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A new discretization strategy is introduced for the numerical solution of partial integrodifferential
equations appearing in option pricing jump diffusion models. In order to consider the unknown
behaviour of the solution in the unbounded part of the spatial domain, a double discretization
is proposed. Stability, consistency, and positivity of the resulting explicit scheme are analyzed.
Advantages of the method are illustrated with several examples.

1. Introduction

Since empirical studies revealed that the normality of the log returns, as assumed by
Black and Scholes, could not capture features like heavy tails and asymmetries observed
in market-data log-returns densities [1], a number of models try to explain these empirical
observations: stochastic volatility [2, 3], deterministic local volatility [4, 5], jump diffusion
[6, 7], and infinite activity Lévy models [8–11]. The two last types of models, discussed in
[12] and [13, chapters 14, 15] allow to calibrate the model to market price of options and
reproduce a wide variety of implied volatility skews/smiles. These models are characterized
by partial integrodifferential equations (PIDEs) that involve a second-order differential
operator and a nonlocal integral term that requires specific treatment and presents additional
difficulties.

In order to solve the PIDE problem numerically, Andersen and Andreasen [14] use
an unconditionally stable ADI finite difference method and accelerate it using fast Fourier
transform (FFT). In [15–17] wavelet methods are applied to infinite activity jump-diffusion
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models. Interesting analytic-numerical treatments for Lévy models have been introduced
in [18–20]. The so-called COS method for pricing European options is presented in [18].
This is based on the knowledge of the characteristic function of the jump operator and the
close relation of the characteristic function with the series coefficients of the Fourier-cosine
expansion of the density function. In [19], an expansion of the characteristic function of local
volatility models with Lévy jumps is developed. The authors in [20] derive an analytical
formula for the price of European options for anymodel including local volatility and Poisson
jump process by using Malliavin calculus techniques. Various authors apart of [14] used
finite difference schemes for PIDEs in [21–27]. Discretization of the integral term leads to
full matrices due to its nonlocal character. Dealing with the integral term several challenges
arise, for instance, how to approximate the integral term and how to localizate a bounded
computational domain, also the selection of the boundary conditions of the numerical domain
and the problem of the double discretization of the differential and integral part of the
PIDE.

Tavella and Randall in [26] used an implicit time discretization and propose a
stationary fairly rapid convergent iterative method to solve the full matrix problem quoted
above but without a careful numerical analysis. A generalization of this iterative method to
price American options is proposed in [25].

In the outstanding paper [22] the authors propose an explicit-implicit finite difference
scheme for solving parabolic PIDEs with possibly singular kernels when the random
evolution of the underlying asset is driven by a time-inhomogeneous jump-diffusion process.
The authors study stability and convergence of the proposed scheme as well as rates of
convergence. However, they use backward or forward difference quotients of only first
order depending on the sign of the coefficient of the convection term in order to avoid
oscillations. An improvable issue of [22] is that in order to approximate the truncated integral
term, they assume a particular behavior of the solution outside of the bounded numerical
domain.

An efficient solution of PIDEs for the jump-diffusion Merton model is proposed
in [24] with a very efficient treatment of the resulting dense linear system by using a
circulant preconditioned conjugate gradient method. However, in [24], they only consider the
particular case where the jump sizes have zero mean, μJ = 0. They also assume a particular
behavior of the solution outside the bounded numerical domain.

Almendral and Oosterlee [28] present an implicit discretization of the PIDE jump-
diffusion model on an uniform grid using finite differences, where a splitting technique
combined with FFT is used to accelerate the dense matrix-vector product. The authors also
assume a particular behaviour of the solution outside of the bounded numerical domain, in
a similar way to [24].

In [21] a finite difference method for PIDE associated with the CGMY infinite activity
Lévy model is treated. The equations are discretized in space by the collocation method and
in time by an explicit backward differentiation formula. The integral part is transformed
into a Volterra equation. After integration by parts and taking advantage of the vanishing
derivative behaviour of the payoff function for large asset values, the authors are able to
truncate properly the integral for the case of put and butterfly options.

In [27] the price of European and American options under PIDE Kou’s jump-diffusion
model is solved using finite differences on nonuniform grids, and time stepping is performed
using the implicit Rannacher scheme. The evaluation of the integral term is efficient from the
computational cost point of view, assuming that the behaviour of the solution for large values
of the underlying asset follows the asymptotic behaviour.
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For the sake of clarity in the presentation we recall that in a jump-diffusion model, the
modified stochastic differential equation (SDE) for the underlying asset is

dS

S
= μdt + σdz +

(
η − 1

)
dq, (1.1)

where S is the underlying stock price, μ is the drift rate, σ is the volatility, dz is the increment
of Gauss-Wiener process, and dq is the Poisson process. The random variable representing
the jump amplitude is denoted by η, and the expected relative jump size is denoted by K =
E[η − 1]. The jump intensity of the Poisson process is denoted by λ. Based on the SDE (1.1)
the resulting PIDE for a contingent claim V (S, t) is given by [7, 14, 29]:

∂V

∂t
+
1
2
σ2S2 ∂

2V

∂S2
+ (r − λK)S

∂V

∂S
− (r + λ)V

+ λ

∫∞

0
V
(
Sη, t

)
g
(
η
)
dη = 0, 0 < S < ∞, 0 ≤ t < T,

(1.2)

V (S, T) = f(S), 0 < S < ∞, (1.3)

where r is the risk-free interest rate, the probability density of the jump amplitude is given
by g(η), and f(S) is the payoff function. Merton’s jump-diffusion model assumes that jump
sizes are log-normally distributed with mean μJ and standard deviation σJ , that is,

g
(
η
)
=

exp
(
−1/2((ln(η) − μJ

)
/σJ

)2)

σJη
√
2π

. (1.4)

In this paper we consider Merton’s jump-diffusion model for a vanilla call option with
payoff function

f(S) = max(S − E, 0). (1.5)

The aim of the paper is the construction and numerical analysis of an explicit finite difference
numerical scheme of the PIDE (1.2)-(1.3), with a different treatment of the integral part from
previously quoted authors. Instead of assuming long-term information about the solution we
perform a full discretization of the integral part, involving the unknown function values in
the numerical scheme, discriminating the finite truncation domain and the infinite remaining
one. As a consequence, this strategy involves a double discretization with respect to the
spatial variable. With respect to the time variable an explicit forward approximation is used.
An account of the advantages of this explicit approach has been explained and applied in
[30].

This paper is organized as follows. Section 2 deals with a transformation of variables
in order to eliminate both the advection and the reaction terms of the PIDE (1.2). Then the
integral part is split in two parts: a finite integral J1 and an infinite one J2, and the last is again
transformed into a finite integral. The separation pointA of the two split integrals is becoming
a parameter that could be chosen according to the criteria used by [16, 22, 31]. A suitable
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choice of parameter A is the one used by other authors when they truncate the numerical
domain. For instance in [27], one takes A = 4E; in Section 6 we take A = 3E. Section 3 deals
with the construction of the numerical scheme and the selection of the numerical domain that
always involves the difficulty of the consideration of the boundary conditions. For the case
of a PIDE this issue is even more relevant because the values throughout all the unbounded
integral domain are unknown. The spatial numerical domain is divided in two parts by the
parameter A: [0, A] and [A,∞[. In the [0, A] domain, the stepsize discretization is h = Δx,
consisting inN equidistributedmesh pointsXi, 1 ≤ i ≤ N. The domain [A,∞[ is transformed
into the ]0, 1] by transformation z = A/X. In the transformed domain ]0, 1] we consider a
stepsize discretization δ = Δz and M mesh points with Mδ = 1. When the interval ]0, 1] is
reversed to the domain [A,∞[, the reversed mesh points Xi, N ≤ i ≤ N + M − 1 become
nonuniformly distributed. Hence, the numerical scheme for problem (2.9)-(2.10) is forward
in time with time-step discretization k = Δτ . The approximation of ∂2U/∂X2 is centered in
[0, A] of the unique parameter h, and in [A,A/δ] the approximation of ∂2U/∂X2 involves
a nonuniform stepsize discretization hj depending on δ and the value of j. The numerical
approximation of the integrals is evaluated using trapezoidal quadrature rules with stepsizes
h and δ, respectively. The boundary conditions at the boundary of our numerical domain are
as follows. At X = 0 we assume that the solution is zero according to the vanilla call option
problem. At our largest finite value considered X = A/δ we assume a linear behavior of the
solution. This hypothesis has been previously used in [32].

In Section 4 sufficient conditions for stability and positivity of the numerical solution
are given in terms of the three parameters h = ΔX, k = Δτ, and δ = Δz as well as
of the parameter A. Consistency of the scheme is treated in Section 5. Section 6 includes
illustrative examples showing the possible advantages of our new discretization approach.
Finally conclusions are shown in Section 7.

If v = (v1, v2, . . . , vn)
T is a vector in R

n, we denote its infinite norm ‖v‖∞ =
max{|vj |; i ≤ j ≤ n}. Vector v is said to be nonnegative if vj ≥ 0 for all 1 ≤ j ≤ n. Then we
denote v ≥ 0. For a matrix A = (aij)m×n in R

m×n, we denote by ‖A‖∞ = max1≤i≤m{
∑n

j=1 |aij |}.
Matrix A is said to be nonnegative if aij ≥ 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and we denote
A ≥ 0.

2. Transformation of the Integrodifferential Problem

For the sake of convenience we introduce a transformation of variables to remove both the
advection and the reaction terms of the PIDE problem (1.2)-(1.3).

Let us consider the transformation

X = exp((r − λK)(T − t))S, τ = T − t,

U(X, τ) = exp((r + λ)(T − t))V (S, t),
(2.1)

and note that problem (1.2)-(1.3) is transformed into the problem

∂U

∂τ
=

1
2
σ2X2 ∂

2U

∂X2
+ λ

∫∞

0
U
(
Xη, τ

)
g
(
η
)
dη, 0 < X < ∞, 0 < τ ≤ T, (2.2)

U(X, 0) = f(X), 0 < X < ∞. (2.3)
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In order to approximate the integral appearing in (2.2) and further discretization it is
convenient the change of the variable

φ = Xη,

∫∞

0
U
(
Xη, τ

)
g
(
η
)
dη =

1
X

∫∞

0
U
(
φ, τ

)
g

(
φ

X

)
dφ.

(2.4)

Let us denote

J = J(X, τ) =
∫∞

0
U
(
φ, τ

)
g

(
φ

X

)
dφ. (2.5)

Taking A > 0, let us decompose

J = J1 + J2, J1 =
∫A

0
U
(
φ, τ

)
g

(
φ

X

)
dφ, J2 =

∫∞

A

U
(
φ, τ

)
g

(
φ

X

)
dφ,

J1 = J1(X, τ,A), J2 = J2(X, τ,A).

(2.6)

Following [33, page 201] let us consider the substitution

z =
A

φ
, (2.7)

into J2, obtaining the expression

J2 = A

∫1

0
U

(
A

z
, τ

)
g

(
A

Xz

)
1
z2

dz. (2.8)

Taking into account (2.4)–(2.8), the problem (2.2)-(2.3) can be written in the form

∂U

∂τ
=

σ2X2

2
∂2U

∂X2
+

λ

X
(J1 + J2), 0 < X < ∞, 0 < τ ≤ T, (2.9)

U(X, 0) = f(X), 0 < X < ∞. (2.10)

3. Numerical Scheme Construction

In this section a difference scheme for problem (2.9)-(2.10) is constructed. With respect to the
time variable, given τ with 0 < τ ≤ T , let k be the time-step discretization k = Δτ = τ/L, and
τn = nk, 0 ≤ n ≤ L, with L integer. With respect to the spatial variable X, given an arbitrary
positive fixedA > 0, we construct a uniform grid in [0, A], with the spatial step discretization
h = ΔX = A/N, with Xj = jh, 0 ≤ j ≤ N, being N integer.

Note that the integral J2(X, τ,A) given by (2.6) requires the evaluation of the unknown
U(φ, τ) at points φ ∈ [A,∞[. As this integral has been transformed into (2.8) over the interval



6 Abstract and Applied Analysis

]0, 1] for the variable z, see (2.7), we consider a uniform mesh of ]0, 1] into M points, of the
form zj = jδ, 1 ≤ j ≤ M, where M is integer, Mδ = 1, with M ≥ 3. Taking into account (2.7),
for the original variable X in [A,∞[, one has

Xj =
A

zN+M−j
, N ≤ j ≤ N +M − 1, (3.1)

and since zj = jδ,

Xj =
A

1 − (
j −N

)
δ
, N ≤ j ≤ N +M − 1. (3.2)

Thus the spatial domain [0, A] ∪ [A,A/δ] = [0, A/δ] is split intoN +M points

Xj =

⎧
⎪⎨

⎪⎩

jh, 0 ≤ j ≤ N,
A

1 − (
j −N

)
δ
, N ≤ j ≤ N +M − 1,

(3.3)

from those only the first N + 1 are equidistributed.
Let us denote

un
j ≈ U

(
Xj, τ

n), 0 ≤ j ≤ N +M − 1, 0 ≤ n ≤ L,

∂U

∂τ

(
Xj, τ

n) ≈
un+1
j − un

j

k
, 1 ≤ j ≤ N +M − 1, 0 ≤ n ≤ L.

(3.4)

For the approximation of ∂2U/∂X2 we consider two types of finite differences:

∂2U

∂X2

(
Xj, τ

n) ≈
un
j+1 − 2un

j + un
j−1

h2
= Δn

j , 1 ≤ j ≤ N − 1, (3.5)

for the internal points of [0, A], and denoting hj = Xj+1 −Xj > 0,

∂2U

∂X2

(
Xj, τ

n) ≈ 2

(
un
j+1

hj

(
hj + hj−1

) +
un
j−1

hj−1
(
hj + hj−1

) −
un
j

hjhj−1

)

= Δn
j , N ≤ j ≤ N +M − 2,

(3.6)

for the points Xj lying in [A,A/2δ]. Note that the discrete operator Δn
j has different expres-

sions depending on the ubication of j, see (3.5) and (3.6).
From the previous approximations, for the internal points we have

un+1
i = un

i +
k

2
σ2X2

i Δ
n
i +

kλ

Xi

(
Jn1,i + Jn2,i

)
, 1 ≤ i ≤ N +M − 2, (3.7)
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where Jn1,i and Jn2,i are approximations of the composite trapezoidal type of integrals appearing
in (2.6), (2.8):

Jn1,i ≈
∫A

0
U
(
φ, τn

)
g

(
φ

Xi

)
dφ, (3.8)

Jn2,i ≈
∫∞

A

U
(
φ, τn

)
g

(
φ

Xi

)
dφ = A

∫1

0
U

(
A

z
, τn

)
g

(
A

Xiz

)
1
z2

dz. (3.9)

Let us denote gi,j = g(Xj/Xi). The approximation Jn1,i takes the form

Jn1,i = h

⎛

⎝
N−1∑

j=1

un
j gi,j +

1
2
un
Ngi,N

⎞

⎠, 1 ≤ i ≤ N +M − 2, (3.10)

where the first term for j = 0 does not appear due to the null value of the limit of function
g(η) given by (1.4) as η tends to zero. On the other hand, considering the assumption that
U(φ, τn) has asymptotic linear behaviour as φ → ∞ (z → 0) and using (1.4) it follows that
the integrand of (3.9) verifies

U

(
A

z
, τn

)
g

(
A

Xiz

)
1
z2

−→ 0, as z −→ 0. (3.11)

Consequently, the last term of Jn2,i related to j = N +M vanishes, and one gets

Jn2,i =
δ

A

⎛

⎝1
2
un
Ngi,NX2

N +
N+M−1∑

j=N+1

un
j gi,jX

2
j

⎞

⎠, 1 ≤ i ≤ N +M − 2. (3.12)

The numerical scheme (3.7)–(3.12) needs to incorporate the transformed initial condition

u0
i = f(Xi) = max(Xi − E, 0), 1 ≤ i ≤ N +M − 1, (3.13)

and the boundary conditions for i = 0:

un
0 = 0, 0 ≤ n ≤ L, (3.14)

and assuming linear behaviour of the solution for large values of the spatial variable at any
time, we have Δn

N+M−1 = 0 and null integral term approximation Jn1,N+M−1 = Jn2,N+M−1 = 0.
Hence, considering (3.7) for i = N +M − 1, one gets

un+1
N+M−1 = un

N+M−1 = u0
N+M−1, 0 ≤ n ≤ L − 1. (3.15)
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For the sake of convenience in the study of stability we introduce a vector formulation
of the scheme (3.7)–(3.15). Let us consider the vector in R

N+M−1 as

Un =
[
un
1 un

2 . . . un
N+M−1

]t
, (3.16)

and let P ∈ R
(N+M−1)×(N+M−1) be the tridiagonal matrix related to the differential part and

defined by

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎣

β1 γ1 0 0 · · · 0
α2 β2 γ2 0 · · · 0
0 α3 β3 γ3 · · · 0

. . . . . . . . .
. . . . . . . . .

0 · · · αN+M−2 βN+M−2 γN+M−2
0 · · · 0 αN+M−1 βN+M−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎦

, (3.17)

where

γ1 =
k

2
σ2, αN+M−1 = 0, βN+M−1 = 1,

γi = αi =
k

2h2
σ2X2

i , 2 ≤ i ≤ N − 1,

βi = 1 − k

h2
σ2X2

i , 1 ≤ i ≤ N − 1,

αN =
kσ2A2

h(h +Aδ/(1 − δ))
, βN = 1 − kσ2A(1 − δ)

δh
, γN =

kσ2A(1 − δ)
δ(h +Aδ/(1 − δ))

,

αi =
kσ2X2

i

hi−1(hi + hi−1)
, βi = 1 − kσ2X2

i

hihi−1
, γi =

kσ2X2
i

hi(hi + hi−1)
, N + 1 ≤ i ≤ N +M − 2.

(3.18)

Let B = (bij) be the matrix in ∈ R
(N+M−1)×(N+M−1) related to the integral part whose

entries bij for each fixed i in 1 ≤ i ≤ N +M − 2 are defined by

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

kλ

Xi
hgi,j , 1 ≤ j ≤ N − 1,

kλ

2Xi
(h + δA)gi,N, j = N,

kλ

Xi

δ

A
gi,jX

2
j , N + 1 ≤ j ≤ N +M − 1,

bN+M−1,j = 0, 1 ≤ j ≤ N +M − 1.

(3.19)
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From the previous notation the scheme (3.7)–(3.15) can be written in the form

Un+1 = (P + B)Un = (P + B)n+1U0, 0 ≤ n ≤ L − 1,

U0 =
[
f(X1) f(X2) · · · f(XN+M−1)

]t
.

(3.20)

4. Positive and Stability of the Numerical Solution

Dealing with prices of contracts modeled by PIDE, the solution must be nonnegative. In this
section we show that numerical solution provided by scheme (3.7)–(3.15) is conditionally
positive and stable.

We begin with the following result.

Lemma 4.1. With previous notation, assume that stepsizes k = Δτ , h = ΔX in [0, A] and 0 < δ ≤
1/3, and δ = Δz in ]0, 1] satisfy

(C1) k/h2 ≤ 1/σ2A2,

(C2) k ≤ min{δ2/σ2(1 − 2δ), δh/σ2A(1 − δ)}.

Then matrix P given by (3.17) is nonnegative.

Proof. From (3.18), for 1 ≤ i ≤ N − 1 one has γi > 0 and αi > 0 for 2 ≤ i ≤ N − 1. On the other
hand, for 1 ≤ i ≤ N − 1, we have that

βi ≥ 0, iff
k

h2
≤ 1

σ2X2
i

. (4.1)

Thus, under condition (C1), condition (4.1) holds true. With respect to the nonuniform grid,
note that forN ≤ i ≤ N +M− 2, from (3.18) one gets that αi > 0, γi > 0, and αN+M−1 = 0. From
(3.18)we also have that

βN ≥ 0, iff k ≤ δh

σ2A(1 − δ)
. (4.2)

In order to guarantee the nonnegativeness of the remaining entries of matrix P , let us
introduce the function

H(i) =
hihi−1
X2

i

=
δ2

[1 − (i − (N + 1))δ][1 − (i − (N − 1))δ]
> 0, (4.3)

for N + 1 ≤ i ≤ N +M − 2. With this notation, we have that βi appearing in (3.18) satisfies

βi ≥ 0, iff k ≤ H(i)
σ2

. (4.4)
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Note that

dH(i)
di

=
2(1 − (i −N)δ)δ3

[1 − (i − (N + 1))δ]2[1 − (i − (N − 1))δ]2
. (4.5)

Taking into account thatM δ = 1, withM ≥ 3, then forN+1 ≤ i ≤ N+M−2, both numerator
and denominator of (4.5) are positive. Thus

dH(i)
di

> 0, N + 1 ≤ i ≤ N +M − 2. (4.6)

Thus H(i) is strictly increasing for N + 1 ≤ i ≤ N + M − 2, and its minimum is achieved at
i = N + 1 with the value

H(N + 1) =
δ2

1 − 2δ
, (4.7)

and condition (4.4) holds true under the condition

k ≤ δ2

σ2(1 − 2δ)
. (4.8)

From condition (C2), properties (4.2) and (4.8) are satisfied and matrix P is nonnegative.

Note that as matrix B defined by (3.19) is always nonnegative, from Lemma 4.1 and
(3.20) starting from nonnegative initial vector U0, the following result is established.

Theorem 4.2. With the hypotheses and notation of Lemma 4.1, the solution {un
i } of the scheme (3.7)–

(3.15) is nonnegative if the initial values u0
i ≥ 0, 1 ≤ i ≤ N +M − 1.

The next result will be used below to guarantee stability.

Lemma 4.3. Matrices P and B defined by (3.17), (3.18), and (3.19) satisfy the following.

(1) Under conditions (C1) and (C2) of Lemma 4.1, ‖P‖∞ = 1.

(2) ‖B‖∞ ≤ k λ C, where C = 1 +
√
2/π (exp(−μJ + σ2

J/2)/σJ)(1 + exp(2μJ)).

Proof. By Lemma 4.1, under hypotheses (C1) and (C2), all the entries of matrix P are non-
negative. Thus,

∣∣β1
∣∣ +

∣∣γ1
∣∣ = β1 + γ1 = 1 − k

2h2
σ2X2

1 ≤ 1,

|αN+M−1| +
∣∣βN+M−1

∣∣ = αN+M−1 + βN+M−1 = 1.

(4.9)
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We also have

|αi| +
∣
∣βi

∣
∣ +

∣
∣γi

∣
∣ = αi + βi + γi = 1, for 2 ≤ i ≤ N +M − 2. (4.10)

Hence and from the definition of ‖ · ‖∞, it follows that ‖P‖∞ = 1. This proves part 1.
From (3.19), for a fixed i, with 1 ≤ i ≤ N +M − 2 one gets

N+M−1∑

j=1

∣
∣bij

∣
∣ =

N+M−1∑

j=1

bij =
kλ

Xi

[
TN

(
g

(
X

Xi

)
, [0, A]

)
+ TM

(
g

(
A

Xi

1
z

)
A

z2
, [0, 1]

)]
, (4.11)

where

TN

(
g

(
X

Xi

)
, [0, A]

)
= h

⎛

⎝
N−1∑

j=1

gi,j +
1
2
gi,N

⎞

⎠, (4.12)

TM

(
g

(
A

Xi

1
z

)
A

z2
, [0, 1]

)
=

δ

A

⎛

⎝
N+M−1∑

j=N+1

gi,jX
2
j + gi,N

X2
N

2

⎞

⎠

= δ

⎛

⎝
M−1∑

j=1

g

(
A

Xi

1
zj

)
A

z2j
+
1
2
g

(
A

Xi

)
A

⎞

⎠

(4.13)

are the trapezoidal approximation rules withN andM points, approximating the integrals

∫A

0
g

(
X

Xi

)
dX,

∫∞

A

g

(
X

Xi

)
dX =

∫1

0
g

(
A

Xi

1
z

)
A

z2
dz, (4.14)

respectively.
Let Xq(i) be the maximum of g(X/Xi) in R

+, given by

Xq(i) = Xi exp
(
μJ − σ2

J

)
; g

(
Xq(i)
Xi

)
=

1√
2πσJ

exp

(

−μJ +
σ2
J

2

)

. (4.15)

Note that the integrand g(X/Xi) is increasing in the interval ]0, Xq(i)[ and decreasing for
]Xq(i),+∞[. In order to upper bound (4.12)we consider two cases. Firstly, let us assume that
2h < Xq(i) < A − h and let us denote j0 to be the first integer with 1 ≤ j0 ≤ N − 3, such that

Xj0 + h = Xj0+1 ≤ Xq(i) < Xj0+2 = Xj0 + 2h. (4.16)
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From the properties of the lower Riemann sums, it follows that

h
j0∑

j=1

gi,j ≤
∫Xq(i)

0
g

(
X

Xi

)
dX,

h
N∑

j=j0+3

gi,j ≤
∫A

Xq(i)
g

(
X

Xi

)
dX.

(4.17)

Taking into account the values gi,j0+1 and gi,j0+2 located just before and after Xq(i), together
with (4.17), from (4.12) it follows that

TN

(
g

(
X

Xi

)
, [0, A]

)
= h

j0∑

j=1

gi,j + h
(
gi,j0+1 + gi,j0+2

)
+ h

N∑

j=j0+3

gi,j − h

2
gi,N

≤
∫A

0
g

(
X

Xi

)
dX + 2hg

(
Xq(i)
Xi

)
.

(4.18)

In an analogous way, for the second situation whereXq(i) ≤ 2h, one gets again (4.18). Finally,
if Xq(i) ≥ A − h is also true that

h
N∑

j=1

gi,j ≤ h
(
gi,N−1 + gi,N

)
+
∫A

0
g

(
X

Xi

)
dX

≤ 2hg
(
Xq(i)
Xi

)
+
∫A

0
g

(
X

Xi

)
dX.

(4.19)

Now we will upper bound (4.13). Let us denote

Gi(z) = g

(
A

Xi

1
z

)
A

z2
, 0 < z ≤ 1, (4.20)

with limz→ 0+Gi(z) = 0. Let zq(i) be the maximum of Gi(z):

zq(i) =
A

Xi
exp

(
−μJ − σ2

J

)
, Gi

(
zq(i)

)
=

X2
i√

2πAσJ

exp

(

μJ +
σ2
J

2

)

. (4.21)

In this case we could distinguish the three possible situations 2δ < zq(i) < 1 − δ; zq(i) ≤
2δ; zq(i) ≥ 1 − δ, and upper bounding the lower Riemann sums relative to (4.13) one gets

TM(Gi(z), [0, 1]) ≤ 2δGi

(
zq(i)

)
+
∫1

0
Gi(z)dz

= 2δGi

(
zq(i)

)
+
∫∞

A

g

(
X

Xi

)
dX.

(4.22)



Abstract and Applied Analysis 13

From (4.11), (4.18), and (4.22) together with the fact that
∫∞
0 g(X/Xi)dX = Xi, one gets for

each value of i,

N+M−1∑

j=1

∣
∣bij

∣
∣ ≤ kλ

⎡

⎢
⎣1 +

√
2
π

exp
(
−μJ + σ2

J/2
)

σJ

(
h

Xi
+

δ

A
Xi exp

(
2μJ

)
)
⎤

⎥
⎦. (4.23)

Taking into account that h = X1 ≤ Xi ≤ XN+M−1 = A/δ, for 1 ≤ i ≤ N +M − 1, it follows that
h/Xi ≤ 1 and (δ/A) Xi ≤ 1. Hence, from (4.23) one gets

‖B‖∞ ≤ kλC, (4.24)

independently of the value of the size of matrix B.
For the sake of clarity and as there are many definitions of stability in the literature we

recall our concept of stability in the next definition.

Definition 4.4. Let {un
i } be a numerical solution of the PIDE (2.9), (2.10) computed from the

scheme (3.7)–(3.15)with stepsizes h = ΔX in [0, A], δ = Δz in ]0, 1], and k = Δτ in [0, τ]. Let
{Un} be the corresponding vector form, that is, Un = [un

1 un
2 · · · un

N+M−1]
t of (3.20). We say

that {un
i } is strongly uniformly ‖ · ‖∞ stable, if

‖Un‖∞ ≤ W
∥∥∥U0

∥∥∥
∞
, 0 ≤ n ≤ L, (4.25)

where W > 0 is independent of n, h, δ, and k.

If the property (4.25) is satisfied for appropriate relationships between the stepsizes h,
δ, and k, then one says that the strong uniform stability is conditional.

Theorem 4.5. With the previous notation, the numerical solution {un
i } of the scheme (3.7)–(3.15) is

strongly uniformly ‖ · ‖∞ stable if one satisfies the condition 0 < δ ≤ 1/3 together with

k

h2
≤ 1

σ2A2
, k ≤ min

{
δ2

σ2(1 − 2δ)
,

δh

σ2A(1 − δ)

}

. (4.26)

Proof. Note that scheme (3.7)–(3.15) is equivalent to the vector form scheme (3.20). Under
condition (4.26), by Lemma 4.3 one gets, after taking norms in (3.20),

∥∥∥Un+1
∥∥∥
∞
≤ (‖P‖∞ + ‖B‖∞)‖Un‖∞ ≤ (1 + kλC)‖Un‖∞. (4.27)

Hence, from (4.27), Bernouilli’s inequality, and 0 ≤ n ≤ L, kL = τ ≤ T , one gets

‖Un‖∞
‖U0‖∞

≤ (1 + kλC)n ≤ 1 + nkλC ≤ exp(nkλC) ≤ exp(λCT). (4.28)

Thus the conditional strong uniform stability is established.
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5. Consistency

We say that a numerical difference scheme is consistent with a PIDE, if the exact theoretical
solution of the PIDE approximates well to the exact solution of the difference scheme as the
stepsize discretization tends to zero, [34, 35].

Let us write the scheme (3.7)–(3.12) in the form F(un
i ) = 0, where

F
(
un
i

)
=

un+1
i − un

i

k
− 1
2
σ2X2

i Δ
n
i −

λ

Xi

(
Jn1,i + Jn2,i

)
, (5.1)

and let us write the PIDE (2.9) in the form

L(U) = I(U), (5.2)

where

L(U) =
∂U

∂τ
− 1
2
σ2X2 ∂

2U

∂X2
, I(U) =

λ

X
(J1 + J2), (5.3)

where J1 and J2 are given by (2.6)–(2.8).
Let us denote Un

i = U(Xi, τ
n) to be the value of the theoretical solution of PIDE (5.2).

Let A > 0 such that Xi < A. We denote by the following expression the local truncation error
Tn
i (U):

Tn
i (U) = F

(
Un

i

) − L
(
Un

i

)
+ I

(
Un

i

)
. (5.4)

In order to prove the consistency, we must show that

Tn
i (U) −→ 0, ash −→ 0, δ −→ 0, k −→ 0. (5.5)

Assuming that U is twice continuously partially differentiable with respect to τ and using
Taylor’s expansions about (Xi, τ

n) one gets

Un+1
i −Un

i

k
=

∂U

∂τ
(Xi, τ

n) + kEn
i (1), (5.6)

where

En
i (1) =

1
2
∂2U

∂τ2
(
Xi, η

)
, τn < η < τn+1,

∣∣E n
i (1)

∣∣ ≤ 1
2
Wn

i (1) =
1
2
max

{∣∣∣∣∣
∂2U

∂τ2
(
Xi, η

)
∣∣∣∣∣
; τn ≤ η ≤ τn+1

}

.

(5.7)
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Let us assume that U admits four times continuous partial derivatives with respect to
X, and let us denote

Δn
i (U) =

∂2U

∂X2 (Xi, τ
n) + h2En

i (2),

En
i (2) =

1
12

∂4U

∂X4
(ν, τn), Xi − h < ν < Xi + h,

∣
∣E n

i (2)
∣
∣ ≤ 1

12
Wn(2) =

1
12

max

{∣
∣
∣
∣
∣
∂4U

∂X4
(X, τn)

∣
∣
∣
∣
∣
; 0 ≤ X ≤ A

}

.

(5.8)

In accordance with [34, page 101] let us explain the local consistency error of J1, see (2.6), by

Cn
1,i(h,A) =

∫A

0
U
(
φ, τn

)
g

(
φ

Xi

)
dφ − Tn

1,i([0, A]), (5.9)

Tn
1,i([0, A]) = h

N−1∑

j=1

Un
j gi,j +

h

2
Un

Ngi,N, (5.10)

∣∣∣Cn
1,i(h,A)

∣∣∣ ≤ h2

12
Amax

0≤X≤A

{∣∣∣∣∣

(
U(X, τn)g

(
X

Xi

))(2)
∣∣∣∣∣

}

=
h2A

12
Wn

i (3), (5.11)

where (U(X, τn)g(X/Xi))
(2) in (5.11)means the second derivative with respect to the variable

X, see [33].
In an analogous way, let us explain the local consistency error of the unbounded

integral J2, see (2.8), by

Cn
2,i(δ,A) = A

∫1

0

1
z2

U

(
A

z
, τn

)
g

(
A

Xi

1
z

)
dz − Tn

2,i([0, 1]),

Tn
2,i([0, 1]) =

δ

A

⎛

⎝1
2
Un

Ngi,NX2
N +

N+M−1∑

j=N+1

Un
j gi,jX

2
j

⎞

⎠,

∣∣∣Cn
2,i(δ,A)

∣∣∣ ≤ Aδ2

12
max
0≤z≤1

{∣∣∣∣∣

(
1
z2

U

(
A

z
, τn

)
g

(
A

Xi

1
z

))(2)
∣∣∣∣∣

}

=
Aδ2

12
Wn

i (4).

(5.12)

Summarizing, one gets

Tn
1 (U) = kEn

i (1) −
h2

2
σ2X2

i E
n
i (2) +

λ

Xi

(
Cn

1,i(h,A) + Cn
2,i(δ,A)

)
,

∣∣∣T (n)
i (U)

∣∣∣ ≤ h2

24
Wn(2)σ2X2

N +
h2

12
λA

Xi
Wn

i (3) +
δ2

12
λA

Xi
Wn

i (4) + kWn
i (1).

(5.13)
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Figure 1: Satisfying and breaking stability conditions.

Thus

Tn
i (U) = O

(
h2
)
+O

(
δ2
)
+O(k), (5.14)

which proves the consistency of the scheme with the PIDE.

6. Numerical Results

In the following examples the code was run on Matlab. The first example illustrates that
stability conditions of Theorem 4.5 cannot be removed.

Example 6.1. Consider the vanilla call option problem (1.2)–(1.5) under Merton jump
diffusion model with parameters T = 1, r = 0.05, E = 10, σ = 0.1, μJ = 0.5, K = 0.7, and
λ = 0.1. TakingA = 3E, δ = 0.1, and h = 0.3, Figure 1 shows that when the stability conditions
(4.26) are satisfied results are good (k = 0.01), while if the stability conditions are broken
(k = 0.015625) results are unreliables.

The next example shows the robustness of our numerical scheme under changes of the
jump intensity λ of the model.

Example 6.2. Taking the same parameters of Example 6.1 apart from λ and the stepsize
discretizations h = 0.3, δ = 0.1, and k = 0.01, Figure 2 shows the variation of the solution
with parameter λ, where λ = 0 corresponds to the Black-Scholes case.

In the next example, the error is the difference between the numerical solution V (S, 0)
computed by (3.7)–(3.15) and (2.1) and the exact solution given by Merton’s formula [7].
Example 6.3 shows that the error of the numerical solution with fixed δ decreases with the
uniform stepsize h = ΔX about the strike E = 10, while the error close to the truncation
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Figure 2: Variation of the jump intensity λ.
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Figure 3: Absolute errors with several values of h and a fixed δ.

separation point A = 30 remains stationary when h decreases. This fact agrees with facts
illustrated in [28, pages 15-16].

Example 6.3. Consider the vanilla call option problem (1.2)–(1.5) under Merton jump
diffusion model with parameters T = 1, r = 0.05, E = 10, σ = 0.1, μJ = 0, K = 0.00501,
and λ = 0.1. For A = 30, k = 0.001, and δ = 0.0625, the Figure 3 shows the variation of the
absolute error of the solution under changes of the stepsize h.
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The next Example 6.4 shows that the errors in the right boundary of the numerical
domain when one uses finite difference schemes, quoted by [28], can be reduced with our
double spatial discretization by decreasing the stepsize δ.

Example 6.4. Taking the problem of Example 6.3 with fixed h = 0.3, Figure 4 shows the error
reduction of the numerical solution about the right boundary of the numerical domain when
parameter δ decreases, while the error about the strike remains stationary.

7. Conclusions

This work introduces a new discretization strategy for solving partial integrodifferential
equations which involves the discretization of the unknown in the unbounded part of the
integral. This fact increases the accuracy of the numerical solution in the boundary of the
numerical domain as it is shown in Example 6.4.
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driven assets,”Mathematical Modelling and Numerical Analysis, vol. 38, no. 1, pp. 37–71, 2004.

[17] A.-M. Matache, C. Schwab, and T. P. Wihler, “Fast numerical solution of parabolic integrodifferential
equations with applications in finance,” SIAM Journal on Scientific Computing, vol. 27, no. 2, pp. 369–
393, 2005.

[18] F. Fang and C. W. Oosterlee, “A novel pricing method for European options based on Fourier-cosine
series expansions,” SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 826–848, 2008/09.

[19] S. Pagliarani, A. Pascucci, and C. Riga, “Adjoint expansions in local Lévy models,” SSRN eLibrary,
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