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The main purpose of this paper is by using a hybrid algorithm to find a common element of the
set of solutions for a generalized mixed equilibrium problem, the set of solutions for variational
inequality problems, and the set of common fixed points for a infinite family of total quasi-¢-
asymptotically nonexpansive multivalued mapping in a real uniformly smooth and strictly convex
Banach space with Kadec-Klee property. The results presented in this paper improve and extend
some recent results announced by some authors.

1. Introduction

Throughout this paper, we always assume that X is a real Banach space with the dual X*, C
is a nonempty closed convex subset of X, and J : X — 2% is the normalized duality mapping
defined by

Je) = {f ex :(x f) =P = £}, vxeE. (1.1)

In the sequel, we use F(T) to denote the set of fixed points of a mapping T and use R and R*
to denote the set of all real numbers and the set of all nonnegative real numbers, respectively.
We denote by x, — x and x, — x the strong convergence and weak convergence of a
sequence {x,}, respectively.
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Let® : CxC — R be abifunction, ¢ : C — R areal valued function,and A: C — X*
a nonlinear mapping. The so-called generalized mixed equilibrium problem is to find u € C such
that

O(u,y) +{Au,y-u) +¢(y) —¢pu) >0, VyeC. (1.2)
The set of solutions to (1.2) is denoted by €, that is,

Q={ueC:0(uy)+(Au,y-u)+¢(y) —¢(u) >0, Vy € C}. (1.3)

Special examples are follows.

(i) If A =0, the problem (1.2) is equivalent to finding u € C such that
O(u,y) +¢(y) —¢m) 20, VyeC, (1.4)

which is called the mixed equilibrium problem (MEP) [1].
(ii) If © = 0, the problem (1.2) is equivalent to finding u € C such that

(Au,y-u)+¢(y) —¢pwm) >0, VyeC, (1.5)

which is called the mixed variational inequality of Browder type (VI) [2].

A Banach space X is said to be strictly convex if |x + y||/2 < 1forallx, ye U = {z €
X :||lz|| = 1} with x #y. X is said to be uniformly convex if, for each e € (0,2], there exists 6 > 0
such that ||x + y||/2 <1 -6 for all x,y € U with ||x — y|| > e. X is said to be smooth if the limit

hmw (1.6)
t—0 t

exists for all x, y € U. X is said to be uniformly smooth if the above limit is attained uniformly
inx, yeU.

Remark 1.1. The following basic properties of a Banach space X can be found in Cioranescu
[3].
(i) If X is uniformly smooth, then J is uniformly continuous on each bounded subset

of X.

(ii) If X is a reflexive and strictly convex Banach space, then J~! is norm-weak-
continuous.

(iii) If X is a smooth, strictly convex, and reflexive Banach space, then J is single-valued,
one-to-one and onto.

(iv) A Banach space X is uniformly smooth if and only if X* is uniformly convex.

(v) Each uniformly convex Banach space X has the Kadec-Klee property, that is, for any
sequence {x,} C X, if x, — x € X and ||x,,|| — ||x||, then x,, — x.
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Let X be a smooth Banach space. We always use ¢ : X x X — R* to denote the
Lyapunov functional defined by

2 vx, yeX (1.7)

$(x,y) = lIxI” = 2(x, Jy) + ||ly

It is obvious from the definition of the function ¢ that

(el = llyID* < (e y) < (i + [lyll)*, ¥, y € X (1.8)
Following Alber [4], the generalized projection Ilc : X — C is defined by

Ie(x) = arg ;Qé‘i’ (y,x), ¥xeX (1.9)

Lemma 1.2 (see [4]). Let X be a smooth, strictly convex, and reflexive Banach space and C a
nonempty closed convex subset of X. Then, the following conclusions hold:

(@) ¢(x,TIcy) + p(Icy, y) < ¢(x,y) forall x e Cand y € X,

(b) ifx € X and z € C, then

z=Tecx iff(z-y, Jx-Jz)>0, VYyeC, (1.10)

(c) forx, ye X, ¢(x,y) =0ifand only if x = y.

Let X be a smooth, strictly convex, and reflexive Banach space, C a nonempty closed convex
subset of X, and T : C — C a mapping. A point p € C is said to be an asymptotic fixed point of T if
there exists a sequence {x,} C C such that x, — p and ||x, — Tx,| — 0. We denoted the set of all
asymptotic fixed points of T by F(T).

Definition 1.3. (1) A mapping T : C — C is said to be relatively nonexpansive [5] if
F(T)#0, F(T) = F(T) and

¢(p,Tx) <dp(p,x), VxeC, peF(T). (1.11)

(2) A mapping T : C — C is said to be closed if, for any sequence {x,} C C with
x, —» xand Tx, — y, Tx =y.

Let C be a nonempty closed convex subset of a Banach space X. Let N (C) be the family
of nonempty subsets of C.
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Definition 1.4. (1) Let T : C — N(C) be a multivalued mapping and g a point in C. The
definitions of Tq, T2q, T3q, ...,T"q, n>1 are as follows:

Tq:={q:q1 €T(q)},
rg-1(1(@) = U T(@),

q1€T(q)

rq=T(T%(9)) = U T(a),

2T (q) (1.12)

s T<Tn_l (‘7)) B qmeLT'J—l(q)T(qn_l>, "t

(2) Let T : C — N(C) be a multivalued mapping. A point p € C is said to be
an asymptotic fixed point of T if there exists a sequence {x,} C C such that x, — p and
limy, -, o»d(x, T (x,)) = 0. We denoted the set of all asymptotic fixed points of T by F (T).

(3) A multivalued mapping T : C — N(C) is said to be relatively nonexpansive [5] if
F(T)#0, F(T) = F(T) and

p(p,w) <Pp(p,x), YxeC weTx, peF(T). (1.13)
(4) A multivalued mapping T : C — N(C) is said to be closed if, for any sequence
{x,} c Cwithx, — xand w, € T(x,) withw,, — y, theny € Tx.

Definition 1.5. (1) A multivalued mapping T : C — N(C) is said to be quasi-¢p-nonexpansive if
F(T)#0 and

d(pw) <Pp(p,x), VYxeC, weTx, peF(T). (1.14)

(2) A multivalued mapping T : C — N(C) is said to be quasi-¢p-asymptotically
nonexpansive if F(T)# () and there exists a real sequence {k,} C [1,00) with k, — 1 such
that

d(p,wn) <knp(p,x), ¥Yn>1, xeC, w, €T"x, p € F(T). (1.15)

(3) A multivalued mapping T : C — N(C) is said to be total quasi-¢p-asymptotically
nonexpansive if F(T)#@ and there exist nonnegative real sequences {v,}, {y,} with v, —
0, uon — 0 (as n — oo) and a strictly increasing continuous function ¢ : R* — R* with
¢(0) =0such that forallx € C, p € F(T)

d(p,wn) <P(p, x) +vul(P(p,x)) + pu, Yn>1,w, € T"x. (1.16)
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Definition 1.6. (1) Let {T;}2; : C — N(C) be a sequence of mappings. {T;}2; is said to be a
family of uniformly total quasi-¢-asymptotically nonexpansive multivalued mappings if N, F(T;) #0
and there exist nonnegative real sequences {v,}, {y.} withv, — O,u, — 0 (asn — o)
and a strictly increasing continuous function ¢ : R* — R* with {(0) = 0 such that for all
i>1, xeC, pen® F(T)

d(p,wni) <P(p,x) +vul(P(p,x)) + pn, Vw,; €Tl'x, Vn>1. (1.17)

(2) A total quasi-¢-asymptotically nonexpansive multivalued mapping T : C — N(C)
is said to be uniformly L-Lipschitz continuous if there exists a constant L > 0 such that

lw, = sull < L||x-y||, Vx, yeC, w, eT"x, s, €Ty, n>1. (1.18)
Yy Yy y

In 2005, Matsushita and Takahashi [5] proved weak and strong convergence theorems
to approximate a fixed point of a single relatively nonexpansive mapping in a uniformly
convex and uniformly smooth Banach space X. In 2008, Plubtieng and Ungchittrakool [6]
proved the strong convergence theorems to approximate a fixed point of two relatively
nonexpansive mappings in a uniformly convex and uniformly smooth Banach space X.
In 2010, Chang et al. [7] obtained the strong convergence theorem for an infinite family
of quasi-¢-asymptotically nonexpansive mappings in a uniformly smooth and strictly
convex Banach space X with Kadec-Klee property. In 2011, Chang et al. [8] proved some
approximation theorems of common fixed points for countable families of total quasi-¢-
asymptotically nonexpansive mappings in a uniformly smooth and strictly convex Banach
space X with Kadec-Klee property. In 2011, Homaeipour and Razani [9] proved weak and
strong convergence theorems for a single relatively nonexpansive multivalued mapping
in a uniformly convex and uniformly smooth Banach space X. On the other hand, In
2009, Zhang [10] proved the strong convergence theorem for finding a common element
of the set of solutions of a generalized mixed equilibrium problem, the set of solutions
for variational inequality problems, and the set of fixed points of a finite family of quasi-
¢-asymptotically nonexpansive mappings in a uniformly smooth and uniformly convex
Banach space. Recently, Tang [11], Cho et al. [12-21], and Noor et al. [22-26] extended the
finite family of quasi-$-asymptotically nonexpansive mappings to infinite family of quasi-¢-
asymptotically nonexpansive mappings.

Motivated and inspired by the researches going on in this direction, the purpose
of this paper is by using the hybrid iterative algorithm to find a common element of
the set of solutions of a generalized mixed equilibrium problem, the set of solutions for
variational inequality problems, and the set of fixed points of a infinite family of total quasi-
¢-asymptotically nonexpansive multivalued mappings in a uniformly smooth and strictly
convex Banach space with Kadec-Klee property. In order to get the strong convergence
theorems, the hybrid algorithms are presented and used to approximate the fixed point. The
results presented in the paper improve and extend some recent results announced by some
authors.
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2. Preliminaries

Lemma 2.1 (see [8]). Let X be a real uniformly smooth and strictly convex Banach space with Kadec-
Klee property and C a nonempty closed convex set of X. Let {x,} and {y,} be two sequences in C such
that x, — p and ¢(x,,y,) — 0, where ¢ is the function defined by (1.7), and then y, — p.

Lemma 2.2. Let X and C be as in Lemma 2.1. Let T : C — N(C) be a closed and total quasi-¢-
asymptotically nonexpansive multivalued mapping with nonnegative real sequences {v,}, {u,} and a
strictly increasing continuous function § : R* — R* such that v, — 0, p, — 0(asn — o), and
¢(0) = 0. If p1 = 0, then the fixed point set F(T) is a closed and convex subset of C.

Proof. Letting {x,} be a sequence in F(T) with x, — p (asn — o), we prove that p € F(T).
In fact, by the assumption that T is a total quasi-¢-asymptotically nonexpansive multivalued
mapping and y; = 0, we have

P(xn,u) < P(xn,p) + 1&(P(xn,p)), VueTp. (2.1)

Furthermore, we have

$(p,u) = nh_)n;‘o‘i)(xnr u)

< lim (@(x p) +¥18($(x0,))) =0, VueTp.

(2.2)

By Lemma 1.2(c), p = u. Hence, p € Tp. This implies that p € F(T), that is, F(T) is closed.
Next, we prove that F(T) is convex. For any x, y € F(T), t € (0,1), putting q = tx +
(1-t)y, we prove that g € F(T). Indeed, let {1, } be a sequence generated by

u € Tq,
u, € Tuy C Tzq,
usz € Tu, C qu,

(2.3)

u, € Tu,.1 CT"g,

In view of the definition of ¢(x,v), for all u, € Tu,.1 C T"q, we have
2
¢(q,un) = ||qll” - 2(q, Jun) + lluen]l®

= [lgll* = 2¢(x, Jun) —2(1 = £)(y, Jun) + |[tta]? (2.4)

= [lq]l? + tb(x, 1) + (1 = P (y, un) =~ Hlx|? = (1= ||y’
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since
tp(x, un) + (1 - 1)P(y, uy)
<tH(P(x,q) +val(P(x,9)) + pn) + A= 0)($(y, ) + vu($(y,9)) + pn)
= t(IlxI = 2(x, Jq) + |l + vag ($(x, @) + pn) (2.5)
+ (=0 (|lyl* - 2(v., Ja) + 19l + vt (P (v, 9)) + pn)

= tlxl + (L= Bly[* = gl + s (@ (x, ) + (= b (P (v, 9)) + pin-
Substituting (2.5) into (2.4) and simplifying it, we have
P un) <tval(P(x,q)) + 1= Hvl((y,9)) + pn — 0 (n — o0). (2.6)

By Lemma 2.1, we have u,, — g (asn — oo). This implies that u,.; — g (asn — o). Since
T is closed, we have g € Tg, that is, g € F(T).
This completes the proof of Lemma 2.2. O

Lemma 2.3 (see [7]). Let X be a uniformly convex Banach space, r > 0, a positive number, and B, (0)
a closed ball of X. Then, for any given sequence {x,},-, C B»(0) and for any given sequence {1, },-q of
positive numbers with 3%\, = 1, there exists a continuous, strictly increasing, and convex function
g:[0,2r) — [0, 0) with g(0) = 0 such that for any positive integers i, j with i < j,

2 (oo}
< D halleall? = 1l - 1] @7)
n=1

[ee]
Z)Lnxn
n=1

For solving the generalized mixed equilibrium problem, let us assume that the function ¢ :
C — R is convex and lower semicontinuous, the nonlinear mapping A : C — X* is continuous and
monotone, and the bifunction © : C x C — R satisfies the following conditions:

(A1) O(x,x) =0, forall x € C,
(A2
(As

© is monotone, that is, ©(x,y) + O(y,x) <0, forall x,y € C,

)
)
) limsup, (O(x +t(z - x),y) <O(x,y), forall x,y,z € C,

(Ay) the function y — ©(x, y) is convex and lower semicontinuous.

Lemma 2.4. Let X be a smooth, strictly convex and reflexive Banach space and C a nonempty closed
convex subset of X. Let © : C x C — R be a bifunction satisfying conditions (A1)—(As). Let ¥ > 0
and x € X. Then, the following hold.

(i) [27] There exists z € C such that

@(z/y)+%<y—z,]z—]x>zo, Vy e C. (2.8)
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(ii) [28] Define a mapping T, : X — C by

T,x = {zeC:@(z,y)+%<y—z,]z—]x> >0, ‘v’yeC}, x € X. (2.9)

Then, the following conclusions hold:

(a) T, is single-valued,

(b) T is a firmly nonexpansive-type mapping, that is, for all z, y € X,

<Tr(z) - Tr(y)r ]Tr(z) -JT; (]/)) < <Tr(z) =T (]/)/ Jz - ]y>/ (2~10)

(c) F(T;) = EP(®) = F(T,),
(d) EP(O) is closed and convex,

(e) (g, T (x)) + (T} (x), x) < P(q,x), for all g € F(T}).
Lemma 2.5 (see [10]). Let X be a smooth, strictly convex, and reflexive Banach space and C a
nonempty closed convex subset of X. Let A : C — X* be a continuous and monotone mapping,
¢ : C — R alower semicontinuous and convex function, and © : CxC — R a bifunction satisfying
conditions (A1)—(As). Let r > 0 be any given number and x € X any given point. Then, the following

hold.
(i) There exists u € C such that for all y € C

1
O(u,y) + (Au,y —u)y +¢(y) —¢(u) + ;(y —u, Ju-Jx)>0. (2.11)
(ii) If one defines a mapping K, : C — C by

K. (x) = {u €C:0(uy) +(Au,y —u) +¢(y) — ¢(u)

: (2.12)
+;<y—u,]u—]x> >0, Vy € C}, x€C,
then, the mapping K, has the following properties:
(a) K, is single-valued,
(b) K, is a firmly nonexpansive-type mapping, that is, for all z, y € X
<Kr(z) - Kr (y)/ ]Kr(z) - ]Kr (y)> < <Kr(z) - Kr (y)r ]Z - ]]/>/ (213)

(0) F(Ky) =Q = F(K,),
(d) Qs a closed convex set of C,
(e) ¢(p, Ki(2)) + p(Ki(2),2) < P(p,2z), forall p e F(K;), z€ X.



Abstract and Applied Analysis 9

Remark 2.6. It follows from Lemma 2.4 that the mapping K, : C — C defined by (2.12) is a
relatively nonexpansive mapping. Thus, it is quasi-¢-nonexpansive.

3. Main Results

In this section, we will use the hybrid iterative algorithm to find a common element of
the set of solutions of a generalized mixed equilibrium problem, the set of solutions for
variational inequality problems, and the set of fixed points of a infinite family of total quasi-
¢-asymptotically nonexpansive multivalued mappings in a uniformly smooth and strictly
convex Banach space with Kadec-Klee property.

Theorem 3.1. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property and C a nonempty closed and convex subset of X. Let © : C x C — R be a bifunction
satisfying conditions (A1)—(As), A : C — X* a continuous and monotone mapping, and ¢g : C — R
a lower semicontinuous and convex function. Let {T;}72, : C — N(C) be an infinite family of closed
and uniformly total quasi--asymptotically nonexpansive multivalued mappings with nonnegative
real sequences {v,}, {pn} and a strictly increasing continuous function { : R* — R such that
u1=0,v, - 0, uy, — 0(asn — oo) and {(0) = 0 and for each i > 1, T; is uniformly L;-Lipschitz
continuous. Let xg € C, Co = C, and let {x,,} be a sequence generated by

Xni1 = | [x0, Cuer = {v €Cp: p(v,un) < §(v, x) +&n}, Yn >0,
C

n+l

Yn = ]_1 (anJxn + (1 —an)]zy),

Zn = ]_1 <ﬂn,0]xn + Z,ﬁn,i]wn,i> ’ (31)
i=1
u, € C such that, Yy € C,

1
O(ttn, y) + (Attn, vy — un) + ¢ (v) — ¢ (upn) + r—(y — Uy, Jun — Jyn) 20,

where wy; € T/'xy, foralln >1,i>1, &, = vnsuppqu(g‘b(p, Xn)) + pn, Ic,., is the generalized
projection of X onto Cy.1, and {a,} and {Pno, Pni} are sequences in [0, 1] satisfying the following
conditions:

(a) foreachn >0, fpo + X2, fni =1,
(b) iminf,, _, o Bnofni > 0 forany i > 1,
(c)0<a, <a<1forsomeac (0,1).

IfG:= FNQ =N% F(T;) NQ is a nonempty and bounded subset of C, then the sequence {x,}
converges strongly to Ilgx.

Proof. First, we define two functions H : Cx C — Rand K, : C — Cby

H(x,y) =0(x,y) + (Ax,y - x) +¢(v) - ¢(x), VYx,y€C,

. (32)
K. (x) = {ueC:H(u,y)+;<y—u,]u—]x> >0, VyEC}, xeC.
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By Lemma 2.5, we know that the function H satisfies conditions (A;)—(A4) and K, has
properties (a)—(e). Therefore, (3.1) is equivalent to

Xni1 = [ [x0, Cuer = {v €Cp: p(v,un) < p(v, x) +&n}, Yn 20,
Cn+1

Yn = ]71 (anJxn + (1 —an)]zy),
Zp = ]_1 <ﬂn,0]xn + Z,ﬁn,i]wn,i>/ (33)
i1
u, € C such that, Yy € C,

1
H(u,y) + T—(y = Uy, Jtbn = Jyn) > 0.
n

Now we divide the proof of Theorem 3.1 into six steps.

(i) ¢ and C,, are closed and convex for each n > 0.

In fact, it follows from Lemma 2.2 that F(T;), i > 1, is a closed and convex subset of C.
Therefore, ¥ is a closed and convex subset C.

Again by the assumption, Cy = C is closed and convex. Suppose that C,, is closed and
convex for some n > 1. Since the condition ¢(v, y,) < $(v, x,,) + ¢, is equivalent to

2%, J2u = Jyn) < all® = |yl + &0, n=1,2,..., (3.4)
the set

Cut = {v € Ca 20, Jxu = Jyn) < I%all” = [[yal* + 8 (3.5)

is closed and convex. Therefore, C,, is closed and convex for each n > 0.
(ii) {x,} is bounded and {¢(x,, x0)} is a convergent sequence.
Indeed, it follows from (3.1) and Lemma 1.2(a) that foralln >0, u € F(T)

P(xn, x0) = ¢<on, x0> < ¢p(u, xo) - ¢<u, Hx0> < ¢(u, xo). (3.6)
Cu Cn

This implies that {¢(x,, x0)} is bounded. By virtue of (1.3), we know that {x,} is bounded.
In view of the structure of {C,}, we have Cyy1 C Cy, x, = I, x0 and x,41 = Ic,,, X0-
This implies that x,.1 € C, and

()b(xn/ xO) < ¢(xn+lrx0)/ Vn 2 0. (37)

Therefore, {$(x,,x0)} is a convergent sequence.
(iii) G:=FNQ cC, foralln >0.
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Indeed, it is obvious that G ¢ Cy = C. Suppose that G ¢ C, for some n € . Since

u, = K;,y,, by Lemma 2.5 and Remark 2.6, K, is quasi-¢-nonexpansive. Hence, for any given
ueGcC,andn>1wehave

¢, un) = P(u, Ky, yn) < P, Yn)
= ¢<u' ]71 (an]xn + (1 - an)]zn)>
= llull® = 2(u, an Jxn + (1= an) Jzn) + llanJ 20 + (1= ) J zal>

<l = 20 (1, Jacu) = 2(1 = ) (1, JZu) + |||

(3.8)
+ (1 - )|zl

= an‘ﬁ(”r xn) + (1 - an)¢(u/ Zn)'

Furthermore, it follows from Lemma 2.3 that for any u € G C Cp,, wy,; € T'xy, and i > 1 we
have

P(u,zn) = ¢ <u, ]_1 <ﬁn,0]xn + iﬂn,i}wn,i> >
i=1

2

)
= ||”||2 - 2<u/ ﬁn,O]xn + Zﬂn,i]wn,i> +
i=1

[e/e]
ﬁn,O]xn + Zﬁn,i]wn,i
i=1
< ull® = 201, Txn) = 2 B, Jwni) + Puollxnll”
i=1

+ Zﬂn,i”wn,inz - ,Bn,Oﬁn,lg(”]xn - ]wn,l“)
= (3.9)

= ﬂn,0¢(u/ xn) + Zﬂn,i¢(ur wn,i) - pn,()ﬂn,lg(”]xn - ]wn,lH)

i=1
< ot %) + 3 Bui (Blat, %) + vab (ot %)) + i)
i=1

- ﬁn,Oﬁn,lg(”]xn - ]wn,l“)

< (i)(u, xn) + Vnsugg((p(pr xn)) + Un — ,ﬁn,Oﬁn,lg(”]xn - ]wn,l”)
pe

= ¢(u, xn) +én — ﬁn,Oﬂn,lg(”]xn = Jwu,l]).
Substituting (3.9) into (3.8) and simplifying it, we have for all u € G

¢(u,uy) < (i)(u, y")
< ¢(u, Xn) + (1 —ay)én— (1 - “n),ﬁn,oﬁn,lg(”]xn - ]wn,l”)
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< (i’(u/ xn) + gn - (1 - an)ﬂn,oﬁn,lg(”]xn - ]wn,l”)

< P(u, xn) +én,

(3.10)
thatis, u € C,;1 and so G ¢ C,4q forall n > 0.
By the way, in view of the assumption on {v,}, {y,} we have
& = 0usup L(P(p,x)) + iy — 0 (n— c0). )

peF

(iv) {x,} converges strongly to some point p* € C.

In fact, since {x,} is bounded and X is reflexive, there exists a subsequence {x,,} C
{x,} such that x,, — p* (some point in C). Since C,, is closed and convex and C,.1 C C,, this
implies that C, is weakly closed and p* € C, for each n > 0. In view of x,,, = chi X0, we have

¢ (xn;, x0) < ‘i’(P*/xo), Vn; > 0. (3.12)
Since the norm || - || is weakly lower semicontinuous, we have

lim inf ¢ (xy,, x0) = liminf<||xni||2 —2(xy,, Jx0) + ||x0||2>
e e (3.13)

> |lp1I* = 2(p", Jxo) + ol = ¢ (p*, x0),

p*
and so

$(p*,x0) < liminf §(xy, x0) < limsup ¢ (xn, Xo) < $(p”, %0)- (3.14)

n;i — oo

This implies that lim,, -, o (xp,, X0) = P(p*, x0), and so ||x,,,|| — [|p*|. Since x,, — p*, by virtue
of Kadec-Klee property of X, we obtain that

lim x,, = p*. (3.15)

n; — oo

Since {¢(xy,, x0)} is convergent, this together with limy,, _, (x4, X0) = ¢(p*, o), shows that
limy, — o (xn, X0) = P(p*, x0). If there exists some sequence {x,;} C {x,} such that x,, — g,
then from Lemma 1.2(a) we have that

¢ (p*, q) - n; ll'llg oo¢ <xni, xnj) - n; 111111 004) <xni’ on>
o 5 Co,

< lim <¢(xni,xo) -¢ <Hx0,x0>>
i, nj — o0 Cn]-
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= lim <¢(xnirx0)_¢<x”f’xo>>

11,',11]' — 00

$(p",x0) = P(p*, x0) = 0.
(3.16)

This implies that p* = g and

lim x, = p*. (3.17)

n—oo

(v) Now we prove that p* € G = ¥ N Q.
First, we prove that p* € ¥. In fact, since x,4,1 € Cy1 C Cy, it follows from (3.1) and
(3.17) that

¢(xn+1/ ]/n) < ¢(xn+1/ xn) + gn — 0 (1’1 — OO) (318)
By the virtue of Lemma 2.1, we have

lim y, = p*. (3.19)

From (3.10), for any u € ¥ and w,; € T"x,, we have
P, yn) < P, x0) +&n = (1= an) P08 (10 = Jwnll), (3.20)
that is,
(1= ) o8 (1T xn = Jwnll) € P(ut, xn) +&n = P4, yn) — 0 (n— o0). (3.21)

By conditions (b) and (c) it is shown that lim,, —, g (|| Jxn = Jw,,||) = 0. In view of property of
g, we have

1Jxn = Jwnill — 0 (1 — o). (3.22)
Since Jx, — Jp*, this implies that Jw,; — Jp*. From Remark 1.1(ii) it yields
Wy —p(n—o0), VI>1. (3.23)
Again since
[lconsll = [lp* I = W zondll = 1Tp" | < Jwwi = Tp'[| =0 (r—0),  (324)
this together with (3.23) and the Kadec-Klee property of X shows that

lim w,; =p*, VI>1 (3.25)

n—oo
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Let {s,,;} be a sequence generated by
Syl € lel,l C lexl,

3
83,1 € Tiwy, CT7 xz,

(3.26)

+1
Sn+1,l S len,l C Tln Xn,

By the assumption that each T; is uniformly L;-Lipschitz continuous, for any w;,; € T;"x, and
Sns1,) € Trw, € T x, we have

||5n+1,l - wn,l” < ”Sn+1,l - wn+1,l|| + ||wn+1,l - xn+1|| + ”xn+1 - xn” + ”xn - wn,l” (3 27)

S Ly + D) lxpsr = x|l + |wne1,) = Xpaa || + |20 — W]

This together with (3.17) and (3.27) shows that lim,, _, oo ||Sp+1, — Way|| = 0 and limy, —, ,Sp+1,) =
p*. In view of the closeness of T, it yields that p* € Tp*, that is, p* € F(T;). By the arbitrariness
of I > 1, we have

ﬁe?:ﬁﬂﬂ) (3.28)
i=1

Next, we prove that p* € Q. Since x,.1 = Ilc,,,xy € Cp, it follows from (3.1) and (3.17)

n+l

that

¢(xn+1/ Up) < ¢(xn+1/ Xp) +én — 0 (n— o). (3.29)

Since x, — p*, by virtue of Lemma 2.1 we have

lim u, = p*. (3.30)

n— oo

This together with (3.19) shows that ||u, — y,|| — 0 and lim,_, ||Ju, — Jy.|| — 0. By the
assumption that r,, > a, for all n >0, we have

mnMﬂ;Qﬂ=a (3.31)

n—oo Tn
Since H (uy, y) + (1/14){y — tn, Jun — Jy,) >0, for all y € C, by condition (A;), we have

1
r—(y — U, Jun = Jyn) > —H(un,y) > H(y,u,), VyeC. (3.32)

By the assumption that y — H(x, y) is convex and lower semicontinuous, letting n — oo in
(3.32), from (3.30) and (3.31), we have H(y,p*) <0, for all y € C.
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Fort € (0,1] and y € C, letting y; = ty + (1 — t)p*, there are y; € C and H (y;, p*) < 0.
By conditions (A1) and (A4), we have

0=H(y,y:) <tH(yt,y) + 1 -t)H(yi, p*) < tH(y1, y). (3.33)

Dividing both sides of the above equation by t, we have H(y;, y) <0, for all y € C. Letting
t | 0, from condition (A3z), we have H(p*,y) <0, for all y € C, thatis, p* € Q,and p* € G =
FNQ.

(vi) We prove that x,, — p* =Ilgxo.

Let g = Ilgxo. Since g € G € C,, and x,, = I'lc, xg, we have

d(xn, x0) < Pp(g,x0), VYn>0. (3.34)
This implies that

d(p*, x0) = Tim ¢ (x, x0) < $(q, x0). (3.35)

In view of the definition of Ilgxy, from (3.35) we have p* = gq. Therefore, x, — p* = Ilgxo.
This completes the proof of Theorem 3.1. O

4. Conclusions

Recently the extended general variational inequalities have been introduced and studied in Noor
[24, 25]. We would like to point out that the results and the methods presented in this
paper will be used to study this kind of extended general variational inequalities and its
multivalued version.
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