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We study the abstract Cauchy problem for a class of integrodifferential equations in a Banach space
with nonlinear perturbations and nonlocal conditions. By using MNC estimates, the existence and
continuous dependence results are proved. Under some additional assumptions, we study the
topological structure of the solution set.

1. Introduction

In this paper, we investigate the following problem:

x′(t) = A

[
x(t) +

∫ t

0
F(t − s)x(s)ds

]
+ g(t, x(t)), t ∈ J := [0, T], (1.1)

x(0) + h(x) = x0. (1.2)

Here x(t) takes values in a Banach space X; F(t), for each t ∈ J , is a linear operator on X;
maps g : J × X → X and h : C(J ;X) → X are given. In this model, A is the generator of a
strongly continuous semigroup S(·) on X.
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It is known that (1.1) with g = g(t) arises from some real applications. For example,
the classical heat equation for medium with memory can be written as

xt

(
t, y
)
=

∂2

∂y2

[
x
(
t, y
)
+
∫ t

0
b(t − s)x

(
s, y

)
ds

]
+ g
(
t, y
)
, x

(
0, y

)
= x0, (1.3)

where t ∈ R
+ and y ∈ [0, a] ⊂ R

+ (for more details, see [1, 2]). In addition, if we replace the
initial condition x(0, y) = x0 by the nonlocal condition (1.2), it allows to describe the model
more effectively. As an example of h, the following function can be considered:

h(x) =
p∑
i=1

cix(ti), (1.4)

where ci (i = 1, . . . , p) are given constants and 0 ≤ t1 < · · · < tp ≤ T . As another example, one
can take

h(x) =
p∑
i=1

Kix(ti), (1.5)

whereKi : X → X are given linear operators. Regarding to (1.3), in the case X = L2(0, a), the
operators Ki can be given by

Kix
(
ti, y

)
=
∫a

0
ki
(
ξ, y
)
x(ti, ξ)dξ, (1.6)

where ki (i = 1, . . . , p) are continuous kernel functions.
Semilinear problem (1.1)-(1.2) with F = 0 was studied extensively. In [3–5], the

existence and uniqueness results were obtained by using the contraction mapping principle,
under the Lipschitz conditions imposed on g and h. Supposing Carathéodory-type conditions
on g, the authors in [6] proved the global existence result with the assumption that the
semigroup S(t) is compact. However, as it was indicated in [7], if the Lipschitz condition
is relaxed, one may get difficulties in proving the compactness of the solution map since the
map t �→ S(t), in general, is not uniformly continuous in [0, T], even in case when S(t) is
compact. Recently, Fan and Li [8] gave an asymptotical method to solve this problem for the
case when S(t) is a compact strongly continuous semigroup and the nonlocal function h is
supposed to be continuous only.

It is known that, in the case F = 0, the mild solution of (1.1)-(1.2) on J is defined via
the integral equation

x(t) = S(t)[x0 − h(x)] +
∫ t

0
S(t − s)g(s, x(s))ds, t ∈ J. (1.7)

Problem (1.1)-(1.2) involving integro-differential equations was introduced in [2]. The
complete references to integro-differential equations can be found in [1, 9, 10]. For some
additional problems on solvability and controllability of integro-differential equations, we
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refer the reader to [11–13]. In order to represent the mild solutions via the variation of
constants formula for this case, the notion of so-called resolvent for the corresponding linear
equation

x′(t) = A

[
x(t) +

∫ t

0
F(t − s)x(s)ds

]
, t ∈ J (1.8)

can be applied. More precisely, an operator-valued function R(·) : J �→ L(X) is called the
resolvent of (7) if it satisfies the following:

(1) R(0) = I, the identity operator on X,

(2) for each v ∈ X, the map t �→ R(t)v is continuous on J ,

(3) if Y is the Banach space formed from D(A), the domain of A, endowed with the
graph norm, then R(t) ∈ L(Y ), R(·)y ∈ C1(J ;X) ∩ C(J ;Y ) for y ∈ Y and

d

dt
R(t)y = A

[
R(t)y +

∫ t

0
F(t − s)R(s)yds

]

= R(t)Ay +
∫ t

0
R(t − s)AF(s)ds, t ∈ J.

(1.9)

For the existence of resolvent operators, we refer the reader to [14].
It is worth noting that, from definition of resolvent operator and the uniform

boundedness principle, there exists CR < +∞ such that

sup
t∈J

‖R(t)‖L(X) ≤ CR. (1.10)

Then the mild solution on J can be represented as

x(t) = R(t)[x0 − h(x)] +
∫ t

0
R(t − s)g(s, x(s))ds, t ∈ J. (1.11)

By a similar approach as in [3], the authors in [2] obtained the existence and uniqueness of
solutions for (1.11)with the assumptions of the Lipschitz conditions on g and h.

In this work, instead of the Lipschitz conditions posed on g and h, we assume the
regularity of g and h expressed in terms of the measure of noncompactness. The mentioned
regularity can be considered as a generalization of the Lipschitz condition. We first prove
the existence of solutions for (1.1)-(1.2) in Section 2. Our method is to find fixed points
of a corresponding condensing map, which yields the existence but does not provide the
uniqueness of solutions. The arguments in this work are mainly based on the estimates with
measure of noncompactness (MNC estimates). It should be noted that this technique was
developed in [15], and it has been employed widely for differential inclusions. In Section 3,
we prove that the solution set of our problem is continuously dependent on initial data.
Section 4 is devoted to a special case when h is a Lipschitz function and R(t) is compact
for t > 0. We show that, in this case, the solution set to (1.1)-(1.2) has the so-called Rδ-set
structure. We end this paper with an example in Section 5.
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2. Existence Results

We start with the recalling of some notions and facts (see, e.g. [15, 16]).

Definition 2.1. Let E be a Banach space with power set P(E), and (A,≥) a partially ordered
set. A function β : P(E) → A is called a measure of noncompactness (MNC) in E if

β(co Ω) = β(Ω) for every Ω ∈ P(E), (2.1)

where co Ω is the closure of convex hull of Ω. An MNC β is called

(i) monotone, if Ω0,Ω1 ∈ P(E) such that Ω0 ⊂ Ω1, then β(Ω0) ≤ β(Ω1);

(ii) nonsingular, if β({a} ∪Ω) = β(Ω) for any a ∈ E, Ω ∈ P(E);
(iii) invariant with respect to union with compact sets, if β(K ∪ Ω) = β(Ω) for every

relatively compact set K ⊂ E and Ω ∈ P(E).

If, in addition, A is a cone in a normed space, we say that β is

(iv) algebraically semiadditive, if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any Ω0,Ω1 ∈ P(E);
(v) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC, which satisfies all properties
given in the previous definition:

χ(Ω) = inf{ε : Ω has a finite ε-net}. (2.2)

Other examples of MNC defined on the space C(J ; X) of continuous functions on an interval
J = [0, T]with values in a Banach space X are the following:

(i) the modulus of fiber noncompactness:

γ(Ω) = sup
t∈J

χ(Ω(t)), (2.3)

where χ is the Hausdorff MNC on X and Ω(t) = {y(t) : y ∈ Ω};

(ii) the modulus of equicontinuity:

modC(Ω) = lim
δ→ 0

sup
y∈Ω

max
|t1−t2|<δ

∥∥y(t1) − y(t2)
∥∥. (2.4)

As indicated in [15], these MNCs satisfy all properties mentioned in Definition 2.1 except the
regularity.

LetT ∈ L(E), that is,T is a bounded linear operator from E into E. We recall the notion
of χ-norm (see e.g., [16]) as follows:

‖T‖χ := inf
{
M : χ(TΩ) ≤ Mχ(Ω), Ω ⊂ E is a bounded set

}
. (2.5)
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The χ-norm of T can be evaluated as

‖T‖χ = χ(TS1) = χ(TB1), (2.6)

where S1 and B1 are the unit sphere and the unit ball in E, respectively. It is easy to see that

‖T‖χ ≤ ‖T‖L(X). (2.7)

Definition 2.2. A continuous map F : Z ⊆ E → E is said to be condensing with respect to a
MNC β (β-condensing) if for every bounded setΩ ⊂ Z that is not relatively compact, we have

β(F(Ω))��� β(Ω). (2.8)

Let β be a monotone nonsingular MNC in E. The application of the topological degree
theory for condensing maps (see, e.g., [15, 16]) yields the following fixed point principles.

Theorem 2.3 (cf. [15, Corollary 3.3.1]). Let M be a bounded convex closed subset of E and F :
M → M a β- condensing map. Then FixF = {x = F(x)} is a nonempty compact set.

Theorem 2.4 (cf. [15, Corollary 3.3.3]). Let V ⊂ E be a bounded open neighborhood of zero, and
F : V → E a β- condensing map satisfying the following boundary condition:

x /=λF(x) (2.9)

for all x ∈ ∂V and 0 < λ ≤ 1. Then the fixed point set Fix(F) = {x = F(x)} ⊂ V is nonempty and
compact.

Now, returning to problem (1.1)-(1.2), we impose the following assumptions for g and
h:

(G1) the map g : J ×X → X is continuous;

(G2) there exist function μ ∈ L1(J) and nondecreasing function Υ : R
+ → R

+ such that

∥∥g(t, η)∥∥X ≤ μ(t)Υ
(∥∥η∥∥X) (2.10)

for a.e. t ∈ J and for all η ∈ X;

(G3) there exists a function k ∈ L1(J) such that for each nonempty, bounded set Ω ⊂ X
we have

χ
(
g(t,Ω)

)
≤ k(t)χ(Ω) (2.11)

for a.e. t ∈ J , where χ is the Hausdorff MNC in X;
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(H1) h : C(J ; X) → X is a continuous function and there is a nondecreasing function
Θ : R

+ → R
+ such that

‖h(x)‖X ≤ Θ(‖x‖C), (2.12)

for all x ∈ C(J ; X), where ‖x‖C = ‖x‖C(J ;X);

(H2) there is a constant Ch such that

χ(h(Ω)) ≤ Chγ(Ω) (2.13)

for any bounded subset Ω ⊂ C(J ;X), where γ is defined in (2.3).

(H3) if Ω ⊂ C(J ;X) is a bounded set, then

modC(R(·)h(Ω)) = 0. (2.14)

Remark 2.5. (1) If X is a finite dimensional space, one can exclude the hypothesis (G3) since
it can be deduced from (G2).

(2) It is known (see, e.g, [15, 16]) that condition (G3) is fulfilled if

g
(
t, η
)
= g1

(
t, η
)
+ g2

(
t, η
)
, (2.15)

where g1 is Lipschitz with respect to the second argument:

∥∥g1(t, ξ) − g1
(
t, η
)∥∥

X ≤ k(t)
∥∥ξ − η

∥∥
X (2.16)

for a.e. t ∈ J and ξ, η ∈ X with k ∈ L1(J) and g2 is compact in second argument; that is, for
each t ∈ J and bounded Ω ⊂ X, the set g2(t,Ω) is relatively compact in X.

(3) If we assume that h is completely continuous, that is, it is continuous and compact
on bounded sets, then (H2)-(H3) will be satisfied. It is obvious that if the function h in (1.4)
obeys (H1)-(H2) and function t �→ R(t) is uniformly continuous, (H3) is also satisfied. It is
worth noting that the function h given by (1.5)-(1.6) obeys (H1)–(H3).

As in [2], we assume in the sequel that

(F1) F(t) ∈ L(X) for t ∈ J and for x(·) continuous with values in Y = D(A), AF(·)x(·) ∈
L1(J ;X);

(F2) for each x ∈ X, the function t �→ F(t)x is continuously differentiable on J .

It is known that under conditions (F1)-(F2), the resolvent operator for (1.8) exists.We assume,
in addition, that

(HA) t �→ R(t) is uniformly norm continuous for t > 0.
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We define the following operator:

Φ : L1(J ;X) −→ C(J ;X),

Φ
(
f
)
(t) =

∫ t

0
R(t − s)f(s)ds.

(2.17)

Before collecting some properties of Φ, we recall the following definitions.

Definition 2.6. A subsetQ of L1(J ;X) is said to be integrably bounded if there exists a function
μ ∈ L1(J) such that

∥∥f(t)∥∥X ≤ μ(t) for a.e. t ∈ J, (2.18)

for all f ∈ Q.

Definition 2.7. The sequence {ξn} ⊂ L1(J ;X) is called semicompact if it is integrably bounded
and the set {ξn(t)} is relatively compact in X for a.e. t ∈ J .

By using hypothesis (HA) and the same arguments as those in [15, Lemma 4.2.1,
Theorem 4.2.2, Proposition 4.2.1, and Theorem 5.1.1], one can verify the following properties
for Φ:

(Φ1) the operator Φ sends any integrably bounded set in L1(J ;X) to equicontinuous set
in C(J ;X);

(Φ2) the following inequality holds:

∥∥Φ(ξ)(t) −Φ
(
η
)
(t)
∥∥
X ≤ CR

∫ t

0

∥∥ξ(s) − η(s)
∥∥
Xds (2.19)

for every ξ, η ∈ L1(J ;X), t ∈ J ;

(Φ3) for any compact K ⊂ X and sequence {ξn} ⊂ L1(J ;X) such that {ξn(t)} ⊂ K for a.e.
t ∈ J , theweak convergence ξn ⇀ ξ implies the uniform convergenceΦ(ξn) → Φ(ξ);

(Φ4) if {ξn} ⊂ L1(J ;X) is an integrably bounded sequence and q ∈ L1(J) is a nonnegative
function such that χ({ξn(t)}) ≤ q(t), for a.e. t ∈ J , then

χ({Φ(ξn)(t)}) ≤ 2CR

∫ t

0
q(s)ds, t ∈ J ; (2.20)

(Φ5) if {ξn} ⊂ L1(J ;X) is a semicompact sequence, then {ξn} is weakly compact in
L1(J ;X) and {Φ(ξn)} is relatively compact in C(J ;X). Moreover, if ξn ⇀ ξ0, then
Φ(ξn) → Φ(ξ0).

Denote

Φ∗(x)(t) = R(t)[x0 − h(x)] (2.21)



8 Abstract and Applied Analysis

for t ∈ J and x ∈ C(J ;X). By Ng we denote the Nemytskii operator corresponding to the
nonlinearity g, that is,

Ng(x)(t) = g(t, x(t)) for t ∈ J, x ∈ C(J ;X). (2.22)

We see that x is a solution of (1.1)-(1.2) if and only if

x = Φ∗(x) + ΦNg(x). (2.23)

Let

Ψ(x) = Φ∗(x) + ΦNg(x). (2.24)

Then the solutions of (1.1)-(1.2) can be considered as the fixed points of Ψ, the operator
defined on C(J ;X).

It follows from (G1) and (H1) that Ψ is continuous on C(J ;X). Consider the function

ν : P(C(J ; X)) −→ R
2
+,

ν(Ω) = max
D∈Δ(Ω)

(
γ(D),modC(D)

)
, (2.25)

where γ and modC are defined in (2.3) and (2.4), respectively, Δ(Ω) denotes the collection of
all countable subsets ofΩ, and the maximum is taken in the sense of the ordering in the cone
R

2
+. By applying the same arguments as in [15], we have that ν is well defined. That is, the

maximum is archiving in Δ(Ω) and so ν is an MNC in the space C(J ;X), which satisfies all
properties in Definition 2.1 (see [15, Example 2.1.3] for details).

Theorem 2.8. Let F satisfy (F1)-(F2). Assume that conditions (G1)–(G3) and (H1)–(H3) are fulfilled.
If


 := CR

(
Ch + 2

∫T

0
k(s)ds

)
< 1, (2.26)

then Ψ is ν-condensing.

Proof. Let Ω ⊂ C(J ;X) be such that

ν(Ψ(Ω)) ≥ ν(Ω). (2.27)

We will show that Ω is relatively compact in C(J ; X). By the definition of ν, there exists a
sequence {zn} ⊂ Ψ(Ω) such that

ν(Ψ(Ω)) =
(
γ({zn}),modC({zn})

)
. (2.28)
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Following the construction of Ψ, one can take a sequence {xn} ⊂ Ω such that

zn = Φ∗(xn) + Φ
(
gn
)
, (2.29)

where

gn(t) = g(t, xn(t)), t ∈ J,

Φ∗(xn)(t) = R(t)[x0 − h(xn)],

Φ
(
gn
)
(t) =

∫ t

0
R(t − s)gn(s)ds.

(2.30)

Using assumption (G3), we have

χ
({

gn(s)
})

= χ
({

g(s, xn(s))
})

≤ k(s)χ({xn(s)})
≤ k(s)γ({xn}),

(2.31)

for all s ∈ J . Then by (Φ4), we obtain

χ
({

Φ
(
gn
)
(t)
})

≤ 2CR

(∫ t

0
k(s)ds

)
γ({xn}). (2.32)

Noting that

Φ∗(xn)(t) = R(t)x0 − R(t)h(xn), (2.33)

we have

χ({Φ∗(xn)(t)}) = χ({R(t)h(xn)})
≤ CRChγ({xn})

(2.34)

due to (2.5)-(2.7) and (H2). Combining (2.29), (2.31), and (2.32), we get

γ({zn}) ≤ 
γ({xn}). (2.35)

Combining the last inequality with (2.27), we have

γ({xn}) ≤ 
γ({xn}), (2.36)

and therefore

γ({xn}) = 0. (2.37)



10 Abstract and Applied Analysis

But then (2.35) implies

γ({zn}) = 0. (2.38)

Putting (2.37) together with (2.31), we obtain that {gn} is semicompact. Hence, by (Φ5) one
that has {Φ(gn)} is relatively compact. This yields

modC

({
Φ
(
gn
)})

= 0. (2.39)

By (H3), we have

modC({Φ∗(xn)}) = 0. (2.40)

Taking (2.29) into account again, we obtain

modC({zn}) = 0. (2.41)

Now it follows from (2.38)-(2.41) that

ν(Ω) = (0, 0). (2.42)

By regularity of ν, we come to the conclusion that Ω is relatively compact.

Remark 2.9. If R(t) is compact for t > 0, we can drop assumption (G3) in the foregoing
theorem. Indeed, for any bounded sequence {xn} ⊂ C(J ;X), by setting ξn(t, s) = R(t −
s)g(s, xn(s)), one sees that under hypothesis (G2), {ξn(t, ·)} is an integrably bounded
sequence in L1(0, t;X). In addition, since R(t), t > 0, is compact, we have

χ({ξn(t, s)}) = 0, for a.e. s ∈ [0, t]. (2.43)

Then by [15, Corollary 4.2.5], we obtain

χ

({∫ t

0
ξn(t, s)ds

})
= 0, (2.44)

for each t ∈ J . By this reason, inequality (2.32) becomes

χ
({

Φ
(
gn
)
(t)
})

= 0, (2.45)

without the reference to (G3).

We now can formulate the existence result in the following way.
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Theorem 2.10. Under assumptions of Theorem 2.8, if one has

lim inf
r→∞

CR

r

(
Θ(r) + Υ(r)

∫T

0
μ(s)ds

)
< 1, (2.46)

then the solution set to problem (1.1)-(1.2) is nonempty and compact.

Proof. We will use Theorem 2.3. Applying the results of Theorem 2.8, we only need to verify
the existence of a number r > 0 such that

Ψ(Br) ⊆ Br, (2.47)

where Br is the closed ball in C(J ;X) centered at origin with radius r. Indeed, assume to the
contrary that for each n ∈ N \ {0}, there is xn ∈ C(J ;X) such that

‖xn‖C ≤ n, but ‖Ψ(xn)‖c > n. (2.48)

Recalling that

Ψ(xn)(t) = R(t)[x0 − h(xn)] +
∫ t

0
R(t − s)g(s, xn(s))ds, (2.49)

we have

‖Ψ(xn)(t)‖X ≤ CR(‖x0‖X + Θ(‖xn‖C)) + CR

∫ t

0
μ(s)Υ(‖xn(s)‖X)ds, (2.50)

due to (H1) and (G2). Then

n < ‖Ψ(xn)‖C ≤ CR(‖x0‖X + Θ(n)) + CRΥ(n)
∫T

0
μ(s)ds. (2.51)

Equivalently,

1 <
‖Ψ(xn)‖C

n
≤ 1

n

(
CR(‖x0‖X + Θ(n)) + CRΥ(n)

∫T

0
μ(s)ds

)
. (2.52)

Passing in the last inequality to the limit as n → +∞, one gets a contradiction due to
assumption (2.46). Thus the proof is completed.

We have some special cases related to the growth of Υ and Θ.

Corollary 2.11. Assume hypotheses of Theorem 2.8, in which (G2) and (H1) are replaced by

(G2′) ‖g(t, η)‖X ≤ μ(t)(1 + ‖η‖p), μ ∈ L1(J), 0 ≤ p < 1, for all (t, η) ∈ J ×X;
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(H1′) h : C(J;X) → X is continuous and

‖h(x)‖X ≤ h0 + h1‖x‖
q
c , h0, h1 > 0, 0 ≤ q < 1, (2.53)

for all x ∈ C(J ; X), respectively.Then the solution set to problem (1.1)-(1.2) is nonempty
and compact.

Proof. Since p < 1 and q < 1, condition (2.46) in Theorem 2.10 is testified obviously. Then we
get the conclusion.

Corollary 2.12. Assume hypotheses of Theorem 2.8, in which (G2) and (H1) are replaced by

(G2′′) ‖g(t, η)‖X ≤ μ(t)(1 + ‖η‖), μ ∈ L1(J), for all (t, η) ∈ J ×X;

(H1′′) h : C(J ;X) → X is continuous and

‖h(x)‖X ≤ h0 + h1‖x‖C, for some h0, h1 > 0, (2.54)

for all x ∈ C(J ; X), respectively. If one has

CR

(
h0 +

∫T

0
μ(s)ds

)
< 1, (2.55)

then the solution set to problem (1)-(2) is nonempty and compact.

Proof. Under (G2′′) and (H1′′), condition (2.55) is equivalent to (2.46) and the conclusion of
Theorem 2.10 holds.

It should be mentioned that if q = 0 in (H1′), that is, the nonlocal function h is
uniformly bounded, then one can relax the growth of Υ, by the arguments similar to those
in [17].

Theorem 2.13. Assume the hypotheses of Theorem 2.8, in which (H1) is replaced by

(H1b) h is a continuous function and ||h(x)||X ≤ Mh for all x ∈ C(J ;X), whereMh is a positive
constant.

If one has

CR

∫T

0
μ(s)ds <

∫∞

M̃

dz

Υ(z)
, (2.56)

where M̃ = CR(||x0||X +Mh), then the solution set to problem (1.1)-(1.2) is nonempty and
compact.
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Proof. In this case we employ Theorem 2.4. It suffices to verify the boundary condition in
Theorem 2.4. We show that if x = λΨ(x) for λ ∈ (0, 1], then x must belong to a bounded set.
Indeed, suppose

x(t) = λR(t)[x0 − h(x)] + λ

∫ t

0
R(t − s)g(s, x(s))ds. (2.57)

It follows that

‖x(t)‖X ≤ CR(‖x0‖X +Mh) + CR

∫ t

0
μ(s)Υ(‖x(s)‖X)ds. (2.58)

Putting

v(t) = CR(‖x0‖X +Mh) + CR

∫ t

0
μ(s)Υ(‖x(s)‖X)ds, (2.59)

we have ‖x(t)‖X ≤ v(t), for all t ∈ J , and

v′(t) = CRμ(t)Υ(‖x(t)‖X)
≤ CRμ(t)Υ(v(t)),

(2.60)

due to the fact that Υ is nondecreasing. Then, by using (2.56), we have

∫v(t)

M̃

dz

Υ(z)
≤ CR

∫T

0
μ(s)ds <

∫∞

M̃

dz

Υ(z)
, (2.61)

for all t ∈ J . The last inequalities imply that supt∈Jv(t) is bounded, so is ‖x‖C.

3. Continuous Dependence Result

We start with some notions from the theory of multivalued maps (see, e.g. [15] for details).
Let (Y, �Y ) and (Z, �Z) be metric spaces; K(Z) denotes the collection of all nonempty

compact subsets of Z. A multivalued map (multimap) G : Y → K(Z) is said to be
(i) upper semicontinuous (u.s.c.) if for each y ∈ Y and ε > 0 there exists δ = δ(y, ε) > 0
such that condition �Y (y, y′) < δ implies G(y′) ⊂ Uε(G(y)), where Uε(G(y)) denotes the
ε-neighborhood of the set G(y) induced by the metric �Z; (ii) closed if its graph {(y, z) ∈
Y × Z : z ∈ G(y)} is a closed subset of Y × Z; (iii) compact if G(Y ) is relatively compact in
Z; (iv) quasicompact if its restriction to any compact set is compact.

The following assertion gives a sufficient condition for upper semicontinuity.
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Lemma 3.1 (see[15]). Let G : Y → K(Z) be a closed quasicompact multimap. Then G is u.s.c.

Consider the solution multimap

W : X � C(J ;X),

W(v) = {x : x is a solution of (1.1)-(1.2) with initial value x0 = v}.
(3.1)

Notice that, as we demonstrated previously, under conditions of our existence theorems, the
solution multimap W has compact values. We will study the continuity properties ofW .

Theorem 3.2. Under the assumptions of Theorem 2.10, the solution map W defined in (3.1) is u.s.c.

Proof. We first prove that W is a quasicompact multimap. Let Q ⊂ X be a compact set. We
will show thatW(Q) is relatively compact in C(J ;X). Suppose that {xn} ⊂ W(Q). Then there
exists a sequence {vn} ⊂ Q such that

xn(t) = R(t)vn − R(t)h(xn) + Φgn(t), (3.2)

where gn(t) = g(t, xn(t)).
Notice that the sequence {xn} is bounded. In fact, from (3.2)we have the estimate

‖xn‖c ≤ CR(‖vn‖x + Θ(‖xn‖c)) + CRΥ(‖xn‖c)
∫T

0
μ(s)ds. (3.3)

Supposing to the contrary that the sequence ‖xn‖C is unbounded, by dividing the last
inequality over ‖xn‖C and using condition (2.46) and the boundedness of the sequence {vn},
we get a contradiction.

Since {vn} is relatively compact, we obtain from (3.2) that

χ({xn(t)}) ≤ χ({R(t)h(xn)}) + χ
({

Φgn(t)
})

. (3.4)

Using (G3)we have

χ
({

gn(s)
})

≤ k(s)χ({xn(s)}) ≤ k(s)γ({xn}) (3.5)

for all s ∈ J . Referring to (Φ4), one gets

χ
({

Φ
(
gn
)
(s)
})

≤ 2CR

(∫ t

0
k(s)ds

)
γ({xn}), (3.6)

and then

γ
({

Φ
(
gn
)})

≤ 2CR

(∫T

0
k(s)ds

)
γ({xn}). (3.7)
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On the other hand, by (H2) one has

χ({R(t)h(xn)}) ≤ CRChγ({xn}). (3.8)

Combining the last inequality with (3.4)-(3.7), we have

γ({xn}) ≤ 
γ({xn}). (3.9)

This leads to the conclusion that γ({xn}) = 0.
Now, condition (G2) implies that {gn} is integrably bounded in L1(J ;X). Thus (Φ1)

ensures that {Φ(gn)} is equicontinuous. Then applying condition (H3), we obtain

modC({xn}) ≤ modC({Φ∗(xn)}) +modC

({
Φ
(
gn
)})

= 0. (3.10)

So we have ν({xn}) = (0, 0) and therefore {xn} is relatively compact in C(J ;X).
In order to prove that W is u.s.c., it remains, according to Lemma 3.1, to show that W

is closed. Let vn → v in X and xn ∈ W(vn), xn → x in C(J ;X). We claim that x ∈ W(v).
Indeed, one has

xn(t) = Φ∗(xn)(t) +
∫ t

0
R(t − s)g(s, xn(s))ds. (3.11)

We first observe that

Φ∗(xn) = R(·)[vn − h(xn)] −→ R(·)[v − h(x)] = Φ∗(x) (3.12)

in C(J ;X) in accordance with (H1). In addition, since g is a continuous function, we have
g(s, xn(s)) → g(s, x(s)) a.e. s ∈ J . The Lebesgue dominated convergence theorem implies
that

g(·, xn(·)) − g(·, x(·)) −→ 0 in L1(J ;X) (3.13)

due to the fact that {g(·, xn(·))} is integrably bounded. Therefore, taking (3.11) into account,
we arrive at

x(t) = Φ∗(x)(t) +
∫ t

0
R(t − s)g(s, x(s))ds, t ∈ J. (3.14)

The proof is completed.

4. Lipschitz Assumption for the Function from Nonlocal Condition

4.1. Existence Result

In this section, we assume that h is a Lipschitz function.
(H2’) There exists a constant h0 > 0 such that

∥∥h(x) − h
(
y
)∥∥

X ≤ h0
∥∥x − y

∥∥
C. (4.1)
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This implies the growth of h:

‖h(x)‖X ≤ h0‖x‖C + ‖h(0)‖X, (4.2)

and the last inequality covers (H1).
Let χC be the Hausdorff MNC in C(J ; X). We have

∥∥Φ∗(x)(t) −Φ∗(y)(t)∥∥X =
∥∥R(t)[h(x) − h

(
y
)]∥∥

X

≤ CRh0
∥∥x − y

∥∥
C,

(4.3)

for all t ∈ J , where Φ∗ is given in (2.21). Thus

∥∥Φ∗(x) −Φ∗(y)∥∥C ≤ CRh0
∥∥x − y

∥∥
C. (4.4)

Then we know that (see [15]) condition (H2’) implies

χC(Φ∗(Ω)) ≤ CRh0χC(Ω), (4.5)

for any bounded set Ω ⊂ C(J ; X). We recall the following facts, which will be used in the
sequel: for each bounded set Ω ⊂ C(J ; X), one has the following:

(i) χ(Ω(t)) ≤ χC(Ω), for all t ∈ J ;

(ii) if Ω is an equicontinuous set (modC(Ω) = 0), then

χC(Ω) = sup
t∈J

χ(Ω(t))
(
= γ(Ω)

)
. (4.6)

Theorem 4.1. Assume that g satisfies (G1)–(G3) and h obeys (H2’). If the following relations


 := CR

(
h0 + 2

∫T

0
k(s)ds

)
< 1, (4.7)

CRh0 + CR

∫T

0
μ(s)ds lim inf

r→∞

Ψ(r)
r

< 1, (4.8)

hold true, then problem (1.1)-(1.2) has at least one solution.

Proof. As we know from the proof of Theorem 2.10, condition (4.8) implies that there exists a
ball Br ⊂ C(J,X), r > 0, such that

Ψ(Br) ⊂ Br. (4.9)

To apply Theorem 2.3, we verify that Ψ is χC-condensing. Let Ω ⊂ C(J ;X) be a bounded set
satisfying the inequality

χC(Ψ(Ω)) ≥ χC(Ω). (4.10)
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We will show that Ω is relatively compact. Notice that

Ψ(Ω) ⊂ Φ∗(Ω) + Φ ◦Ng(Ω), (4.11)

where

Φ∗(Ω)(t) = R(t)[x0 − h(Ω)],

Φ ◦Ng(Ω)(t) =

{∫ t

0
R(t − s)g

(
s, y(s)

)
ds : y ∈ Ω

}
.

(4.12)

Then we have

χC(Ψ(Ω)) ≤ χC(Φ∗(Ω)) + χC

(
Φ ◦Ng(Ω)

)
. (4.13)

The boundedness of Ω in C(J ;X) implies that Ng(Ω) is a bounded set in L1(J ;X). By
(Φ1), the set Φ ◦Ng(Ω) is equicontinuous and therefore we have

χC

(
Φ ◦Ng(Ω)

)
= sup

t∈J
χ
(
Φ ◦Ng(Ω)(t)

)

≤ sup
t∈J

2CR

∫ t

0
k(s)χ(Ω(s))ds,

(4.14)

due to (G3) and (Φ4). Thus

χC

(
Φ ◦Ng(Ω)

)
≤ 2CRχC(Ω)

∫T

0
k(s)ds. (4.15)

Combining (4.5), (4.13), and (4.15), we obtain

χC(Ψ(Ω)) ≤ CR

(
h0 + 2

∫T

0
k(s)ds

)
χC(Ω). (4.16)

Relations (4.7) and (4.10) yield

χC(Ω) ≤ 
χC(Ω). (4.17)

Since 
 < 1, we have χC(Ω) = 0. The regularity of χC ensures thatΩ is relatively compact.

Remark 4.2. (1) Assumption (H2
′
) allows us to drop (H1)–(H3).

(2) As indicated in Remark 2.9, in the case when R(t) is compact for t > 0, condition
(G3) can be dropped and condition (4.7) is reduced to

CRh0 < 1, (4.18)
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which is covered by (4.8). Recall that in this case we have

χ
(
Φ ◦Ng({xn})(t)

)
= 0 (4.19)

for any bounded sequence {xn} ⊂ C(J ;X) and for all t ∈ J .

4.2. The Structure of the Solution Set

We are in a position to study the structure of the solution set to (1.1)-(1.2) under the
hypotheses of Theorem 4.1 and the assumption that R(t), t > 0, is compact. At first, let us
recall some notions.

Definition 4.3. A subset B of a metric space Y is said to be contractible in Y if the inclusion
map iB : B → Y is null-homotopic; that is, there exist y0 ∈ Y and a continuous map h :
B × [0, 1] → Y such that h(y, 0) = y and h(y, 1) = y0 for every y ∈ B.

The following notion [18] is important for our purposes.

Definition 4.4. Let Y be ametric space; a subsetB ⊂ Y is called anRδ-set ifB can be represented
as the intersection of a decreasing sequence of compact contractible sets.

The next lemma gives us a tool for the recognition of Rδ-set.

Lemma 4.5 (see [19]). Let X be a metric space, E a Banach space, and V : X → E a proper map;
that is, V is continuous and V −1(K) is compact for each compact setK ⊂ E. Suppose that there exists
a sequence {Vn} of mappings from X into E such that

(1) Vn is proper and {Vn} converges to V uniformly on X;

(2) for a given point y0 ∈ E and for all y in a neighborhood N(y0) of y0 in E, there exists
exactly one solution xn of the equation Vn(x) = y.

Then V −1(y0) is an Rδ-set.

In order to use this lemma, we need the following result, which is called Lasota-Yorke
Approximation Theorem (see, e.g. [20]).

Lemma 4.6. Let E be a normed space, X a metric space, and f : X → E a continuous map. Then for
each ε > 0, there is a locally Lipschitz map fε : X → E such that

∥∥fε(x) − f(x)
∥∥
E < ε, for every x ∈ X. (4.20)

We now can formulate the main result of this section.

Theorem 4.7. Assume that g satisfies (G1)-(G2) and h obeys (H2′). If R(t) is compact for t > 0 and

CRh0 + CR

∫T

0
μ(s)ds lim inf

r→∞

Υ(r)
r

< 1, (4.21)

then the solution set of problem (1.1)-(1.2) is an Rδ-set.
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Proof. By Theorem 4.1 and Remark 4.2, the hypotheses of Theorem 4.7 provide the existence
result, that is,

Fix(Ψ)/= ∅. (4.22)

We will show that Fix(Ψ) is an Rδ-set.
Consider the nonlinearity g. By Lemma 4.6, there exists a sequence of functions {gn}

such that

(i) gn : J ×X → X is continuous and locally Lipschitz map;

(ii) ‖gn(t, η) − g(t, η)‖X < εn for all (t, η) ∈ J ×X, where εn → 0 as n → ∞.

One can assume, without loss of generality, that∥∥gn(t, η)∥∥X ≤ μ(t)Υ
(∥∥η∥∥X) + 1 (4.23)

for all (t, η) ∈ J ×X and n ≥ 1. Let us consider the following equation:

x(t) = y(t) + R(t)[x0 − h(x)] +
∫ t

0
R(t − s)gn(s, x(s))ds, t ∈ J, (4.24)

where y ∈ C(J ;X) is a given function. Define Ψn : C(J ;X) → C(J ;X) by

Ψn(x)(t) = y(t) + R(t)[x0 − h(x)] +
∫ t

0
R(t − s)gn(s, x(s))ds, t ∈ J. (4.25)

By applying the same arguments as in the proof of Theorem 4.1 and in Remark 4.2, we
can see that Ψn is χC-condensing. In addition, using the similar estimates as in Theorem 2.10,
one can find a ball Br , r > 0, such that

Ψn(Br) ⊂ Br, (4.26)

due to (4.23). Therefore, Ψn has a fixed point due to Theorem 2.3 and then (4.24) has at least
one solution. Moreover, since h(·) is Lipschitzian and gn(t, ·) is a locally Lipschitz function,
the solution to (4.24) is unique.

Now by setting

Vn(x)(t) = x(t) −
[
R(t)(x0 − h(x)) +

∫ t

0
R(t − s)gn(s, x(s))ds

]
,

V (x)(t) = x(t) −
[
R(t)(x0 − h(x)) +

∫ t

0
R(t − s)g(s, x(s))ds

]
, t ∈ J,

(4.27)

we see that {Vn} converges to V uniformly on C(J ;X). In addition, for a given y ∈ C(J ;X)
the equation

Vn(x) = y (4.28)

has a unique solution, which is the fixed point of Ψn mentioned previously.
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We now show that V and Vn are proper. We proceed with Vn; the proof for V is similar.
Obviously, Vn is continuous. Let K ⊂ C(J ;X) be a compact set and Vn(Ω) = K. We claim that
Ω is a compact set in C(J ; X). Since Vn is continuous and K is closed, we deduce that Ω is
closed. Assume that {xj} is a sequence in Ω, then one can take a sequence {yj} ⊂ K such that

Vn

(
xj

)
= yj . (4.29)

Equivalently,

xj(t) = yj(t) + R(t)
[
x0 − h

(
xj

)]
+
∫ t

0
R(t − s)gn

(
s, xj(s)

)
ds, t ∈ J. (4.30)

We first show that the sequence {xj} is bounded. We have

∥∥xj(t)
∥∥
X
≤
∥∥yj(t)

∥∥
X
+ CR

(
‖x0‖x + h0

∥∥xj

∥∥
C
+ ‖h(0)‖X

)
+ CR

∫ t

0

(
μ(s)Υ

(∥∥xj(s)
∥∥
X

)
+ 1
)
ds,

(4.31)

due to (H2
′
) and (4.23). Thus

∥∥xj

∥∥
C
≤
∥∥yj

∥∥
C
+ CR(‖x0‖X + ‖h(0)‖X) + TCR + CRh0

∥∥xj

∥∥
C
+ CRΥ

(∥∥xj

∥∥
C

)∫T

0
μ(s)ds. (4.32)

If {xj} is unbounded, then there is a subsequence (still denoted by {xj}) such that ||xj ||C →
+∞ as j → +∞. Now from the last inequality, it follows that

1 ≤ 1∥∥xj

∥∥
C

(∥∥yj

∥∥
C
+ CR(‖x0‖X + ‖h(0)‖X) + TCR

)

+ CRh0 + CR

∫T

0
μ(s)ds

Υ
(∥∥xj

∥∥
C

)
∥∥xj

∥∥
C

.

(4.33)

Passing in the last inequality to limits as j → +∞, one gets a contradiction due to the
hypotheses of the Theorem. Now from (4.30), we have

χC

({
xj

})
≤ χC

({
yj

})
+ χC

(
R(·)h

({
xj

}))
+ χC

(
Φ ◦Ngn

({
xj

}))
. (4.34)

Using the same arguments as in the proof of Theorem 4.1 and Remark 4.2, we obtain that

χC

(
Φ ◦Ngn

({
xj

}))
= sup

t∈J
χ
(
Φ ◦Ngn

({
xj

})
(t)
)
= 0,

χC

(
R(·)h

({
xj

}))
= sup

t∈J
χ
(
R(t)h

({
xj

}))
≤ CRh0χC

({
xj

})
.

(4.35)



Abstract and Applied Analysis 21

Substituting the last inequalities into (4.34) and using the fact that {yj} is a compact sequence,
we obtain

χC

({
xj

})
≤ CRh0χC

({
xj

})
. (4.36)

Noting that CRh0 < 1, we deduce χC({xj}) = 0. Therefore, {xj} is a relatively compact
sequence in C(J ;X) and we arrive at the conclusion that Ω is compact and then Vn is proper.

Finally, by the observation that FixΨ = V −1(0), from Lemma 4.5, we obtain that FixΨ
is an Rδ-set.

Remark 4.8. The topological structure of the solution set of problem (1.1)-(1.2) for the case of
a non-compact resolvent R(t) is an open problem.

Further Remarks

Some additional remarks can be given in the case when R(t), t > 0, is compact. Following the
technique presented in [8], we can consider the following problem:

x′(t) = A

[
x(t) +

∫ t

0
F(t − s)x(s)ds

]
+ g(t, x(t)), t ∈ J := [0, T], (4.37)

x(0) + hn(x) = x0, (4.38)

where hn(x) = R(1/n)h(x), n ∈ N \ {0}. Since h is continuous, hn is a completely continuous
function. Then it satisfies (H2)-(H3). Therefore, under the assumptions (G1)–(G3), and (H1)
and (2.46), problem (4.37)-(4.38) has at least one mild solution xn ∈ C(J ;X). Furthermore,

χ
(
ΦNg(Ω)(t)

)
= χ

(∫ t

0
R(t − s)g(s,Ω(s))ds

)

≤ 2
∫ t

0
χ
(
R(t − s)g(s,Ω(s))

)
ds = 0

(4.39)

for all bounded subset Ω ⊂ C(J ; X). Thus, one can drop assumption (G3), and then the
solution operator for (4.37)-(4.38)

Ψn(x)(t) = R(t)[x0 − hn(x)] +
∫ t

0
R(t − s)g(s, x(s))ds (4.40)

is ν-condensing without assuming the condition

CR

(
Ch + 2

∫T

0
k(s)ds

)
< 1. (4.41)

In fact, we have the following assertion.
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Theorem 4.9. Let R(t) be compact for t > 0. Under assumptions (G1)-(G2) and (H1) and (2.46), the
solution set of problem (4.37)-(4.38) is a nonempty compact set.

Using the same arguments as in [8], one can prove that the sequence {xn} of solutions
to (4.37)-(4.38) is relatively compact. Finally, passing to the limit as n → +∞ in the equation

xn(t) = R(t)x0 − R(t)R
(
1
n

)
h(xn) +

∫ t

0
R(t − s)g(s, xn(s))ds, (4.42)

we obtain the solution of problem (1.1)-(1.2).

5. Example

We conclude this note with an example, in which we find a representation for the resolvent
operator generated by the linear part and impose suitable conditions to demonstrate the
existence result and the structure of the solution set. Precisely, consider the following system:

∂u

∂t
=

∂2

∂x2

[
u(x, t) +

∫ t

0
a(t − s)u(x, s)ds

]
+
∫x

0
f
(
t, y, u

(
y, t
))
dy, x ∈ (0, π), t ∈ (0, b],

(5.1)

u(x, 0) +
m∑
i=1

αiu(x, ti) = u0, ti ∈ (0, b), (5.2)

u(0, t) = u(π, t) = 0. (5.3)

Let X = L2(0;π),

D(A) =
{
z ∈ X : z and z′ are absolutely continuous, z(0) = z(π) = 0

}
, (5.4)

and A : D(A) → X, Az = z′′. Then it is known that A generates a strongly continuous
semigroup {S(t)}t≥0 on X. Recall that the functions

⎧⎨
⎩φn(x) =

√
2
π

sinnx : n = 1, 2, . . .

⎫⎬
⎭ (5.5)

form an orthonormal basis in X and they are the eigenfunctions corresponding to the
eigenvalues {λn = n2 : n = 1, 2, . . .} of −A.
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We are in a position to consider the linear part of (5.1)–(5.3):

∂u

∂t
=

∂2

∂x2

[
u(x, t) +

∫ t

0
a(t − s)u(x, s)ds

]
, x ∈ [0, π], t ∈ [0, b], (5.6)

u(x, 0) = u0, (5.7)

u(0, t) = u(π, t) = 0. (5.8)

Assume that a ∈ C1(0; b) and u0 =
∑∞

n=1 γnφn. We are searching for the resolvent operator
generated by (5.6)–(5.8) in the following form:

(R(t)u0)(x) = u(x, t) =
∞∑
n=1

γnTn(t)φn(x), (5.9)

where Tn is the solution of the equation

T ′
n(t) = −n2

[
Tn(t) +

∫ t

0
a(t − s)Tn(s)ds

]
(5.10)

subject to Tn(0) = 1. We know that

T̂n(λ) =
1

λ + n2(1 + â(λ))
, (5.11)

where T̂n and â are the Laplace transforms of Tn and a, respectively. For the simple case, when
a is constant, a < 0, we have

T̂n(λ) =
λ

λ2 + n2λ + n2a
. (5.12)

By some computations, one gets

Tn(t) =
p(n)

2p(n) + n2
ep(n)t +

q(n)
2q(n) + n2

eq(n)t, (5.13)

where p(n) = (1/2)(−n2 + n
√
n2 − 4a) and q(n) = (1/2)(−n2 − n

√
n2 − 4a).

Taking assumption (HA) into account, we conclude that Tn needs to satisfy the
following condition:

|Tn(t) − Tn(s)| ≤ cn|t − s|, for t, s ∈ (0, b],
∞∑
n=1

c2n < +∞. (5.14)

This condition is obviously fulfilled for Tn given by (5.13).
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We now verify the compactness of R(t) for t > 0. Since the embedding H1
0(0;π) ⊂ X is

compact, it is sufficient to find a condition providing that the set

∂

∂x
R(t)BX(0, r) =

{
∂

∂x
R(t)v : ‖v‖X ≤ r

}
(5.15)

is bounded in X. It is easy to verify that this condition follows from

∞∑
n=1

|nTn(t)|2 < +∞, for t > 0. (5.16)

The last inequality also holds for Tn given by (5.13).
As far as nonlinear problem (5.1)–(5.3) is concerned, we see that the nonlocal function

h(u)(x) =
∑m

i=1 αiu(x, ti) is a Lipschitz function with the constant h0 =
∑m

i=1 αi. Let g(t, v)(x) =∫x
0 f(t, y, v(y))dy. Then the nonlinearity g satisfies (G1)-(G2) if we assume that f : [0, b] ×
[0, π] × R → R is continuous and there exists a function μ ∈ L1(0; b) such that

∣∣f(t, y, η)∣∣ ≤ μ(t)
(
1 +

∣∣η∣∣), ∀t ∈ [0, b], y ∈ [0, π], η ∈ R. (5.17)

As indicated in [16], the Hausdorff MNC of a bounded set Ω ⊂ L2(0;π) can be expressed by

χ(Ω) =
1
2
lim
δ→ 0

sup
v∈Ω

max
0≤ω≤δ

‖v − vω‖L2(0;π) , (5.18)

where vω denote the ω-translation of v:

vω(x) =

{
v(ω + x), 0 ≤ x ≤ π −ω,

v(π), π −ω ≤ x ≤ π,
(5.19)

or, alternatively, the Steklov function:

vω(x) =
1
2ω

∫x+ω

x−ω
v(z)dz (5.20)

(v is extended outside of [0, π] by zero). Therefore, condition (G3) is provided by the
following inequality:

∣∣∣∣
∫x+ω

x

f
(
t, y, v

(
y
))
dy

∣∣∣∣ ≤ k(t)|v(x) − vω(x)|, t ∈ [0, b]; x,ω ∈ [0, π], (5.21)

for a nonnegative function k ∈ L1(0; b).
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Applying Theorem 4.1, we obtain that problem (5.1)-(5.2) has at least one solution if
(5.14), (5.17), and (5.21) take place together with the following estimates:

CR

(
h0 + 2

∫b

0
k(s)ds

)
< 1,

CR

(
h0 +

∫b

0
μ(s)ds

)
< 1.

(5.22)

If we assume that (5.16) holds and hence R(t) is compact for t > 0, then the solution set of
(5.1)–(5.3) is an Rδ-set if (5.17) holds and

CR

(
h0 +

∫b

0
μ(s)ds

)
< 1, (5.23)

due to Theorem 4.7.
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