψ :
C → R is convex and lower semicontinuous, the nonlinear mapping A : C → X∗ is continuous and
monotone, and the bifunction Θ : C × C → R satisfies the following conditions:

(A1) Θ(x, x) = 0, for all x ∈ C,
(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0, for all x, y ∈ C,
(A3) lim supt↓0Θ(x + t(z − x), y) ≤ Θ(x, y), for all x, y, z ∈ C,
(A4) the function y �→ Θ(x, y) is convex and lower semicontinuous.

Lemma 2.4. Let X be a smooth, strictly convex and reflexive Banach space and C a nonempty closed
convex subset of X. Let Θ : C × C → R be a bifunction satisfying conditions (A1)–(A4). Let r > 0
and x ∈ X. Then, the following hold.

(i) [27] There exists z ∈ C such that

Θ
(
z, y
)
+
1
r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.8)
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(ii) [28] Define a mapping Tr : X → C by

Trx =
{
z ∈ C : Θ

(
z, y
)
+
1
r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
, x ∈ X. (2.9)

Then, the following conclusions hold:

(a) Tr is single-valued,

(b) Tr is a firmly nonexpansive-type mapping, that is, for all z, y ∈ X,

〈
Tr(z) − Tr

(
y
)
, JTr(z) − JTr

(
y
)〉 ≤ 〈Tr(z) − Tr

(
y
)
, Jz − Jy〉, (2.10)

(c) F(Tr) = EP(Θ) = ̂F(Tr),

(d) EP(Θ) is closed and convex,

(e) φ(q, Tr(x)) + φ(Tr(x), x) ≤ φ(q, x), for all q ∈ F(Tr).

Lemma 2.5 (see [10]). Let X be a smooth, strictly convex, and reflexive Banach space and C a
nonempty closed convex subset of X. Let A : C → X∗ be a continuous and monotone mapping,
ψ : C → R a lower semicontinuous and convex function, andΘ : C×C → R a bifunction satisfying
conditions (A1)–(A4). Let r > 0 be any given number and x ∈ X any given point. Then, the following
hold.

(i) There exists u ∈ C such that for all y ∈ C

Θ
(
u, y
)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) + 1

r

〈
y − u, Ju − Jx〉 ≥ 0. (2.11)

(ii) If one defines a mapping Kr : C → C by

Kr(x) =
{
u ∈ C : Θ

(
u, y
)
+
〈
Au, y − u〉 + ψ(y) − ψ(u)

+
1
r

〈
y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C

}
, x ∈ C,

(2.12)

then, the mapping Kr has the following properties:

(a) Kr is single-valued,

(b) Kr is a firmly nonexpansive-type mapping, that is, for all z, y ∈ X
〈
Kr(z) −Kr

(
y
)
, JKr(z) − JKr

(
y
)〉 ≤ 〈Kr(z) −Kr

(
y
)
, Jz − Jy〉, (2.13)

(c) F(Kr) = Ω = ̂F(Kr),

(d) Ω is a closed convex set of C,

(e) φ(p,Kr(z)) + φ(Kr(z), z) ≤ φ(p, z), for all p ∈ F(Kr), z ∈ X.
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Remark 2.6. It follows from Lemma 2.4 that the mapping Kr : C → C defined by (2.12) is a
relatively nonexpansive mapping. Thus, it is quasi-φ-nonexpansive.

3. Main Results

In this section, we will use the hybrid iterative algorithm to find a common element of
the set of solutions of a generalized mixed equilibrium problem, the set of solutions for
variational inequality problems, and the set of fixed points of a infinite family of total quasi-
φ-asymptotically nonexpansive multivalued mappings in a uniformly smooth and strictly
convex Banach space with Kadec-Klee property.

Theorem 3.1. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property and C a nonempty closed and convex subset of X. Let Θ : C × C → R be a bifunction
satisfying conditions (A1)–(A4), A : C → X∗ a continuous and monotone mapping, and ψ : C → R
a lower semicontinuous and convex function. Let {Ti}∞i=1 : C → N(C) be an infinite family of closed
and uniformly total quasi-φ-asymptotically nonexpansive multivalued mappings with nonnegative
real sequences {νn}, {μn} and a strictly increasing continuous function ζ : R+ → R+ such that
μ1 = 0, νn → 0, μn → 0 (as n → ∞) and ζ(0) = 0 and for each i ≥ 1, Ti is uniformly Li-Lipschitz
continuous. Let x0 ∈ C, C0 = C, and let {xn} be a sequence generated by

xn+1 =
∏
Cn+1

x0, Cn+1 =
{
ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn) + ξn

}
, ∀n ≥ 0,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

)
,

un ∈ C such that, ∀y ∈ C,

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+ ψ
(
y
) − ψ(un) + 1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

(3.1)

where wn,i ∈ Tni xn, for all n ≥ 1, i ≥ 1, ξn = νnsupp∈Fζ(φ(p, xn)) + μn, ΠCn+1 is the generalized
projection of X onto Cn+1, and {αn} and {βn,0, βn,i} are sequences in [0, 1] satisfying the following
conditions:

(a) for each n ≥ 0, βn,0 + Σ∞
i=1βn,i = 1,

(b) lim infn→∞βn,0βni > 0 for any i ≥ 1,

(c) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

IfG := F∩Ω = ∩∞
i=1F(Ti)∩Ω is a nonempty and bounded subset of C, then the sequence {xn}

converges strongly toΠGx0.

Proof. First, we define two functionsH : C × C → R and Kr : C → C by

H
(
x, y
)
= Θ
(
x, y
)
+
〈
Ax, y − x〉 + ψ(y) − ψ(x), ∀x, y ∈ C,

Kr(x) =
{
u ∈ C : H

(
u, y
)
+
1
r

〈
y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C

}
, x ∈ C.

(3.2)
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By Lemma 2.5, we know that the functionH satisfies conditions (A1)–(A4) andKr has
properties (a)–(e). Therefore, (3.1) is equivalent to

xn+1 =
∏
Cn+1

x0, Cn+1 =
{
ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn) + ξn

}
, ∀n ≥ 0,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

)
,

un ∈ C such that, ∀y ∈ C,

H
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0.

(3.3)

Now we divide the proof of Theorem 3.1 into six steps.
(i) F and Cn are closed and convex for each n ≥ 0.
In fact, it follows from Lemma 2.2 that F(Ti), i ≥ 1, is a closed and convex subset of C.

Therefore, F is a closed and convex subset C.
Again by the assumption, C0 = C is closed and convex. Suppose that Cn is closed and

convex for some n ≥ 1. Since the condition φ(ν, yn) ≤ φ(ν, xn) + ξn is equivalent to

2
〈
ν, Jxn − Jyn

〉 ≤ ‖xn‖2 −
∥∥yn
∥∥2 + ξn, n = 1, 2, . . . , (3.4)

the set

Cn+1 =
{
ν ∈ Cn : 2

〈
ν, Jxn − Jyn

〉 ≤ ‖xn‖2 −
∥∥yn
∥∥2 + ξn

}
(3.5)

is closed and convex. Therefore, Cn is closed and convex for each n ≥ 0.
(ii) {xn} is bounded and {φ(xn, x0)} is a convergent sequence.
Indeed, it follows from (3.1) and Lemma 1.2(a) that for all n ≥ 0, u ∈ F(T)

φ(xn, x0) = φ

(∏
Cn

x0, x0

)
≤ φ(u, x0) − φ

(
u,
∏
Cn

x0

)
≤ φ(u, x0). (3.6)

This implies that {φ(xn, x0)} is bounded. By virtue of (1.3), we know that {xn} is bounded.
In view of the structure of {Cn}, we have Cn+1 ⊂ Cn, xn = ΠCnx0 and xn+1 = ΠCn+1x0.

This implies that xn+1 ∈ Cn and

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.7)

Therefore, {φ(xn, x0)} is a convergent sequence.
(iii) G := F ∩Ω ⊂ Cn for all n ≥ 0.
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Indeed, it is obvious that G ⊂ C0 = C. Suppose that G ⊂ Cn for some n ∈ N. Since
un = Krnyn, by Lemma 2.5 and Remark 2.6,Krn is quasi-φ-nonexpansive. Hence, for any given
u ∈ G ⊂ Cn and n ≥ 1 we have

φ(u, un) = φ
(
u,Krnyn

) ≤ φ(u, yn
)

= φ
(
u, J−1(αnJxn + (1 − αn)Jzn)

)

= ‖u‖2 − 2〈u, αnJxn + (1 − αn)Jzn〉 + ‖αnJxn + (1 − αn)Jzn‖2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1 − αn)〈u, Jzn〉 + αn‖xn‖2

+ (1 − αn)‖zn‖2

= αnφ(u, xn) + (1 − αn)φ(u, zn).

(3.8)

Furthermore, it follows from Lemma 2.3 that for any u ∈ G ⊂ Cn, wn,i ∈ Tni xn, and i ≥ 1 we
have

φ(u, zn) = φ

(
u, J−1

(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

))

= ‖u‖2 − 2

〈
u, βn,0Jxn +

∞∑
i=1

βn,iJwn,i

〉
+

∥∥∥∥∥βn,0Jxn +
∞∑
i=1

βn,iJwn,i

∥∥∥∥∥
2

≤ ‖u‖2 − 2βn,0〈u, Jxn〉 − 2
∞∑
i=1

βn,i〈u, Jwn,i〉 + βn,0‖xn‖2

+
∞∑
i=1

βn,i‖wn,i‖2 − βn,0βn,lg(‖Jxn − Jwn,l‖)

= βn,0φ(u, xn) +
∞∑
i=1

βn,iφ(u,wn,i) − βn,0βn,lg(‖Jxn − Jwn,l‖)

≤ βn,0φ(u, xn) +
∞∑
i=1

βn,i
(
φ(u, xn) + νnζ

(
φ(u, xn)

)
+ μn

)

− βn,0βn,lg(‖Jxn − Jwn,l‖)
≤ φ(u, xn) + νnsup

p∈F
ζ
(
φ
(
p, xn

))
+ μn − βn,0βn,lg(‖Jxn − Jwn,l‖)

= φ(u, xn) + ξn − βn,0βn,lg(‖Jxn − Jwn,l‖).

(3.9)

Substituting (3.9) into (3.8) and simplifying it, we have for all u ∈ G

φ(u, un) ≤ φ
(
u, yn

)

≤ φ(u, xn) + (1 − αn)ξn − (1 − αn)βn,0βn,lg(‖Jxn − Jwn,l‖)
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≤ φ(u, xn) + ξn − (1 − αn)βn,0βn,lg(‖Jxn − Jwn,l‖)
≤ φ(u, xn) + ξn,

(3.10)

that is, u ∈ Cn+1 and so G ⊂ Cn+1 for all n ≥ 0.
By the way, in view of the assumption on {νn}, {μn}we have

ξn = νnsup
p∈F

ζ
(
φ
(
p, xn

))
+ μn −→ 0 (n −→ ∞). (3.11)

(iv) {xn} converges strongly to some point p∗ ∈ C.
In fact, since {xn} is bounded and X is reflexive, there exists a subsequence {xni} ⊂

{xn} such that xni ⇀ p∗ (some point in C). Since Cn is closed and convex and Cn+1 ⊂ Cn, this
implies that Cn is weakly closed and p∗ ∈ Cn for each n ≥ 0. In view of xni = ΠCni

x0, we have

φ(xni , x0) ≤ φ
(
p∗, x0

)
, ∀ni ≥ 0. (3.12)

Since the norm ‖ · ‖ is weakly lower semicontinuous, we have

lim inf
ni →∞

φ(xni , x0) = lim inf
ni →∞

(
‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2

)

≥ ∥∥p∗∥∥2 − 2
〈
p∗, Jx0

〉
+ ‖x0‖2 = φ

(
p∗, x0

)
,

(3.13)

and so

φ
(
p∗, x0

) ≤ lim inf
ni →∞

φ(xni , x0) ≤ lim sup
ni →∞

φ(xni , x0) ≤ φ
(
p∗, x0

)
. (3.14)

This implies that limni →∞φ(xni , x0) = φ(p
∗, x0), and so ‖xni‖ → ‖p∗‖. Since xni ⇀ p∗, by virtue

of Kadec-Klee property of X, we obtain that

lim
ni →∞

xni = p
∗. (3.15)

Since {φ(xn, x0)} is convergent, this together with limni →∞φ(xni , x0) = φ(p∗, x0), shows that
limn→∞φ(xn, x0) = φ(p∗, x0). If there exists some sequence {xnj} ⊂ {xn} such that xnj → q,
then from Lemma 1.2(a) we have that

φ
(
p∗, q

)
= lim

ni,nj →∞
φ
(
xni , xnj

)
= lim

ni,nj →∞
φ

⎛
⎝xni ,

∏
Cnj

x0

⎞
⎠

≤ lim
ni,nj →∞

⎛
⎝φ(xni , x0) − φ

⎛
⎝∏

Cnj

x0, x0

⎞
⎠
⎞
⎠
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= lim
ni,nj →∞

(
φ(xni , x0) − φ

(
xnj , x0

))

= φ
(
p∗, x0

) − φ(p∗, x0
)
= 0.

(3.16)

This implies that p∗ = q and

lim
n→∞

xn = p∗. (3.17)

(v) Now we prove that p∗ ∈ G = F ∩Ω.
First, we prove that p∗ ∈ F. In fact, since xn+1 ∈ Cn+1 ⊂ Cn, it follows from (3.1) and

(3.17) that

φ
(
xn+1, yn

) ≤ φ(xn+1, xn) + ξn −→ 0 (n −→ ∞). (3.18)

By the virtue of Lemma 2.1, we have

lim
n→∞

yn = p∗. (3.19)

From (3.10), for any u ∈ F and wn,i ∈ Tni xn, we have

φ
(
u, yn

) ≤ φ(u, xn) + ξn − (1 − αn)βn,0βn,lg(‖Jxn − Jwn,l‖), (3.20)

that is,

(1 − αn)βn,0βn,lg(‖Jxn − Jwn,l‖) ≤ φ(u, xn) + ξn − φ
(
u, yn

) −→ 0 (n −→ ∞). (3.21)

By conditions (b) and (c) it is shown that limn→∞g(‖Jxn − Jwn,l‖) = 0. In view of property of
g, we have

‖Jxn − Jwn,l‖ −→ 0 (n −→ ∞). (3.22)

Since Jxn → Jp∗, this implies that Jwn,l → Jp∗. From Remark 1.1(ii) it yields

wn,l ⇀ p∗(n −→ ∞), ∀l ≥ 1. (3.23)

Again since

∣∣‖wn,l‖ −
∥∥p∗∥∥∣∣ = ∣∣‖Jwn,l‖ −

∥∥Jp∗∥∥∣∣ ≤ ∥∥Jwn,l − Jp∗
∥∥ −→ 0 (n −→ ∞), (3.24)

this together with (3.23) and the Kadec-Klee property of X shows that

lim
n→∞

wn,l = p∗, ∀l ≥ 1. (3.25)
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Let {sn,l} be a sequence generated by

s2,l ∈ Tlw1,l ⊂ T2
l x1,

s3,l ∈ Tlw2,l ⊂ T3
l x2,

...

sn+1,l ∈ Tlwn,l ⊂ Tn+1l xn,

...

(3.26)

By the assumption that each Ti is uniformly Li-Lipschitz continuous, for any wn,l ∈ Tnl xn and
sn+1,l ∈ Tlwn ⊂ Tn+1l xn we have

‖sn+1,l −wn,l‖ ≤ ‖sn+1,l −wn+1,l‖ + ‖wn+1,l − xn+1‖ + ‖xn+1 − xn‖ + ‖xn −wn,l‖
≤ (Ll + 1)‖xn+1 − xn‖ + ‖wn+1,l − xn+1‖ + ‖xn −wn,l‖.

(3.27)

This together with (3.17) and (3.27) shows that limn→∞‖sn+1,l −wn,l‖ = 0 and limn→∞sn+1,l =
p∗. In view of the closeness of Tl, it yields that p∗ ∈ Tp∗, that is, p∗ ∈ F(Tl). By the arbitrariness
of l ≥ 1, we have

p∗ ∈ F =
∞⋂
i=1

F(Ti). (3.28)

Next, we prove that p∗ ∈ Ω. Since xn+1 = ΠCn+1x0 ∈ Cn, it follows from (3.1) and (3.17)
that

φ(xn+1, un) ≤ φ(xn+1, xn) + ξn −→ 0 (n −→ ∞). (3.29)

Since xn → p∗, by virtue of Lemma 2.1 we have

lim
n→∞

un = p∗. (3.30)

This together with (3.19) shows that ‖un − yn‖ → 0 and limn→∞‖Jun − Jyn‖ → 0. By the
assumption that rn ≥ a, for all n ≥ 0, we have

lim
n→∞

∥∥Jun − Jyn
∥∥

rn
= 0. (3.31)

SinceH(un, y) + (1/rn)〈y − un, Jun − Jyn〉 ≥ 0, for all y ∈ C, by condition (A1), we have

1
rn

〈
y − un, Jun − Jyn

〉 ≥ −H(un, y
) ≥ H(y, un

)
, ∀y ∈ C. (3.32)

By the assumption that y �→ H(x, y) is convex and lower semicontinuous, letting n → ∞ in
(3.32), from (3.30) and (3.31), we haveH(y, p∗) ≤ 0, for all y ∈ C.
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For t ∈ (0, 1] and y ∈ C, letting yt = ty + (1 − t)p∗, there are yt ∈ C and H(yt, p∗) ≤ 0.
By conditions (A1) and (A4), we have

0 = H
(
yt, yt

) ≤ tH(yt, y
)
+ (1 − t)H(yt, p∗

) ≤ tH(yt, y
)
. (3.33)

Dividing both sides of the above equation by t, we have H(yt, y) ≤ 0, for all y ∈ C. Letting
t ↓ 0, from condition (A3), we haveH(p∗, y) ≤ 0, for all y ∈ C, that is, p∗ ∈ Ω, and p∗ ∈ G =
F ∩Ω.

(vi)We prove that xn → p∗ = ΠGx0.
Let q = ΠGx0. Since q ∈ G ⊂ Cn and xn = ΠCnx0, we have

φ(xn, x0) ≤ φ
(
q, x0

)
, ∀n ≥ 0. (3.34)

This implies that

φ
(
p∗, x0

)
= lim

n→∞
φ(xn, x0) ≤ φ

(
q, x0

)
. (3.35)

In view of the definition of ΠGx0, from (3.35)we have p∗ = q. Therefore, xn → p∗ = ΠGx0.
This completes the proof of Theorem 3.1.

4. Conclusions

Recently the extended general variational inequalities have been introduced and studied in Noor
[24, 25]. We would like to point out that the results and the methods presented in this
paper will be used to study this kind of extended general variational inequalities and its
multivalued version.
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