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By establishing the corresponding variational framework and using the mountain pass theorem,
linking theorem, and Clark theorem in critical point theory, we give the existence of multiple
solutions for a fractional difference boundary value problem with parameter. Under some suitable
assumptions, we obtain some results which ensure the existence of a well precise interval of
parameter for which the problem admits multiple solutions. Some examples are presented to
illustrate the main results.

1. Introduction

Variational methods for dealing with difference equations have appeared as early as 1985 in
[1] in which the positive definiteness of quadratic forms (which are functionals) is related to
the existence of “nodes” of solutions (or positive solutions satisfying “conjugate” boundary
conditions) of linear self-adjoint second-order difference equations of the form

Δ
(
p(k − 1)Δy(k − 1)

)
+ q(k)y(k) = 0, k = 1, 2, . . . , n, (1.1)

where p(k) is real and positive for k = 0, 1, . . . , n and q(k) is real for k = 1, 2, . . . , n. Later
there are interests in solutions of nonlinear difference equations under various types of
boundary or subsidiary conditions, and more sophisticated methods such as the mountain
pass theorems are needed to handle the existence problem (see, e.g., [2–11]).

Recently, fractional differential and difference “operators” are found themselves in
concrete applications, and hence attention has to be paid to associated fractional difference
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and differential equations under various boundary or side conditions. For example, a recent
paper by Atici and Eloe [12] explores some of the theories of a discrete conjugate fractional
BVP. Similarly, in [13], a discrete right-focal fractional BVP is analyzed. Other recent advances
in the theory of the discrete fractional calculus may be found in [14, 15]. In particular, an
interesting recent paper by Atici and Şengül [16] addressed the use of fractional difference
equations in tumor growth modeling. Thus, it seems that there exists some promise in using
fractional difference equations as mathematical models for describing physical problems in
more accurate manners.

In order to handle the existence problem for fractional BVPs, various methods (among
which are some standard fixed-point theorems) can be used. In this paper, however, we show
that variational methods can also be applied. A good reason for picking such an approach is
that, in Atici and Şengül [16], some basic fractional calculuses are developed and a simple
variational problem is demonstrated, and hence advantage can be taken in obvious manners.
We remark, however, that fractional difference operators can be approached in different
manners and one by means of operator convolution rings can be found in the book by Cheng
[17, Chapter 3] published in 2003.

More specifically, in this paper, we are interested in the existence of multiple solutions
for the following 2ν-order fractional difference boundary value problem

TΔν
t−1
(
tΔν

ν−1x(t)
)
= λf(t + ν − 1, x(t + ν − 1)), t ∈ [0, T]

N0
, (1.2)

x(ν − 2) =
[
tΔν

ν−1x(t)
]
t=T = 0, (1.3)

where ν ∈ (0, 1), tΔν
ν−1 and TΔν

t are, respectively, left fractional difference and the right
fractional difference operators (which will be explained in more detail later), t ∈ [0, T]

N0
=

{0, 1, 2, . . . , T}, f(t + ν − 1, ·) : [ν − 1, T + ν − 1]
Nν−1 × R → R is continuous, and λ is a positive

parameter.
By establishing the corresponding variational framework and using critical point

theory, we will establish various existence results (which naturally depend on f , ν, and λ).
For convenience, throughout this paper, we arrange

∑m
i=j x(i) = 0, for m < j.

2. Preliminaries

We first collect some basic lemmas for manipulating discrete fractional operators. These and
other related results can be found in [14, 16].

First, for any integer β, we letNβ = {β, β+1, β+2, . . .}. We define t(ν) := Γ(t+1)/Γ(t+1−ν),
for any t and ν for which the right-hand side is defined.We also appeal to the convention that,
if t + 1 − ν is a pole of the Gamma function and t + 1 is not a pole, then t(ν) = 0.

Definition 2.1. The νth fractional sum of f for ν > 0 is defined by

Δ−ν
a f(t) =

1
Γ(ν)

t−ν∑

s=a
(t − s − 1)(ν−1)f(s), (2.1)

for t ∈ Na−ν. We also define the νth fractional difference for ν > 0 by Δνf(t) := ΔNΔν−Nf(t),
where t ∈ Na+N−ν andN ∈ N is chosen so that 0 ≤ N − 1 < ν ≤ N.
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Definition 2.2. Let f be any real-valued function and ν ∈ (0, 1). The left discrete fractional
difference and the right discrete fractional difference operators are, respectively, defined as

tΔν
af(t) = ΔtΔ

−(1−ν)
a f(t) =

1
Γ(1 − ν)

Δ
t+ν−1∑

s=a
(t − s − 1)(−ν)f(s), t ≡ a − ν + 1 (mod1),

bΔν
t f(t) = −ΔbΔ

−(1−ν)
t f(t) =

1
Γ(1 − ν)

(−Δ)
b∑

s=t+1−ν
(s − t − 1)(−ν)f(s), t ≡ b + ν − 1 (mod1).

(2.2)

Definition 2.3. For I ∈ C1(E,R), we say I satisfies the Palais-Smale condition (henceforth
denoted by (PS) condition) if any sequence {xn} ⊂ E for which I(xn) is bounded and I ′(xn) →
0 as n → +∞ possesses a convergent subsequence.

Lemma 2.4 (see [18]). A real symmetric matrixA is positive definite if there exists a real nonsingular
matrixM such that A = M†M, whereM† is the transpose.

Lemma 2.5 (see [9]: linking theorem). Let E be a real Banach space, and I ∈ C1(E,R) satisfies
(PS) condition and is bounded from below. Suppose I has a local linking at the origin θ, namely, there
is a decomposition E = Y ⊕ W and a positive number ρ such that k = dimY < ∞, I(y) < I(θ) for
y ∈ Y with 0 < ‖y‖ ≤ ρ; I(y) ≥ I(θ) for y ∈ W with ‖y‖ ≤ ρ. Then I has at least three critical
points.

Lemma 2.6 (see [6]). Let E be a real reflexive Banach space, and let the functional I : E → R be
weakly lower (upper) semicontinuous and coercive, that is, lim||x||→∞I(x) = ∞ (resp., anticoercive,
i.e., lim||x||→∞I(x) = −∞). Then there exists x0 ∈ E such that I(x0) = infEI(x) (resp., I(x0) =
sup

E
I(x)). Moreover, if I ∈ C1(E,R), then x0 is a critical point of functional I.
Recall that, in the finite dimensional setting, it is well known that a coercive functional satisfies

the (PS) condition.
Let Br denote the open ball in a real Banach space of radius r about 0, and let ∂Br denote its

boundary. Now some critical point theorems needed later can be stated.

Lemma 2.7 (mountain pass theorem [8]). Let E be a real Banach space and I ∈ C1(E,R), satisfy-
ing (PS) condition. Suppose I(θ) = 0 and

(I1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α,

(I2) there is e ∈ E \ Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

I(u), (2.3)

where

Γ =
{
g ∈ C([0, 1],E) | g(0) = θ, g(1) = e

}
. (2.4)
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Lemma 2.8 (see [7]). Let E be a reflexive Banach space and I ∈ C1(E,R) with I(θ) = 0. Suppose
that I is an even functional satisfying (PS) condition and the following conditions:

(I3) there are constants ρ, α > 0 and a closed linear subspaceX1 ofE such that codimX1 = l < ∞
and I|∂Bρ∩X1 ≥ α,

(I4) there is a finite dimensional subspace X2 of E with dimX2 = m, m > l, such that I(x) →
−∞ as ||x|| → ∞, x ∈ X2. Then I possesses at leastm−l distinct pairs of nontrivial critical
points.

Lemma 2.9 (the Clark theorem [8]). Let E be a real Banach space, I ∈ C1(E,R) with I even,
bounded from below, and satisfying (PS) condition. Suppose I(θ) = 0, there is a set K ⊂ E such that
K is homeomorphic to S

j−1 (the j − 1 dimensional unit sphere) by an odd map and sup
K
I < 0. Then I

possesses at least j distinct pairs of critical points.

3. Main Results

Firstly, we establish variational framework. Let

Ω =
{
x = (x(ν − 1), x(ν), . . . , x(ν + T − 1))† | x(ν + i − 1) ∈ R, i = 0, 1, . . . , T

}
(3.1)

be the T + 1-dimensional Hilbert space with the usual inner product and the usual norm

〈x, z〉 =
T+ν−1∑

t=ν−1
x(t)z(t), ‖x‖ =

(
T+ν−1∑

t=ν−1
|x(t)|2

)1/2

, x, z ∈ Ω. (3.2)

For r > 1, we recall the r-norm on Ω: ‖x‖r = (
∑T+ν−1

t=ν−1 |x(t)|r)1/r . We also recall the standard
fact that there exist positive constants cr and cr , such that

cr ||x|| ≤ ‖x‖r ≤ cr‖x‖, x ∈ Ω. (3.3)

Define a functional on Ω by

I(x) =
1
2

T∑

t=−1

(
tΔν

ν−1x(t)
)2 − λ

T∑

t=−1
F(t + ν − 1, x(t + ν − 1)) (3.4)

for x = (x(ν − 1), x(ν), . . . , x(ν + T − 1))† ∈ Ω, where

F(t + ν − 1, x(t + ν − 1)) =
∫x(t+ν−1)

0
f(t + ν − 1, s)ds,

x(ν − 2) = 0,
[
tΔν

ν−1x(t)
]
t=T =

−ν
Γ(1 − ν)

T+ν∑

s=ν−1
(T − s − 1)(−ν−1)x(s) = 0.

(3.5)
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Obviously, I(θ) = 0. Let

E =
{
χ = (x(ν − 2), x(ν − 1), . . . , x(ν + T))† ∈ R

T+3 | x(ν − 2) = 0,
[
tΔν

ν−1x(t)
]
t=T = 0

}
.

(3.6)

Then by (1.3) it is easy to see that E is isomorphic to Ω. In the following, when we say x ∈
Ω, we always imply that x can be extended to χ ∈ E if it is necessary. Now we claim that
if x = (x(ν − 1), x(ν), . . . , x(ν + T − 1))† ∈ Ω is a critical point of I, then χ = (x(ν − 2),
x(ν − 1), . . . , x(ν + T))† ∈ E is precisely a solution of BVP (1.2) and (1.3). Indeed, since I
can be viewed as a continuously differentiable functional defined on the finite dimensional
Hilbert space Ω, the Frechet derivative I ′(x) is zero if and only if ∂I(x)/∂x(i) = 0 for all
i = ν − 1,ν, . . . , ν + T − 1.

By computation,

∂I(x)
∂x(ν − 1)

=
T∑

t=−1

(
tΔν

ν−1x(t)
)∂tΔν

ν−1x(t)
∂x(ν − 1)

− λf(ν − 1, x(ν − 1))

=
−ν

Γ(1 − ν)

T∑

t=−1

∂
∑t+ν

s=ν−1 (t − s − 1)(−ν−1)x(s)
∂x(ν − 1)

(
tΔν

ν−1x(t)
) − λf(ν − 1, x(ν − 1))

=
ν2

Γ2(1 − ν)

T∑

t=−1
(t − ν)(−ν−1)

t+ν∑

s=ν−1
(t − s − 1)(−ν−1)x(s) − λf(ν − 1, x(ν − 1))

=
ν2

Γ2(1 − ν)

T∑

s=−1
(s − ν)(−ν−1)

s+ν∑

u=ν−1
(s − u − 1)(−ν−1)x(u) − λf(ν − 1, x(ν − 1))

=
ν2

Γ2(1 − ν)

[
T∑

s=t−ν
(s − t − 1)(−ν−1)

s+ν∑

u=ν−1
(s − u − 1)(−ν−1)x(u)

]

t=ν−1

− λf(ν − 1, x(ν − 1))

=
−ν

Γ(1 − ν)

[
T∑

s=t−ν
(s − t − 1)(−ν−1)

(
sΔν

ν−1
)
x(s)

]

t=ν−1
− λf(ν − 1, x(ν − 1))

=
−1

Γ(1 − ν)

[
T∑

s=t−ν

(
(s − t − 1)(−ν) − (s − t)(−ν)

)(
sΔν

ν−1
)
x(s)

]

t=ν−1

− λf(ν − 1, x(ν − 1))

=
1

Γ(1 − ν)

[

(−Δ)
T∑

s=t−ν
(s − t)(−ν)

(
sΔν

ν−1
)
x(s)

]

t=ν−1
− λf(ν − 1, x(ν − 1))

=
[
TΔν

t−1
(
tΔν

ν−1
)
x(t)
]
t=ν−1 − λf(ν − 1, x(ν − 1)),
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∂I(x)
∂x(ν)

=
T∑

t=−1

(
tΔν

ν−1x(t)
)∂tΔν

ν−1x(t)
∂x(ν)

− λf(ν, x(ν))

=
−ν

Γ(1 − ν)

T∑

t=−1

∂
∑t+ν

s=ν−1 (t − s − 1)(−ν−1)x(s)
∂x(ν)

(
tΔν

ν−1x(t)
) − λf(ν, x(ν))

=
ν2

Γ2(1 − ν)

T∑

t=0
(t − ν − 1)(−ν−1)

t+ν∑

s=ν−1
(t − s − 1)(−ν−1)x(s) − λf(ν, x(ν))

=
ν2

Γ2(1 − ν)

T∑

s=0
(s − ν − 1)(−ν−1)

s+ν∑

u=ν−1
(s − u − 1)(−ν−1)x(u) − λf(ν, x(ν))

=
ν2

Γ2(1 − ν)

[
T∑

s=t−ν
(s − t − 1)(−ν−1)

s+ν∑

u=ν−1
(s − u − 1)(−ν−1)x(u)

]

t=ν

− λf(ν, x(ν))

=
−ν

Γ(1 − ν)

[
T∑

s=t−ν
(s − t − 1)(−ν−1)

(
sΔν

ν−1
)
x(s)

]

t=ν

− λf(ν, x(ν))

=
−1

Γ(1 − ν)

[
T∑

s=t−ν

(
(s − t − 1)(−ν) − (s − t)(−ν)

)(
sΔν

ν−1
)
x(s)

]

t=ν

− λf(ν, x(ν))

=
1

Γ(1 − ν)

[

(−Δ)
T∑

s=t−ν
(s − t)(−ν)

(
sΔν

ν−1
)
x(s)

]

t=ν

− λf(ν, x(ν))

=
[
TΔν

t−1
(
tΔν

ν−1
)
x(t)
]
t=ν − λf(ν, x(ν)),

...

∂I(x)
∂x(ν + T − 1)

=
T∑

t=−1

(
tΔν

ν−1x(t)
) ∂tΔν

ν−1x(t)
∂x(ν + T − 1)

− λf(ν + T − 1, x(ν + T − 1))

=
−ν

Γ(1 − ν)

T∑

t=−1

∂
∑t+ν

s=ν−1 (t − s − 1)(−ν−1)x(s)
∂x(ν + T − 1)

(
tΔν

ν−1x(t)
)

− λf(ν + T − 1, x(ν + T − 1))

=
ν2

Γ2(1 − ν)

T∑

t=T−1
(t − ν − T)(−ν−1)

t+ν∑

s=ν−1
(t − s − 1)(−ν−1)x(s)

− λf(ν + T − 1, x(ν + T − 1))

=
ν2

Γ2(1 − ν)

T∑

s=T−1
(s − ν − T)(−ν−1)

s+ν∑

u=ν−1
(s − u − 1)(−ν−1)x(u)

− λf(ν + T − 1, x(ν + T − 1))
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=
ν2

Γ2(1 − ν)

[
T∑

s=t−ν
(s − t − 1)(−ν−1)

s+ν∑

u=ν−1
(s − u − 1)(−ν−1)x(u)

]

t=ν+T−1

− λf(ν + T − 1, x(ν + T − 1))

=
−ν

Γ(1 − ν)

[
T∑

s=t−ν
(s − t − 1)(−ν−1)

(
sΔν

ν−1
)
x(s)

]

t=ν+T−1

− λf(ν + T − 1, x(ν + T − 1))

=
−1

Γ(1 − ν)

[
T∑

s=t−ν

(
(s − t − 1)(−ν) − (s − t)(−ν)

)(
sΔν

ν−1
)
x(s)

]

t=ν+T−1

− λf(ν + T − 1, x(ν + T − 1))

=
1

Γ(1 − ν)

[

(−Δ)
T∑

s=t−ν
(s − t)(−ν)

(
sΔν

ν−1
)
x(s)

]

t=ν+T−1

− λf(ν + T − 1, x(ν + T − 1))

=
[
TΔν

t−1
(
tΔν

ν−1
)
x(t)
]
t=ν+T−1 − λf(ν + T − 1, x(ν + T − 1)).

(3.7)

So to obtain the existence of solutions for problem (1.2) and (1.3), we just need to study the
existence of critical points, that is, x ∈ Ω such that I ′(x) = 0, of the functional I on Ω.

Next, observe by Definition 2.2 that, for t ∈ [−1, T]
N−1 ,

tΔν
ν−1x(t) = Δ

1
Γ(1 − ν)

t−(1−ν)∑

t=ν−1
(t − s − 1)(−ν)x(s). (3.8)

We let

z(t + ν − 1) =
1

Γ(1 − ν)

t−(1−ν)∑

s=ν−1
(t − s − 1)(−ν)x(s), (3.9)

then

z(ν − 2) = 0,

z(ν − 1) =
1

Γ(1 − ν)

0−(1−ν)∑

s=ν−1
(−s − 1)(−ν)x(s) = x(ν − 1),

z(ν) =
1

Γ(1 − ν)

1−(1−ν)∑

s=ν−1
(1 − s − 1)(−ν)x(s) = (1 − ν)x(ν − 1) + x(ν),
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z(ν + 1) =
1

Γ(1 − ν)

2−(1−ν)∑

s=ν−1
(2 − s − 1)(−ν)x(s)

=
(2 − ν)(1 − ν)

2!
x(ν − 1) + (1 − ν)x(ν) + x(ν + 1),

...

z(ν + T − 1) =
1

Γ(1 − ν)

T−(1−ν)∑

s=ν−1
(T − s − 1)(−ν)x(s)

=
(T − ν)(T − 1 − ν) · · · (1 − ν)

(T)!
x(ν − 1) +

(T − ν − 1)(T − 2 − ν) · · · (1 − ν)
(T − 1)!

x(ν)

+ · · · + (1 − ν)x(ν + T − 2) + x(ν + T − 1),

(3.10)

that is, z = Bx, where z = (z(ν−1), z(ν), . . . , z(ν+T−1))†, x = (x(ν−1), x(ν), . . . , x(ν+T−1))†:

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 · · · 0
1 − ν 1 0 · · · 0

(2 − ν)(1 − ν)
2!

1 − ν 1 · · · 0
...

...
...

...
(T − ν)(T − 1 − ν) · · · (1 − ν)

T !
(T − 1 − ν)(T − 2 − ν) · · · (1 − ν)

(T − 1)!
· · · · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(T+1)×(T+1)

.

(3.11)

By Lemma 2.4, (B−1)†B−1 is a positive definite matrix. Let λmin and λmax denote,
respectively, the minimum and the maximum eigenvalues of (B−1)†B−1.

Since x = B−1z, we may easily see that

λmin‖z‖2 ≤ ‖x‖2 =
〈
z†
(
B−1
)†
, B−1z

〉
≤ λmax‖z‖2. (3.12)

Then ||x|| → ∞ if and only if ||z|| → ∞. Next, let

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2 −1
0 0 0 · · · −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(T+1)×(T+1)

. (3.13)
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By direct verifications, we may find that A is a positive definite matrix. Let η1, η2, . . . ,
ηT+1 be the orthonormal eigenvectors corresponding to the eigenvalues λ1, λ2, . . . , λT+1 of A,
where 0 < λ1 < λ2 < · · · < λT+1.

For convenience, we list the following assumptions.

(C1) There exists μ ∈ (0, 2) such that lim sup|x|→∞(F(t+ν−1, x)/|x|μ) < a for t ∈ [0, T]
N0
,

where a is a constant.

(C2) There is a constant μ > 2 such that lim inf|x|→∞(F(t+ν−1, x)/|x|μ) > 0 for t ∈ [0, T]
N0
.

(C3) There exists a constant d > 0 such that lim sup|x|→ 0(F(t + ν − 1, x)/|x|2) < d for
t ∈ [0, T]

N0
.

(C4) F(t + ν − 1, x) satisfies limx→ 0(F(t + ν − 1, x)/|x|2) = q1 > 0 for t ∈ [0, T]
N0
, where q1

is a constant.

(C5) f(t + ν − 1, x) is odd with respect to x, that is, f(t + ν − 1,−x) = −f(t + ν − 1, x), for
t ∈ [0, T]

N0
, and x ∈ R.

(C6) There is a positive constant p2 such that lim infx→ 0(F(t + ν − 1, x)/|x|2) > p2 for
t ∈ [0, T]

N0
.

Theorem 3.1. If (C1) holds, then for all λ > 0, BVP (1.2), (1.3) has at least one solution.

Proof. By (C1), we obtain

F(t + ν − 1, x) ≤ a|x|μ + b, t ∈ [0, T]
N0
, |x| ≥ ς, (3.14)

where ς is some sufficiently large numbers and b > 0. Thus, by the continuity of F(t+ν − 1, x)
− a|x|μ on [0, T]

N0
× [−ς, ς], there exists a′ > 0 such that

F(t + ν − 1, x) ≤ a|x|μ + a′, (t, s) ∈ [0, T]
N0

× R. (3.15)

Combining with (3.3)–(3.15), we have

I(x) =
1
2

T∑

t=−1

(
tΔν

ν−1x(t)
)2 − λ

T∑

t=−1
F(t + ν − 1, x(t + ν − 1))

=
1
2

T∑

t=−1
(Δz(t + ν − 1))2 − λ

T∑

t=−1
F(t + ν − 1, x(t + ν − 1))

=
1
2

T−1∑

t=−1
(Δz(t + ν − 1))2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1))
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≥ 1
2
λ1‖z‖2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1))

≥ 1
2
λ1‖z‖2 − λ|a|

T∑

t=0
|x(t + ν − 1)|μ − a′λ(T + 1)

≥ 1
2
λ1‖z‖2 − λ|a|(cμ

)μ‖x‖μ − a′λ(T + 1)

≥ 1
2
λ1‖z‖2 − λ|a|(cμ

)μ
λ
(1/2)μ
max ‖z‖μ − a′λ(T + 1).

(3.16)

So, in view of our assumption μ ∈ (0, 2), we see that, for λ > 0, I(x) → ∞ as ‖x‖ → ∞,
that is, I(x) is a coercive map. In view of Lemma 2.6, we know that there exists at least one
x ∈ Ω such that I ′(x) = 0; hence BVP (1.2), (1.3) has at least one solution. The proof is
completed.

Remark 3.2. If μ = 2 and a > 0, from the proof of Theorem 3.1, we can get that, for λ ∈
(0, λ1/2|a|λmax), our functional I is also coercive.

Theorem 3.3. If (C2) holds, then for all λ > 0, BVP (1.2), (1.3) has at least one solution.

Proof. Similar to the proof Theorem 3.1, we have

I(x) ≤ 1
2
λT+1‖z‖2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1)). (3.17)

By (C2), there exists ς > 0 and ς′ > 0 such that F(t + ν − 1, x) ≥ ς|x|μ for |x| > ς′ with
t ∈ [0, T]

N0
, so

F(t + ν − 1, x) ≥ ς|x|μ − c, (t, x) ∈ [0, T]
N0

× R, (3.18)

where c > 0. Since F(t+ ν − 1, x)− ς|x|μ is continuous on [0, T]
N0

× [−ς′, ς′], through (3.17), we
obtain

I(x) ≤ 1
2
λT+1‖z‖2 − λς

(
cμ
)μ
λ
μ/2
min‖z‖μ + cλ(T + 1). (3.19)

Thus I(x) → −∞ as ||x|| → ∞ for μ > 2. That is, I(x) is an anticoercive. In view of Lemma 2.6,
we know that there exists at least one x ∈ Ω such that I ′(x) = 0; hence BVP (1.2), (1.3) has at
least one solution. The proof is completed.

Theorem 3.4. Assume (C2) and (C3) hold. Then, for λ ∈ (0, λ1/2dλmax), the BVP (1.2), (1.3)
possesses at least two nontrivial solutions.

Proof. First, we know from Theorem 3.3 that I(x) → −∞ as ||x|| → ∞. Clearly, Ω is a real
reflexive finite dimensional Banach space and I ∈ C1(Ω,R), so functional I is weakly upper
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semicontinuous. By Lemma 2.6, there exists x0 ∈ Ω such that I(x0) = supΩI and I ′(x0) = 0.
Set c0 = supΩI. Let {xn} ⊂ Ω, such that there exists M > 0 and |I(xn)| ≤ M for n ∈ N. By (C2)
and (3.19), we may see that

−M ≤ I(xn) ≤ 1
2
λT+1‖zn‖2 − λ

μ/2
minλς

(
cμ
)μ‖zn‖μ + cλ(T + 1), (3.20)

that is,

−M − cλ(T + 1) ≤ 1
2
λT+1‖zn‖2 − λ

μ/2
minλς

(
cμ
)μ‖zn‖μ. (3.21)

In view of μ > 2, we see that {zn} ⊂ Ω is bounded, and hence {xn} ⊂ Ω is bounded.
Since Ω is finite dimensional, there is a subsequence of {xn}, which is convergent in Ω.
Therefore, the (PS) condition is verified.

By (C3), there exists δ > 0, F(t + ν − 1, x) ≤ dx2 for |x| ≤ δ, t ∈ [0, T]
N0
. Thus, for x ∈ Ω

with ||x|| ≤ δ, we have

I(x) =
1
2

T−1∑

t=−1
(Δz(t + ν − 1))2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1))

≥ 1
2
λ1‖z‖2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1))

≥
(
1
2
λ1 − λmaxλd

)
‖z‖2.

(3.22)

For λ ∈ (0, λ1/2dλmax), we choose ρ = δ and γ = ((1/2)λ1 − λλmax)ρ2. Then we have
I|∂Bρ ≥ γ > 0, so that the condition (I1) in Lemma 2.7 holds.

Since I(x) → −∞ as ||x|| → ∞, we can find e ∈ Ω with sufficiently large norm ||e||
such that I(e) < 0. Hence (I2) in Lemma 2.7 is satisfied. Thus, functional I has one critical
value

c = inf
g∈Γ

max
u∈g([0,1])

I(u), (3.23)

where Γ = {g ∈ C([0, 1],Ω) | g(0) = θ, g(1) = e}. If c0 > c, the proof is completed. It suffices to
consider the case c0 = c. Then

c0 = c = inf
g∈Γ

max
u∈g([0,1])

I(u), (3.24)

that is, c0 = maxu∈g([0,1])I(u) for each g ∈ Γ.
Similarly, we can also choose −e ∈ Ω such that I(−e) < 0. Applying Lemma 2.7 again,

we obtain another critical value of the functional I,

c = inf
g∈Γ

max
u∈g([0,1])

I(u), (3.25)
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where Γ = {g ∈ C([0, 1],Ω) | g(0) = θ, g(1) = −e}. If c0 > c, then the proof is completed. It
suffices to consider the case where c0 = c. Then c0 = maxu∈g([0,1])I(u) for each g ∈ Γ. By the
definitions of Γ and Γ, we may choose g0 ∈ Γ and g0 ∈ Γ such that g0([0, 1]) ∩ g0([0, 1]) =
{θ}. Therefore, we get the maximum of the functional I on g0([0, 1]) \ {θ} and g0([0, 1]) \
{θ}, respectively, that is, we find two distinct nontrivial critical points of the functional I.
Therefore, our BVP (1.2), (1.3) possesses at least two nontrivial solutions.

Theorem 3.5. Assume that (C1) and (C4) hold and that there exists N ∈ [1, T + 1]
N1

such that
λN < λN+1. Then, for λ ∈ (λN/2q1λmin, λN+1/2q1λmax), BVP (1.2), (1.3) has at least three solutions.

Proof. By (C1) and Theorem 3.1, we obtain lim||x||→∞I(x) = ∞, thus functional I is bounded
from below. Similar to the proof of (PS) condition in Theorem 3.4, we can verify that
functional I satisfies (PS) condition in our hypothesis. In order to apply linking theorem, we
prove functional I is local linking at origin θ as follows. Clearly, Ω = span{η1, η2, . . . , ηT+1}.
Let X = span{η1, η2, . . . , ηN},W = span{ηN+1, ηN+2, . . . , ηT+1}, then Ω = X ⊕ W.

By (C4), for ε ∈ (0, q1), there exists ρ > 0, such that

(
q1 − ε

)
x2 ≤ F(t + ν − 1, x) ≤ (q1 + ε

)
x2, |x| ≤ ρ, t ∈ [0, T]

N0
. (3.26)

So, for x ∈ X with 0 < ||x|| ≤ ρ, such that

T−1∑

t=−1
(Δz(t + ν − 1))2 = z′Az ≤ λN‖z‖2 ≤ λN‖x‖2

λmin
,

T∑

t=0

F(t + ν − 1, x(t + ν − 1)) ≥ (q1 − ε
) T∑

t=0
(x(t + ν − 1))2 =

(
q1 − ε

)‖x‖2.
(3.27)

Since z = Bx ∈ X, we have

I(x) =
1
2

T−1∑

t=−1
(Δz(t + ν − 1))2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1))

≤
(

λN
2λmin

− λ
(
q1 − ε

)
)
‖x‖2.

(3.28)

Thus, for λ > λN/2(q1 − ε)λmin, we have I(x) < 0 for x ∈ X with 0 < ||x|| ≤ ρ.
Similarly, for x ∈ W with 0 < ||x|| ≤ ρ,

I(x) =
1
2

T−1∑

t=−1
(Δz(t + ν − 1))2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1)) ≥
(

λN+1

2λmax
− λ
(
q1 + ε

)
)
‖x‖2,

(3.29)

then for λ < λN+1/2(q1 + ε)λmax, we have I(x) > 0 for x ∈ W with 0 < ||x|| ≤
ρ. So, by Lemma 2.5, for ε ∈ (0, q1), if λ ∈ (λN/2(q1 − ε)λmin, λN+1/2(q1 + ε)λmax),
functional I possesses at least three critical points. By the arbitrariness of ε, we get for λ ∈
(λN/2q1λmin, λN+1/2q1λmax), the problem (1.2), (1.3) possesses at least three solutions.



Abstract and Applied Analysis 13

Theorem 3.6. Assume (C2), (C3), and (C5) hold. Then, for each N ∈ [0, T]
N0
, if λ ∈ (0, λN+1/

2dλmax), then BVP (1.2),(1.3) possesses at least T + 1 −N pairs of solutions.

Proof. By (C5), functional I is even, and based on the proof of Theorem 3.4, we know that
I satisfies (PS) condition. In order to obtain our result, we need to verify (I3) and (I4) of
Lemma 2.8.

First, in view of (C3), there exists ρ > 0 such that

F(t + ν − 1, x) ≤ dx2 for |x| ≤ ρ, t ∈ [0, T]
N0
. (3.30)

ForN ∈ [1, T + 1]
N1
, if we choose X1 = span{ηN+1, ηN+2, . . . , ηT+1}, then codimX1 = N.

So for x ∈ X1 with ||x|| ≤ ρ, since z = Bx, we have

I(x) =
1
2

T−1∑

t=−1
(Δz(t + ν − 1))2 − λ

T∑

t=0

F(t + ν − 1, x(t + ν − 1)) ≥
(

λN+1

2λmax
− λd

)
‖x‖2. (3.31)

Thus, for λ ∈ (0, λN+1/2dλmax), I|X1
⋂
∂Bρ ≥ β > 0, where β = (λN+1/2λmax − λd)ρ2, (I3)

of Lemma 2.8 holds.
Next if we choose X2 = span{η1, η2, . . . , ηT+1}, then for x ∈ X2, in view of (C2) and

Theorem 3.3, we get I(x) → −∞ as ||x|| → ∞. (I4) of Lemma 2.8 is satisfied.
Therefore, for λ ∈ (0, λN+1/2dλmax), functional I possesses at least T + 1 − N pair of

critical points in Ω, and problem (1.2),(1.3) has at least T + 1 −N pairs of solutions.

Remark 3.7. In Theorem 3.6, if we choose N = 0, then for λ ∈ (0, λ1/2dλmax), the BVP (1.2),
(1.3) possesses at least T + 1 pairs of solutions.

Obviously, compared with Theorem 3.4, the even condition (C5) ensures that the
problem (1.2), (1.3) possesses more solutions.

Theorem 3.8. Suppose (C1), (C5), and (C6) hold. Then for every N ∈ [1, T + 1]
N1
, when λ ∈ (λN/

2p2λmin,∞), problem (1.2), (1.3) possesses at leastN pairs of nontrivial solutions.

Proof. I(x) is an even functional on Ω by (C5). From (C1), we obtain I(x) → ∞ as ||x|| → ∞,
so it is clear that I is bounded from below on Ω and satisfies the (PS) condition. For N ∈
[1, T +1]

N1
, if we choose X1 = span{η1, . . . , ηN} and set K = X1∩∂Bρ, then K is homeomorphic

to S
N−1 by an odd map. By (C6), there exists ρ1 > 0 such that F(t + ν − 1, x) ≥ p2x

2 for |x| ≤ ρ1,
t ∈ [0, T]

N0
. So for x ∈ K1 = X1 ∩ ∂Bρ1 ,

I(x) =
1
2

T∑

t=−1
(Δz(t + ν − 1))2 − λ

T∑

t=−1
F(t + ν − 1, x(t + ν − 1)) ≤ 1

2
λN‖z‖2 − λp2‖x‖2

=
(

λN
2λmin

− λp2

)
ρ21.

(3.32)

For λ ∈ (λN/2p2λminx,+∞), we have sup
K1
I(x) < 0. Therefore, by Lemma 2.9, func-

tional I has at least N pairs of nontrivial solutions.
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Remark 3.9. From Theorem 3.5, it is easy to see that, when f is odd about the second variable,
we can obtainmore solutions of the problem (1.2), (1.3), and the number of solutions depends
on where λ lies.

4. Applications

In the final section, we apply the results developed in Section 3 to some examples.

Example 4.1. Consider the following problem

TΔν
t−1
(
tΔν

ν−1x(t)
)
= λ4(t + ν − 1)x3(t + ν − 1)(sinx(t + ν − 1) + 2)

+ (t + ν − 1)x4(t + ν − 1) cos(x(t + ν − 1)), t ∈ [0, T]
N0,

x(ν − 2) =
[
tΔν

ν−1x(t)
]
t=T = 0,

(4.1)

where f(t + ν − 1, x) = 4(t + ν − 1)x3(sinx + 2) + (t + ν − 1)x4 cosx. Choose μ = 4 and d = 1 in
(C2) and (C3). Since

lim inf
|x|→∞

F(t + ν − 1, x)

|x|4
= lim inf

|x|→∞
(t + ν − 1)(sinx + 2) = t + ν − 1 > 0, t ∈ [0, T]

N0
,

lim sup
|x|→ 0

F(t + ν − 1, x)
x2

= lim sup
|x|→∞

(t + ν − 1)x2(sinx + 2) = 0, t ∈ [0, T]
N0
,

(4.2)

we see that (C2) and (C3) hold. Thus, by Theorem 3.4, when λ ∈ (0, λ1/2λmax), problem (4.1)
has at least two nontrivial solutions.

Example 4.2. Consider the problem

TΔν
t−1
(
tΔν

ν−1x(t)
)
= λ4 sin(x(t + ν − 1)) cos(x(t + ν − 1))

− e−(t+ν−1)x(t+ν−1)

×
(
2x(t + ν − 1) − (t + ν − 1)x2(t + ν − 1)

)
t ∈ [0, T]

N0
,

x(ν − 2) =
[
tΔν

ν−1x(t)
]
t=T = 0.

(4.3)

Suppose there exists N0 ∈ [0, T]
N0

such that λmaxλN0 < λminλN0+1. If we choose μ = q1 = a = 1
in (C1) and (C4), then for t ∈ [0, T]

N0
, we have

lim sup
|x|→∞

F(t + ν − 1, x)
|x|μ = lim sup

|x|→∞

2sin2x − x2e−(t+ν−1)x

|x|μ < 1 = a,

lim
x→ 0

F(t + ν − 1, x)
x2

= 1 = q1 > 0,

(4.4)
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and hence (C1) and (C4) are satisfied. So, in view of Theorem 3.5, for λ ∈ (λN0/2λmin, λN0+1/
2λmax), problem (4.3) has at least three solutions.

Example 4.3. Consider the problem

TΔν
t−1
(
tΔν

ν−1x(t)
)
= λ4(t + ν − 1)x3(t + ν − 1)(cosx(t + ν − 1) + 2)

− (t + ν − 1)x4(t + ν − 1) sin(x(t + ν − 1)), t ∈ [0, T]
N0
,

x(ν − 2) =
[
tΔν

ν−1x(t)
]
t=T = 0.

(4.5)

Condition (C5) is satisfied. If we choose μ = 4 and d = 1 in (C2) and (C3), then by some
simple calculation, we may show that the hypotheses (C2) and (C3) are fulfilled. Therefore,
by Theorem 3.6, for any N ∈ [0, T]

N0
and λ ∈ (0, λN+1/2λmax), problem (4.5) has at least

T + 1 −N pairs of solutions.

Example 4.4. Finally, consider the problem

TΔν
t−1
(
tΔν

ν−1x(t)
)
= λ

1
t + ν − 1

sin((t + ν − 1)x(t + ν − 1))

+ x(t + ν − 1) cos((t + ν − 1)x(t + ν − 1)), t ∈ [0, T]
N0
,

x(ν − 2) =
[
tΔν

ν−1x(t)
]
t=T = 0,

(4.6)

where f(t + ν − 1, x) = (1/(t + ν − 1)) sin((t + ν − 1)x) + x cos((t + ν − 1)x). Let a = μ = 1 and
p2 = 1/2. Then it is easy to verify that (C1), (C5), and (C6) hold. Thus, by Theorem 3.8, for
each N ∈ [0, T]

N0
and λ ∈ (λN/λmin,+∞), problem (4.6) has at least N pairs of solutions.
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