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We studymultiplicative isometries on the following F-algebras of holomorphic functions: Smirnov
class N∗(X), Privalov class Np(X), Bergman-Privalov class ANp

α(X), and Zygmund F-algebra
NlogβN(X), where X is the open unit ball Bn or the open unit polydisk D

n in C
n.

1. Introduction

Complex-linear isometries on function spaces of holomorphic functions have been studied
for almost five decades by many mathematicians. In this paper we study multiplicative
isometries on certain F-algebras of holomorphic functions. Recall that an F-algebra is a
topological algebra in which the topology arises from a complete metric. For a positive
integer n let Bn denote the open unit ball in the n-dimensional complex vector space C

n and
D
n the unit polydisk in C

n. We characterize multiplicative isometries on the Smirnov class,
the Privalov class, the Bergman-Privalov class and the Zygmund F-algebras on Bn or D

n.
Surjective multiplicative maps on the Smirnov class, and the Bergman-Privalov class have
already been correspondingly characterized in [1, 2].

2. Preliminaries

In studying surjective isometries in [1, 2] we applied the Mazur-Ulam theorem for surjective
maps on certain subspaces, which themselves are Banach spaces, of the given F-algebras.
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Generally we do not assume surjectivity of the isometries in this paper, so instead of the
Mazur-Ulam theoremwe use Lemma 2.1. Recall that a normed real-linear space L is uniformly
convex if for any ε > 0 there exists a δ > 0 such that the inequality ‖a + b‖ ≤ 2 − δ holds for
every pair of a, b ∈ L with ‖a‖ ≤ 1, ‖b‖ ≤ 1, and ‖a − b‖ ≥ ε. It is well known that Hilbert
spaces and Lp-spaces for 1 < p <∞ are uniformly convex.

Lemma 2.1. Let L1 and L2 be normed real-linear spaces with L2 uniformly convex. Let S be an
isometry from L1 into L2 such that S(0) = 0. Then S is real-linear.

The lemma might be well known, but we give a sketch of the proof for the complete-
ness and the benefit of the reader.

Proof of Lemma 2.1. Let a, b be arbitrary elements of L1. Put 2r = ‖a − b‖. Then since S is an
isometry, ‖S(a)−S(b)‖ = 2r and ‖S(a)−S((a+ b)/2)‖ = ‖S(b)−S((a+ b)/2)‖ = r. We also
have ‖S(a) − (S(a) + S(b))/2‖ = ‖S(b) − (S(a) + S(b))/2‖ = r.

Suppose that S((a + b)/2)/= (S(a) + S(b))/2. Set

ε =
∥
∥
∥
∥
S

(
a + b
2

)

− S(a) + S(b)
2

∥
∥
∥
∥
. (2.1)

Since L2 is uniformly convex and ε is positive there exists a δ > 0 such that

∥
∥
∥
∥

(

S(a) − S
(
a + b
2

))

+
(

S(a) − S(a) + S(b)
2

)∥
∥
∥
∥
≤ 2r − δ,

∥
∥
∥
∥

(

S(b) − S
(
a + b
2

))

+
(

S(b) − S(a) + S(b)
2

)∥
∥
∥
∥
≤ 2r − δ.

(2.2)

Then by the triangle inequality

‖2S(a) − 2S(b)‖ ≤ 4r − 2δ (2.3)

holds, which contradicts to ‖S(a) − S(b)‖ = 2r. Thus we get S((a + b)/2) = (S(a) + S(b))/2,
from which for b = 0 we obtain S(a/2) = S(a)/2. Substituting a by a + b in the last equality
we get

S(a + b)
2

= S
(
a + b
2

)

=
S(a) + S(b)

2
, (2.4)

so that S(a + b) = S(a) + S(b). A routine argument yields S(ta) = tS(a), t ∈ R.

For X ∈ {Bn,D
n}, we denote by ∂X its distinguished boundary. For X = Bn, this is the

topological boundary ∂Bn, and for the polydisk D
n, it is the torus T

n. Denote the normalized
Lebesgue measure on ∂X by σ. A holomorphic map ψ is inner if limr→ 1−0ψ(rz) exists and
lies in ∂X for almost all z ∈ ∂X with respect to σ. We say that limr→ 1−0ψ(rz) is the boundary
map of ψ and denote it by ψ∗. We say that ψ∗ is measure preserving if σ((ψ∗)−1(E)) = σ(E) for
every Borel set E ⊂ ∂X.
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Now we recall definitions and some properties of the Smirnov class, the Privalov
class, the Bergman-Privalov class, and the Zygmund F-algebra on Bn or D

n. The space of
all holomorphic functions on X = Bn or D

n is denoted by H(X). For each 0 < p ≤ ∞, the
Hardy space is denoted byHp(X) with the norm ‖ · ‖p.

2.1. Smirnov Class N∗(X)

Let X ∈ {Bn, D
n}. The Nevanlinna class N(X) on X is defined as the set of all holomorphic

functions f on X such that

sup
0≤r<1

∫

∂X

ln
(

1 +
∣
∣f(rζ)

∣
∣
)

dσ(ζ) <∞ (2.5)

holds. It is known that every f ∈N(X) has a finite nontangential limit, denoted by f∗, almost
everywhere on ∂X.

The Smirnov classN∗(X) is defined as

N∗(X) =

{

f ∈N(X) : sup
0≤r<1

∫

∂X

ln
(

1 +
∣
∣f(rζ)

∣
∣
)

dσ(ζ) =
∫

∂X

ln
(

1 +
∣
∣f∗(ζ)

∣
∣
)

dσ(ζ)

}

. (2.6)

Define a metric

dN∗(X)
(

f, g
)

=
∫

∂X

ln
(

1 +
∣
∣f∗(ζ) − g∗(ζ)

∣
∣
)

dσ(ζ) (2.7)

for f, g ∈ N∗(X). With the metric dN∗(X)(·, ·) the Smirnov class N∗(X) becomes an F-algebra
and

⋃

q>0

Hq(X) ⊂N∗(X), (2.8)

in particular, H∞(X) is a dense subalgebra of N∗(X). The convergence in the metric is
stronger than uniform convergence on compact subsets of X.

Complex-linear isometries on the Smirnov class were characterized by Stephenson in
[3].

2.2. Privalov Class Np(X)

Let X ∈ {Bn, D
n}. The Privalov classNp(X), 1 < p < ∞, is defined as (for the original source

see [4, 5])

Np(X) =

{

f ∈ H(X) : sup
0≤r<1

∫

∂X

(

ln
(

1 +
∣
∣f(rζ)

∣
∣
))p

dσ(ζ) <∞
}

. (2.9)
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It is well known that Np(X) is a subalgebra of N∗(X), hence every f ∈ Np(X) has a
finite nontangential limit almost everywhere on ∂X. Define a metric

dp
(

f, g
)

=
(∫

∂X

(

ln
(

1 +
∣
∣f∗(ζ) − g∗(ζ)

∣
∣
))p

dσ(ζ)
)1/p

(2.10)

for f, g ∈Np(X). With this metricNp(X) is an F-algebra (cf. [6, 7]) and

⋃

q>0

Hq(X) ⊂Np(X) ⊂N∗(X). (2.11)

The Hardy algebraH∞(X) is dense inNp(X). The convergence on the metric is stronger than
uniform convergence on compacts of X.

Complex-linear isometries on Np(X) are investigated by Iida and Mochizuki [8] for
one-dimensional case, and by Subbotin [7] for a general case.

2.3. Bergman-Privalov Class ANp
α(X)

Let 1 ≤ p < ∞ and α > −1. The Bergman-Privalov class on the unit ball Bn and the polydisk
D
n are defined, respectively, as

AN
p
α(Bn) =

{

f ∈ H(Bn) :
∥
∥f
∥
∥
p

AN
p
α(Bn)

=
∫

Bn

(

ln
(

1 +
∣
∣f(z)

∣
∣
))p

dVα,n(z) <∞
}

,

AN
p
α(Dn) =

⎧

⎨

⎩
f ∈ H(Dn) :

∥
∥f
∥
∥
p

AN
p
α(Dn)

=
∫

Dn

(

ln
(

1 +
∣
∣f(z)

∣
∣
))p

n∏

j=1

dVα,1
(

zj
)

<∞
⎫

⎬

⎭
,

(2.12)

where dVα,n(z) = cα,n(1 − |z|2)αdV (z) for the normalized Lebesgue volume measure dV on
Bn and cα,n is a normalization constant, that is Vα,n(Bn) = 1. Let X ∈ {Bn,D

n}. In what follows
dVα(z) denotes dVα,n(z) forX = Bn and

∏n
j=1dVα,1(zj) forX = D

n, respectively. The Bergman-
Privalov class ANp

α(X) is an F-algebra with respect to the metric

dANp
α(X)
(

f, g
)

=
∥
∥f − g∥∥ANp

α(X) (2.13)

for f, g ∈ ANp
α(X). For some results in the case p = 1 see [9].

The weighted Bergman space for q > 0 and α > −1 on the unit ball Bn and the polydisk
Dn are defined, respectively, as

A
q
α(Bn) =

{

f ∈ H(Bn) :
∥
∥f
∥
∥
q

A
q
α(Bn)

=
∫

Bn

∣
∣f(z)

∣
∣
q
dVα,n(z) <∞

}

,

A
q
α(Dn) =

⎧

⎨

⎩
f ∈ H(Dn) :

∥
∥f
∥
∥
q

A
q
α(Dn)

=
∫

Dn

∣
∣f(z)

∣
∣
q

n∏

j=1

dVα,1
(

zj
)

<∞
⎫

⎬

⎭
.

(2.14)
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It is known that

⋃

q>0

A
q
α(X) ⊂ ANp

α(X). (2.15)

Complex-linear isometries on the Bergman-Privalov class on the unit ball were char-
acterized by Matsugu and Ueki in [10] and on the polydisk by Stević in [2].

2.4. Zygmund F-Algebra NlogβN(X)

Let β > 0 and ϕβ(t) = t(ln(γβ + t))
β, where γβ = max{e, eβ}. Let X ∈ {Bn, D

n}. The Zygmund
F-algebraNlogβN(X) on X is defined as

NlogβN(X) =

{

f ∈ H(X) : sup
0≤r<1

∫

∂X

ϕβ
(

ln
(

1 +
∣
∣f(rζ)

∣
∣
))

dσ(ζ) <∞
}

. (2.16)

It is known that

NlogβN(X) =

{

f ∈ H(X) : sup
0≤r<1

∫

∂X

ϕβ
(

ln+∣∣f(rζ)
∣
∣
)

dσ(ζ) <∞
}

, (2.17)

⋃

p>0

Hp(X) ⊂NlogβN(X) ⊂N∗(X). (2.18)

This implies that the finite nontangential limit f∗ exists almost everywhere on ∂X, for any
f ∈NlogβN. For f, g ∈NlogβN

dNlogβN(X)

(

f, g
)

=
∫

∂X

ϕβ
(

ln
(

1 +
∣
∣f∗(ζ) − g∗(ζ)

∣
∣
))

dσ(ζ) (2.19)

defines a complete metric on NlogβN(X) and NlogβN(X) is an F-algebra with this metric
(cf. [11]).

Ueki [12] characterized the complex-linear isometries on the Zygmund F-algebra on
the balls.

3. Main Results

In this section we formulate and prove the main results in this paper.

3.1. Multiplicative Isometries on N∗(X)

Our first result concerns the Smirnov class.
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Theorem 3.1. Let X ∈ {Bn, D
n}. Suppose that T : N∗(X) → N∗(X) is a (not necessarily linear)

multiplicative isometry. Then there is an inner map ψ on X whose boundary map ψ∗ is measure
preserving and such that either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈N∗(X),

T
(

f
)

= f ◦ ψ for every f ∈N∗(X).
(3.1)

Proof. First we claim that T(1) = 1. Since T(1) = T(1)2 and T(1) is a holomorphic function on
the connected open set X we get T(1) = 0 or T(1) = 1. But T(1) = 0 is impossible because
if it were T(1) = 0, then 0 = T(f)T(1) = T(f), for each f ∈ N∗(X), which contradicts with
the assumption that T is an isometry. As T(0) = T(0)2 and T is injective, we obtain T(0) = 0.
Similarly T(−1) = −1 is also observed by making use of T(−1)2 = T(1) = 1. Then T(i)2 =
T(i2) = −1 assert that T(i) = i or T(i) = −i. If T(i) = i, then the first formula of the conclusion
will follow and the second one will follow from T(i) = −i.

Next we show T(1/2) = 1/2. Put r = 1/2. Suppose that |T(r)∗| > r on a set of positive
measure on ∂X. Then there exists a subset E of positive measure and ε > 0 with |T(r)∗| ≥
(1 + ε)r on E. Since

lim
n→∞

ln
(

1 + (1 + ε)nrn
)

ln(1 + rn)
= ∞, (3.2)

there is a positive integer n0 such that

∫

E

ln
(

1 + (1 + ε)n0rn0
)

dσ >

∫

∂X

ln(1 + rn0)dσ. (3.3)

From this and since T is a multiplicative isometry onN∗(X) we have that

∫

∂X

ln(1 + rn0)dσ =
∫

∂X

ln
(

1 +
∣
∣T(r)∗

∣
∣
n0)dσ

≥
∫

E

ln
(

1 + (1 + ε)n0rn0
)

dσ >

∫

∂X

ln(1 + rn0)dσ,

(3.4)

which is a contradiction proving |T(r)∗| ≤ r almost everywhere on ∂X. Hence |T(1/r)∗| ≥ 1/r
holds almost everywhere on ∂X as T(r)T(1/r) = T(1) = 1 almost everywhere on ∂X. Since

ln
(

1 +
1
r

)

=
∫

∂X

ln
(

1 +
1
r

)

dσ =
∫

∂X

ln
(

1 +
∣
∣
∣
∣
T

(
1
r

)∗∣
∣
∣
∣

)

dσ, (3.5)

we have that |T(1/r)∗| = 1/r and |T(r)∗| = r almost everywhere on ∂X.
Since ln(1 + (1 − r)) = d(r, 1) = d(T(r), 1) and

d(T(r), 1) =
∫

∂X

ln
(

1 +
∣
∣1 − T(r)∗∣∣)dσ, (3.6)



Abstract and Applied Analysis 7

it is easy to check that T(1/2)∗ = 1/2 almost everywhere on ∂X. Hence T(1/2) = 1/2 holds.
As T is multiplicative, T is 1/2-homogeneous in the sense that T(f/2) = T(f)/2 holds for
every f ∈N∗(X).

Let f, g ∈ H1(X). It requires only elementary calculation applying the 1/2-homo-
geneity of T to check that

∫

∂X

ln
(

1 +
∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

)

dσ =
∫

∂X

ln

(

1 +

∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣

)

dσ (3.7)

holds. Multiplying (3.7) by 2m and then lettingm → ∞we get

∫

∂X

∣
∣f∗ − g∗∣∣dσ =

∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣dσ (3.8)

by the monotone convergence theorem, since 2m ln(1 + (t/2m)) nondecreases monotonically
to t as m → ∞ for any t ≥ 0, which can be easily proved by considering the function gt(x) =
x ln(1 + (t/x)). From (3.8) for g = 0, we obtain T(H1(X)) ⊆ H1(X) and the restricted map
T |H1(X) is an isometry with respect to the metric induced by theH1-norm ‖ · ‖1.

Let the function θ on the interval [0, ∞) be defined as

θ(x) =

⎧

⎪⎨

⎪⎩

1
2
, x = 0

x − ln(1 + x)
x2

, x > 0.
(3.9)

It is easy to check that θ is positive and continuous on [0, ∞) and limx→∞θ(x) = 0. Hence θ
is bounded on [0, ∞), so that

Mθ := sup
x≥0

θ(x) <∞. (3.10)

We claim that the inclusion T(H2(X)) ⊆ H2(X) and T |H2(X) is isometric with respect to
the metric induced by the H2-norm. For this purpose let f, g ∈ H2(X). Now note that since
H2(X) ⊂ H1(X), equality (3.7) holds and as well as the next equality

∫

∂X

∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣
dσ =

∫

∂X

∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣
dσ. (3.11)

By subtracting (3.7) from (3.11) and thenmultiplying such obtained equation by 2m we obtain

∫

∂X

∣
∣f∗ − g∗∣∣2θ

(∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

)

dσ =
∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣2θ

(∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣

)

dσ. (3.12)

As θ is bounded the functionMθ|f∗ −g∗|2 is an integrable function dominating the integrand
in the left-hand side integral in (3.12). Letting m → ∞ and applying the Lebesgue theorem



8 Abstract and Applied Analysis

on dominated convergence to the left-hand side and Fatou’s lemma to the right-hand side (as
θ is positive on [0, ∞))we obtain

∫

∂X

∣
∣f∗ − g∗∣∣2θ(0)dσ ≥

∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣2θ(0)dσ. (3.13)

From this and since θ(0) = 1/2 we get that the function |T(f)∗ − T(g)∗|2 is integrable. Letting
againm → ∞ in (3.12) we have that

∫

∂X

∣
∣f∗ − g∗∣∣2dσ =

∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣2dσ (3.14)

by the Lebesgue theorem on dominated convergence now applied to both integrals in (3.12).
Hence ‖f − g‖2 = ‖T(f) − T(g)‖2 for every pair of f, g ∈ H2(X). For g = 0, we get ‖f‖2 =
‖T(f)‖2 and consequently T(H2(X)) ⊆ H2(X), as claimed.

SinceH2(X) is a Hilbert space, it is uniformly convex. Hence by Lemma 2.1 the restric-
tion T |H2(X) is real-linear. Since the operations of scalar multiplication and addition onN∗ are
continuous andH2(X) is dense inN∗(X)we see that T is real-linear onN∗(X).

First assume T(i) = i. As T is real-linear and multiplicative, T is complex-linear in
this case. Then by [3, Theorem 2.2] and since T(1) = 1, there is an inner map ψ such that
T(f) = f ◦ ψ for every f ∈N∗(X).

Now assume T(i) = −i. Let T̃ : N∗(X) → N∗(X) be defined as T̃(f) = T(f̃) for every
f ∈N∗(X), where

f̃(z1, . . . , zn) = f(z1, . . . , zn) (3.15)

for f ∈ N∗(X). Then T̃ is well defined and a complex-linear isometry fromN∗(X) into itself.
Again by [3, Theorem 2.2]we have that there is an inner map ψ onXwhose boundarymap ψ∗

is measure preserving such that T̃(f) = f ◦ ψ for every f ∈N∗. This implies that T(f) = f ◦ ψ
for every f ∈N∗(X).

Corollary 3.2 (see [1]). LetX ∈ {Bn, D
n}. Suppose that T :N∗(X) → N∗(X) is a (not necessarily

linear) surjective multiplicative isometry. Then there is a holomorphic automorphism ψ onX such that
either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈N∗(X),

T
(

f
)

= f ◦ ψ for every f ∈N∗(X),
(3.16)

where ψ is a unitary transformation for X = Bn, while for X = D
n, ψ(z1, . . . , zn) = (eiθ1zj1 , . . . ,

eiθnzjn) for some real numbers θj for j = 1, . . . , n and a permutation (j1, . . . , jn) of the integers from 1
to n.

Proof. By Theorem 3.1, T is complex-linear or conjugate linear. If T is complex-linear, then the
result holds by [3, Corollary 2.3]. If T is conjugate linear, then put T̃(f) = T(f̃) for f ∈N∗(X),
where f̃ is defined as in (3.15). Then T̃(f) = f ◦ ψ, for every f ∈ N∗(X), and for an inner
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map ψ on X whose boundary map ψ∗ is measure preserving. Since T̃ is a surjective isometry,
the desired property of ψ again follows from [3, Corollary 2.3].

3.2. Multiplicative Isometries on Np(X)

The next result concerns the Privalov class.

Theorem 3.3. Let X ∈ {Bn, D
n} and 1 < p < ∞. Suppose that T : Np(X) → Np(X) is a (not

necessarily linear) multiplicative isometry. Then there is an inner map ψ on X whose boundary map
ψ∗ is measure preserving and such that either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈Np(X),

T
(

f
)

= f ◦ ψ for every f ∈Np(X).
(3.17)

Proof. Since T is multiplicative we see by the same way as in the proof of Theorem 3.1 that
T(0) = 0, T(1) = 1 and T(i) = i or T(i) = −i. Also we see that T(1/2) = 1/2. It follows by the
proof of Theorem 3.1 that for every pair f and g inHp(X),

∫

∂X

(

ln
(

1 +
∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

))p

dσ =
∫

∂X

(

ln

(

1 +

∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣

))p

dσ (3.18)

holds. Multiplying (3.18) by 2mp and then lettingm → ∞we get

∫

∂X

∣
∣f∗ − g∗∣∣pdσ =

∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣pdσ. (3.19)

Thus T(Hp(X)) ⊆ Hp(X). The Hardy spaceHp(X) can be seen as a subspace of Lp(∂X). Since
Lp(∂X) is uniformly convex, so isHp(X) for 1 < p <∞. Then by Lemma 2.1 the operator T is
real-linear on Hp(X). Since Hp(X) is a dense subspace of Np(X) we see that T is real-linear
onNp(X). As we have already learnt that T(i) = i or T(i) = −i, we obtain that T is complex-
linear or conjugate linear onNp(X). The rest of the proof is similar to the last part of the proof
of Theorem 3.1 applying [7, Theorem 1] instead of [3, Theorem 2.2]. We omit the details.

Corollary 3.4. Let X ∈ {Bn, D
n} and 1 < p < ∞. Suppose that T : Np(X) → Np(X) is a (not

necessarily linear) surjective multiplicative isometry. Then there is a holomorphic automorphism ψ on
X such that either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈Np(X),

T
(

f
)

= f ◦ ψ for every f ∈Np(X),
(3.20)

where ψ is a unitary transformation for X = Bn, while for X = D
n, ψ(z1, . . . , zn) = (eiθ1zj1 , . . . ,

eiθnzjn) for some real numbers θj for j = 1, . . . , n and a permutation (j1, . . . , jn) of the integers from 1
to n.
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Proof. By Theorem 3.3, T is complex-linear or conjugate linear. If T is complex-linear, then the
result follows directly from [7, Corollary and Remark 3]. If T is conjugate linear, then put
T̃(f) = T(f̃) for f ∈ Np(X), where f̃ is defined as in (3.15). Then T̃ is a complex-linear iso-
metric surjection fromNp(X) onto itself. Hence by [7, Corollary and Remark 3] there is a de-
sired automorphism on X such that T(f) = f ◦ ψ for every f ∈Np(X).

3.3. Multiplicative Isometries on AN
p
α(X)

The next result concerns the Bergman-Privalov class.

Theorem 3.5. Let X ∈ {Bn, D
n}, 1 ≤ p < ∞ and α > −1. Suppose that T : ANp

α(X) → AN
p
α(X)

is a (not necessarily linear) multiplicative isometry. Then there is a holomorphic self-map ψ on X with
the property that

∫

X

h ◦ ψ(z)dVα(z) =
∫

X

h(z)dVα(z) (3.21)

for every bounded or positive Borel function h on X such that either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈ ANp
α(X),

T
(

f
)

= f ◦ ψ for every f ∈ ANp
α(X).

(3.22)

Proof. We can prove the theorem in a way similar to that in the proofs of Theorem 3.1 for p = 1
and Theorem 3.3 for 1 < p <∞. For the case of p = 1, instead of using the Hardy spacesH1(X)
andH2(X) we make use of the weighted Bergman spaces A1

α(X) and A2
α(X). For the case of

1 < p < ∞, instead of using the Hardy space Hp(X) we make use of the weighted Bergman
space Ap

α(X). We also apply [10, Theorem 1] for X = Bn and [2, Theorem 2] for X = D
n to

represent complex-linear isometries instead of [3, Theorem 2.2].

Corollary 3.6 (see [2]). Let X ∈ {Bn, D
n}, 1 ≤ p < ∞ and α > −1. Suppose that T : ANp

α(X) →
AN

p
α(X) is a (not necessarily linear) surjective multiplicative isometry. Then there is a holomorphic

automorphism ψ on X such that either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈ ANp
α(X),

T
(

f
)

= f ◦ ψ for every f ∈ ANp
α(X),

(3.23)

where ψ is a unitary transformation for X = Bn, while for X = D
n, ψ(z1, . . . , zn) = (eiθ1zj1 , . . . ,

eiθnzjn) for some real numbers θj for j = 1, . . . , n and a permutation (j1, . . . , jn) of the integers from 1
to n.

Proof. By Theorem 3.5, T is complex-linear or conjugate linear. Suppose that T is complex-
linear. If X = Bn, then the conclusion follows by [10, Theorem 2], while for X = D

n the
conclusion follows similar to the corresponding part of the proof of [2, Theorem 3]. If T
is conjugate linear, then the conclusion follows from the similar argument in the proof of
Corollary 3.2.
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3.4. Isometries on NlogβN(X)

In [12] Ueki characterized complex-linear isometries on the Zygmund F-algebra on Bn. For
D
n the following result is proved similar to [12, Theorem 1]. Hence it is omitted.

Theorem 3.7. Let β > 0. If T is a complex-linear isometry of NlogβN(Dn) into itself, then there
exist an inner function Ψ and an inner map ψ on D

n whose boundary map ψ∗ is measure preserving
on T

n such that

T
(

f
)

= ΨCψ

(

f
)

= Ψ
(

f ◦ ψ) for every f ∈NlogβN(Dn). (3.24)

Conversely, for given suchΨ and ψ, the weighted composition operatorΨCψ is an injective linear iso-
metry ofNlogβN(Dn).

For the surjective isometries the result is as follows.

Corollary 3.8. An isometry T of NlogβN(Dn) is surjective if and only if T = aCU where a ∈ C

with |a| = 1 and U(z1, . . . , zn) = (eiθ1zj1 , . . . , e
iθnzjn) for some real numbers θj , j = 1, . . . , n and a

permutation (j1, . . . , jn) of the integers from 1 to n.

To prove Corollary 3.8 we need the next auxiliary result.

Lemma 3.9. For any function f ∈ N(Dn), f ∈ NlogβN(Dn) if and only if ϕβ(ln
+|f∗|) ∈ L1(Tn)

and

ϕβ
(

ln+∣∣f(z)
∣
∣
) ≤
∫

Tn
P(z, ζ)ϕβ

(

ln+∣∣f∗(ζ)
∣
∣
)

dσ(ζ) for z ∈ D
n, (3.25)

where P(z, ζ) denotes the Poisson kernel for D
n;

P(z, ζ) = Pr1
(

θ1 − φ1
) · · ·Prn

(

θn − φn
)

(3.26)

for z = (r1eiθ1 , . . . , rneiθn), ζ = (eiφ1 , . . . , eiφn) and

Pr(θ) =
1 − r2

1 − 2r cos θ + r2
(3.27)

is the Poisson kernel for the unit disk D.

Proof. If f ∈NlogβN(Dn), then Fatou’s lemma shows that ϕβ(ln+|f∗|) ∈ L1(Tn). The inclusion
(2.18) implies f ∈ N∗(Dn), and so we see that ln+|f | has the least n-harmonic majorant.
Since the least n-harmonic majorant of ln+|f | is the Poisson integral P[ln+|f∗|], we obtain
the following inequality:

ln+∣∣f(z)
∣
∣ ≤
∫

Tn

P(z, ζ)ln+∣∣f∗(ζ)
∣
∣dσ(ζ) for z ∈ D

n. (3.28)
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Note that ϕβ(t) is strictly increasing and convex on [0,∞), and the measures dμz(ζ) =
P(z, ζ)dσ(ζ) are normalized on T

n, which follows from the well-known equality

∫

Tn

P(z, ζ)dσ(ζ) = 1. (3.29)

Applying Jensen’s inequality to (3.28), we obtain the desired inequality (3.25).
Conversely we put z = rη(0 ≤ r < 1, η ∈ T

n) in (3.25). By integrating with respect to η
and applying Fubini’s theorem, we have that

∫

Tn

ϕβ
(

ln+∣∣f
(

rη
)∣
∣
)

dσ
(

η
) ≤
∫

Tn

ϕβ
(

ln+∣∣f∗(ζ)
∣
∣
)

dσ(ζ)
∫

Tn

P
(

rη, ζ
)

dσ
(

η
)

. (3.30)

By the symmetric property P(rη, ζ) = P(rζ, η) and the normalization property of the Poisson
kernel, we obtain that

sup
0≤r<1

∫

Tn

ϕβ
(

ln+∣∣f
(

rη
)∣
∣
)

dσ
(

η
) ≤
∫

Tn

ϕβ
(

ln+∣∣f∗(ζ)
∣
∣
)

dσ(ζ). (3.31)

Hence the condition ϕβ(ln+|f∗|) ∈ L1(Tn) implies that f ∈NlogβN(Dn).

Now we give a proof of Corollary 3.8.

Proof of Corollary 3.8. Suppose that T is surjective. Then Theorem 3.7 gives that T = ΨCψ . A
standard argument shows that ψ is an automorphism of D

n. So there are conformal maps ϕj
(j = 1, . . . , n) of D onto D and there is a permutation (j1, . . . , jn) of the integers from 1 to n
such that

ψ(z1, . . . , zn) =
(

ϕ1
(

zj1
)

, . . . , ϕn
(

zjn
))

. (3.32)

The mean value theorem shows that

∫

Tn

ϕk
(

ζjk
)

dσ(ζ) =
∫

T

ϕk
(

ζjk
)

dσ1
(

ζjk
)

= ϕk(0) (3.33)

for each k ∈ {1, . . . , n}. Here dσ1 denotes the one-dimensional normalized Lebesgue measure
on the unit circle T.

On the other hand, the measure-preserving property of ψ∗ gives that

∫

Tn

ϕk
(

ζjk
)

dσ(ζ) =
∫

Tn

〈

ψ∗(ζ), ek
〉

dσ(ζ) =
∫

Tn

〈ζ, ek〉dσ(ζ) =
∫

Tn

ζkdσ(ζ) = 0. (3.34)

By (3.33) and (3.34)we see that ψ fixes the origin, and so each ϕk is the rotation transform.
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Next we prove that Ψ is a unimodular constant. If f ∈ NlogβN(Dn) is such that 1 =
T(f) = ΨCψ(f), then 1/Ψ = f ◦ ψ ∈NlogβN(Dn). Inequality (3.25) in Lemma 3.9 gives that

ϕβ

(

ln+ 1
|Ψ(z)|

)

≤
∫

Tn

P(z, ζ)ϕβ
(

ln+ 1
|Ψ∗(ζ)|

)

dσ(ζ) = 0, (3.35)

and so we have 1/|Ψ| ≤ 1 on D
n. Since Ψ is inner, Ψ is a unimodular constant.

Now we show results on multiplicative isometries on the Zygmund F-algebras on Bn

and D
n.

Theorem 3.10. Let X ∈ {Bn, D
n}. Suppose that T : NlogβN(X) → NlogβN(X) is a (not neces-

sarily linear) multiplicative isometry. Then there exists an inner map ψ on X whose boundary map ψ∗

is measure preserving on ∂X, such that either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈NlogβN(X),

T
(

f
)

= f ◦ ψ for every f ∈NlogβN(X).
(3.36)

Note that multiplicative isometries of the Privalov class and the Zygmund F-algebra
have the same form as multiplicative isometries of the Smirnov class.

Proof of Theorem 3.10. As T is multiplicative we obtain T(1) = 1, T(0) = 0, T(−1) = −1 and
T(i) = i or T(i) = −i. Since

lim
n→∞

ϕβ
(

((1 + ε)/2)n
)

ϕβ
((

1/2n
)) = ∞ (3.37)

holds for every ε > 0, the equation T(1/2) = 1/2 is proved similarly as in Theorem 3.1.
Let f, g ∈ H1(X). Then we can prove that

∫

∂X

2mϕβ
(

ln
(

1 +
∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

))

dσ =
∫

∂X

2mϕβ

(

ln

(

1 +

∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣

))

dσ, (3.38)

following the lines of the corresponding part of the proof in Theorem 3.1. By some calculation
we see that

ϕβ(ln(1 + x)) ≤
(

ln γβ
)β
x (3.39)

holds for every x ≥ 0. Hence we get

2mϕβ
(

ln
(

1 +
∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

))

≤ (ln γβ
)β∣
∣f∗ − g∗∣∣, (3.40)
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almost everywhere on ∂X and (ln γβ)
β|f∗ − g∗| is an integrable function dominating

2mϕβ(ln(1 + |(f∗/2m) − (g∗/2m)|)). We get

lim
m→∞

∫

∂X

2mϕβ
(

ln
(

1 +
∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

))

dσ =
(

ln γβ
)β
∫

∂X

∣
∣f∗ − g∗∣∣dσ (3.41)

by the Lebesgue dominated convergence theorem since

lim
m→∞

2mϕβ
(

ln
(

1 +
∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

))

=
(

ln γβ
)β∣
∣f∗ − g∗∣∣. (3.42)

On the other hand, applying Fatou’s lemma we get

(

ln γβ
)β
∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣dσ

≤ lim inf
m→∞

∫

∂X

2mϕβ

(

ln

(

1 +

∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣

))

dσ

= lim inf
m→∞

∫

∂X

2mϕβ
(

ln
(

1 +
∣
∣
∣
∣

f∗

2m
− g∗

2m

∣
∣
∣
∣

))

dσ

=
(

ln γβ
)β
∫

∂X

∣
∣f∗ − g∗∣∣dσ <∞,

(3.43)

from which for g = 0 we get T(H1(X)) ⊆ H1(X). Since

2mϕβ

(

ln

(

1 +

∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣

))

≤ (ln γβ
)β∣
∣T
(

f
)∗ − T(g)∗∣∣ (3.44)

follows from (3.40), the function (ln γβ)
β|T(f)∗ − T(g)∗| is an integrable function dominating

2mϕβ

(

ln

(

1 +

∣
∣
∣
∣
∣

T(f)∗

2m
− T(g)∗

2m

∣
∣
∣
∣
∣

))

. Hence

(

ln γβ
)β
∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣dσ = lim

m→∞

∫

∂X

2mϕβ

(

ln

(

1 +

∣
∣
∣
∣
∣

T
(

f
)∗

2m
− T
(

g
)∗

2m

∣
∣
∣
∣
∣

))

dσ (3.45)

holds by the Lebesgue dominated convergence theorem. Consequently

∫

∂X

∣
∣f∗ − g∗∣∣dσ =

∫

∂X

∣
∣T
(

f
)∗ − T(g)∗∣∣dσ (3.46)

holds. As f and g are arbitrary elements of H1(X) we obtain that T |H1(X) is isometric on
H1(X) with respect to the metric induced by theH1-norm.
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We also obtain that there exists a bounded positive continuous function θ1 on [0, ∞)
such that θ1(0)/= 0 and

x2θ1(x) =
{

ln γβ
}β
x − ϕβ(ln(1 + x)). (3.47)

Applying this equality we obtain that T(H2(X)) ⊆ H2(X) and T |H2(X) is a real-linear isometry
onH2(X), hence T is a complex-linear (if T(i) = i) or conjugate linear isometry (if T(i) = −i)
on NlogβN(X), similar as in the proof of Theorem 3.1. The rest of the proof is similar to the
last part of the proof of Theorem 3.1 applying [12, Theorem 1] for X = Bn and Theorem 3.7
for X = D

n instead of [3, Theorem 2.2]. We omit the details.

Corollary 3.11. Let X ∈ {Bn, D
n}. Suppose that T :NlogβN(X) → NlogβN(X) is a (not neces-

sarily linear) surjective multiplicative isometry. Then there exists a holomorphic automorphism ψ on
X such that either of the following formulas holds:

T
(

f
)

= f ◦ ψ for every f ∈NlogβN(X),

T
(

f
)

= f ◦ ψ for every f ∈NlogβN(X),
(3.48)

where ψ is a unitary transformation for X = Bn, while for X = D
n, ψ(z1, . . . , zn) = (eiθ1zj1 , . . . ,

eiθnzjn) for some real numbers θj , j = 1, . . . , n and a permutation (j1, . . . , jn) of the integers from 1 to
n.

Note that surjective multiplicative isometries of the Privalov class, the Bergman-
Privalov class, and the Zygmund F-algebra have the same form as surjective multiplicative
isometries of the Smirnov class.

Proof of Corollary 3.11. By Theorem 3.10, T is complex-linear or conjugate linear. Suppose that
T is complex-linear. Applying [12, Corollary 1] for X = Bn and Corollary 3.8 for X = D

n the
result follows in this case. If T is conjugate linear, then the result follows by similar arguments
as in the proof of Corollary 3.2.
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