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The regularizationmethod is applied for the construction of algorithm for an asymptotical solution
for linear singular perturbed systems with the irreversible limit operator. The main idea of this
method is based on the analysis of dual singular points of investigated equations and passage in
the space of the larger dimension, what reduces to study of systems of first-order partial differential
equations with incomplete initial data.

1. Introduction

The investigation of singular perturbed systems for ordinary and partial differential
equations occurring in systems with slow and fast variables, chemical kinetics, the mathe-
matical theory of boundary layer, control with application of geoinformational technologies,
quantum mechanics, and plasma physics (the Samarsky-Ionkin problem) has been studied
by many researchers (see, e.g., [1–19]).

In this work, the algorithm for construction of an asymptotical solution for linear
singular perturbed systems with the irreversible limit operator is given—the regularization
method [1]. The main idea of this method is based on the analysis of dual singular points of
investigated equations and passage in the space of the larger dimension, what reduces to the
study of systems of first-order partial differential equations with incomplete (more exactly,
point) initial data.
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In this paper, we consider linear singular perturbed systems in the form

εẏ = A(t)y + h(t), y(0, ε) = y0, t ∈ [0, T], (1.1)

where y = {y1, . . . , yn}, A(t) is a matrix of order (n × n), h(t) = {h1, . . . , hn} is a known
function, y0 ∈ Cn is a constant vector, and ε > 0 is a small parameter, in the case of violation of
stability of a spectrum {λj(t)} of the limiting operator A(t).

Difference of such type problems from similar problems with a stable spectrum (i.e.,
in the case of λi(t)/= 0, λi(t)/=λj(t), i /= j, i, j = 1, n for all t ∈ [0, T]) is that the limiting system
0 = A(t)y + h(t) at violation of stability of the spectrum can have either no solutions or
uncountable set of them. In the last case, presence of discontinuous on the segment [0, T]
solutions y(t) of the limiting system is not excluded. Under conditions, one can prove (see,
e.g., [1, 6]) that the exact solution y(t, ε) of problem (1.1) tends (at ε → +0) to a smooth
solution of the limiting system. However, there is a problematic problem about construction
of an asymptotic solution of problem (1.1). When the spectrum is instable, essentially special
singularities are arising in the solution of system (1.1). These singularities are not selected
by the spectrum {λj(t)} of the limiting operator A(t). As it was shown in [3–7], they were
induced by instability points tj of the spectrum.

In the present work, the algorithm of regularization method [1] is generalized on
singular perturbed systems of the form (1.1), the limiting operator of which has some
instable points of the spectrum. In order to construct the spectrum, we use the new algorithm
requiring more constructive theory of solvability of iterative problems. These problems arose
in application of the algorithm.

We will consider the problem (1.1) at the following conditions. Assume that

(i) A(t) ∈ C∞([0, T], Cn), h(t) ∈ C∞[0, T]; for any t ∈ [0, T], the spectrum {λj(t)} of
the operator A(t) satisfies the conditions:

(ii) λi(t) = −(t− ti)siki(t), ki(t)/= 0, ti ∈ [0, T], i = 1, m, m < n (here si- are even natural
numbers),

(iii) λi(t)/= 0, j = m + 1, n,

(iv) λi(t)/=λj(t), i /= j, i, j = 1, n,

(v) Reλj(t) � 0, j = 1, n.

2. Regularization of the Problem

We introduce basic regularized variables by the spectrum of the limiting operator

τj = ε−1
∫ t
0
λj(s)ds ≡

ϕj(t)
ε

, j = 1, n. (2.1)

Instable points ti ∈ [0, T] of the spectrum {λj(t)} induce additional regularized variables
described by the formulas

σiqi = e
ϕi(t)/ε

∫ t
0
e−ϕi(s)/ε

(s − ti)qi
qi

ds ≡ ψiqi(t, ε), i = 1, m, qi = 0, si − 1. (2.2)
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We consider a vector function ỹ(t, τ, σ, ε) instead of the solution y(t, ε) to be found for
problem (1.1). This vector function is such that

ỹ(t, τ, σ, ε)|τ=ϕ, σ=ψ ≡ y(t, ε). (2.3)

For ỹ(t, τ, σ, ε), it is natural to set the following problem:

Lεỹ(t, τ, σ, ε) ≡ ε
∂ỹ

∂t
+

n∑
j=1

λj(t)
∂ỹ

∂τj
+

m∑
i=1

si−1∑
qi=0

[
λi(t)σiqi + ε

(t − ti)qi
qi!

]
∂ỹ

∂σiqi

−A(t)ỹ = h(t), ỹ(0, 0, 0, ε) = y0.

(2.4)

We determine the solution of problem (2.4) in the form of a series

ỹ(t, τ, σ, ε) =
∞∑

k=−1
εkyk(t, τ, σ), (2.5)

with coefficients yk(t, τ, σ) ∈ C∞[0, T].
If we substitute (2.5) in (2.4) and equate coefficients at identical degrees of ε, we obtain

the systems for coefficients yk(t, τ, σ):

Ly−1(t, τ, σ) ≡
n∑
j=1

λj(t)
∂y−1
∂τj

+
m∑
i=1

si−1∑
qi=0

λi(t)σiqi
∂y−1
∂σiqi

−A(t)y−1 = 0, y−1(0, 0, 0) = 0, (ε−1)

Ly0(t, τ, σ) = −∂y−1
∂t

−
m∑
i=1

si−1∑
qi=0

(t − ti)qi
qi!

∂y−1
∂σiqi

+ h(t), y0(0, 0, 0) = y0,

...

(ε0)

Lyk+1(t, τ, σ) = −∂yk
∂t

−
m∑
i=1

si−1∑
qi=0

(t − ti)qi
qi!

∂yk
∂σiqi

, k � 1, yk+1(0, 0, 0) = 0,

...

(εk+1)

3. Resolvability of Iterative Problems

We solve each of the iterative problems (εk) in the following space of functions:

U =

⎧⎨
⎩y(t, τ, σ) : y =

n∑
k=1

n∑
j=1

ykj(t)ck(t)eτj +
n∑
k=1

m∑
i=1

si−1∑
qi=0

ykiqi(t)ck(t)σiqi

+
n∑
k=1

yk(t)ck(t), ykj(t), ykiqi(t), yk(t) ∈ C∞
(
[0, T], C1

)}
,

(3.1)
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where ck(t) are eigenvectors of the operator A(t) corresponding eigenvalues λk(t), k = 1, n.
We representU in the form ofU(1) ⊕U(0) where

U(0) =

⎧⎨
⎩y(0)(t) : y(0) =

n∑
j=1

y
(0)
j (t)cj(t), y

(0)
j (t) ∈ C∞

(
[0, T], C1

)⎫⎬
⎭,

U(1) =
U

U(0)
.

(3.2)

It is easy to note that each of the systems (εk+1) can be written in the form

Ly(t, τ, σ) = h(t, τ, σ), (3.3)

where h(t, τ, σ) are the corresponding right hand side. Using representations of space U, we
can write system (3.3) in the equivalent form

Ly(1)(t, τ, σ) = h(1)(t, τ, σ), (3.4)

−A(t)y(0)(t) = h(0)(t), (3.5)

where y(1)(t, τ, σ), h(1)(t, τ, σ) ∈ U(1), y(0)(t), h(0)(t) ∈ U(0).
We have the following result.

Theorem 3.1. Let h(1)(t, τ, σ) ∈ U(1) and satisfy conditions (i)–(iv). Then, system (3.4) is solvable
in theU(1) if and only if

〈
h(1)(t, τ, σ), νj(t, τ, σ)

〉
≡ 0 ∀t ∈ [0, T], j = 1, n,

〈
h(1)(t, τ, σ), νiqi(t, τ, σ)

〉
≡ 0, i = 1, m, qi = 0, si − 1,

(3.6)

where νj(t, τ, σ), νiqi(t, τ, σ) are basic elements of the kernel of the operator

L∗ ≡
n∑
j=1

λj(t)
∂

∂τj
+

m∑
i=1

si−1∑
qi=0

λi(t)σiqi
∂

∂σiqi
−A∗(t). (3.7)

Proof. Let h(1)(t, τ, σ) =
∑n

k=1
∑n

j=1 hkj(t)cj(t)e
τk +

∑n
k=1
∑m

i=1
∑si−1

qi=0
hkiqi(t)ck(t)σiqi .

Determine solutions of system (3.4) in the form

y(1)(t, τ, σ) =
n∑
k=1

n∑
j=1

ykj(t)ck(t)eτj +
n∑
k=1

m∑
i=1

si−1∑
qi=0

ykiqi(t)ck(t)σiqi . (3.8)
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Substituting (3.8) in (3.4) and equating separately coefficients at eτj and σiqi , we obtain the
equations

[
λk(t) − λj(t)

]
ykj(t) = hkj(t), k, j = 1, n,

[λi(t) − λk(t)]yiqik(t) = hkiqi(t), i = 1, m, qi = 0, si − 1, k = 1, n.
(3.9)

One can see from this that obtained equations are solvable if and only if

hkk(t) ≡ 0, k = 1, n, hiiqi(t) ≡ 0, i = 1, m, qi = 0, si − 1, (3.10)

and these conditions coincide with conditions (3.6). Theorem 3.1 is proved.

Remark 3.2. Equations (1.1) imply that under conditions (3.6), system (3.4) has a solution in
U(1) representable in the form

y(1)(t, τ, σ) =
n∑
k=1

n∑
j=1,j /= k

hkj(t)[
λk(t) − λj(t)

]cj(t)eτj +
n∑
k=1

αk(t)ck(t)eτk

+
m∑
i=1

si−1∑
qi=0

γiqi(t)ci(t)σiqi +
n∑
k=1

m∑
i=1,i /= k

si−1∑
qi=0

hkiqi(t)
[λi(t) − λk(t)]ck(t)σiqi ,

(3.11)

where αk(t), γiqi(t) ∈ C∞([0, T], C1) are arbitrary functions.
Consider now system (3.5). As det A(t) ≡ 0 in points t = ti, i = 1, m, this system

does not always have a solution in U(0). Introduce the space V (0) ⊂ U(0) consisting of vector
functions

z(0)(t) =
n∑
j=1

zj(t)cj(t), zj(t) ∈ C∞
(
[0, T], C1

)
, j = 1, n, (3.12)

having the properties

[
Dli
(
z(0)(t), di(t)

)]
t=ti

=
(
Dlizi

)
(ti) = 0, ∀li = 0, si − 1, i = 1, m, (3.13)

where di(t) are eigenvectors of the operator A∗(t) with regard to eigenvalues λi(t), i = 1, m.
Let h(0)(t) =

∑n
j=1 hj(t)cj(t) ∈ V (0), that is,

(
Dlihi

)
(ti) = 0 ∀li = 0, si − 1, i = 1, m. (3.14)

Determine a solution of system (3.5) in the

y(0)(t) =
n∑
j=1

yj(t)cj(t). (3.15)
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Substituting this function in (3.5), we obtain

−
n∑
j=1

yj(t)λj(t)cj(t) =
n∑
j=1

hj(t)cj(t). (3.16)

Since {cj(t)} is a basis in Cn, we get

−λi(t)yi(t) = hi(t), i = 1, m, (3.17)

−λj(t)yj(t) = hj(t), j = m + 1, n. (3.18)

It is easy to see that (3.18) has the unique solution

yj(t) =
−hj(t)
λj(t)

, j = m + 1, n. (3.19)

By virtue of conditions (3.14), the function hi(t) can be represented in the form

hi(t) = (t − ti)si ĥi(t), i = 1, m, (3.20)

where ĥi(t) ∈ C∞([0, T], C1 is the certain scalar function, −(t − ti)siki(t)yi(t) = (t − ti)si ĥi(t),
and we see that

yi(t) =

⎧⎪⎨
⎪⎩

−ĥi(t)
ki(t)

, t /= ti,

γi, t = ti,
(3.21)

where γi are arbitrary constants, i = 1, m. However, the solution of system (3.5) should belong
to the space U(0), and it means that yi(t) ∈ C∞([0, T], C1). Therefore, constants in (3.21) γi =
(ĥi(t)/ki(t))|t=ti and functions are determined uniquely in the form

yi(t) =
−ĥi(t)
ki(t)

, ∀t ∈ [0, T], i = 1, m. (3.22)

Thus, under conditions (3.14), system (3.5) has the solution y(0)(t) inU(0) of

y(0)(t) = −
m∑
i=1

ĥi(t)
ki(t)

ci(t) −
n∑

j=m+1

hi(t)
λi(t)

ci(t), (3.23)

where hi(t) = ĥi(t)/(t − ti)
si (in points t = ti, i = 1, m, this equality is understood in the

limiting sense). We summarize received outcome in the form of the following assertion.

Theorem 3.3. Let the operator A(t) satisfy condition (i), and let its spectrum satisfy conditions (ii)–
(iv). Then, for any vector function h(0)(t) ∈ V (0), system (3.5) has the unique solution y(0)(t) in space
U(0).
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For uniquely determination of functions αj(t), γiqi(t), consider system (3.4) with
additional conditions:

y(1)(0, 0, 0) = y∗, (3.24)
〈
−∂y

(1)

∂t
, νj(t, τ, σ)

〉
≡ 0 ∀t ∈ [0, T], j = 1, n, (3.25)

〈
−∂y

(1)

∂t
, νiqi(t, τ, σ)

〉
≡ 0, i = 1, m, qi = 0, si − 1, (3.26)

where y∗ ∈ Cn is a constant vector.
We have the following result.

Theorem 3.4. Let conditions of Theorem 3.1 hold. Then, the system (3.4) with additional conditions
(3.24)-(3.25) has solutions of the form (3.11) in which all summands are uniquely determinate except
for γiqi(t)ci(t)σiqi(i = 1, m, qi = 0, si − 1). Functions γiqi(t) in the last summand are determined by
the formula

γiqi(t) = γ
0
iqi

· ePiqi (t) + fiqi(t), (3.27)

where Piqi(t), fiqi(t) are known functions, and γ0iqi arbitrary constants.

Proof. Denote in (3.11) that

gkj(t) =
hkj(t)

λj(t) − λk(t) , gkiqi(t) =
hkiqi(t)

λi(t) − λk(t) . (3.28)

Using (3.11) and condition (3.24), we obtain the equality

n∑
k=1

n∑
j=1

gkj(0)cj(0) +
n∑
k=1

αk(0)ck(0) = y∗. (3.29)

Multiplying this equality scalarly by ds(0), we get

αs(0) =
(
y∗, ds(0)

) − n∑
k=1, k /= s

gks(0) ≡ α0s, s = 1, n. (3.30)

By (3.11) and conditions (3.25), we have

−α̇s(t) − (ċs(t), ds(t))αs(t) −
n∑

j=1, j /= s

gsj(t)
(
ċj(t), ds(t)

)
= 0, s = 1, n. (3.31)

Considering these equations with initial conditions (3.30), we can uniquely obtain functions
αs(t), s = 1, n.
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Now, using (3.11) and conditions (3.26), we get

−γ̇iqi(t) − (ċi(t), di(t))γiqi(t) −
n∑

k=1, k /= i

gkiqi(t)(ċk(t), di(t)) = 0, i = 1, m, qi = 0, si − 1. (3.32)

This implies that γiqi(t) have the form (3.27) where

Piqi(t) = −
∫ t
ti

(ċi(s), di(s))ds,

fiqi(t) = e
Piqi (t)

∫ t
ti

e−Piqi (s)
n∑

k=1, k /= i

gkiqi(s)(ċk(s), di(s))ds.

(3.33)

Theorem 3.4 is proved.

Remark 3.5. If conditions (3.6) hold for h(1)(t, τ, σ) ∈ U(1) and h(0)(t) ∈ U(0), then system (3.3)
has a solution in the spaceU, representable in the form of

y(t, τ, σ) = y(1)(t, τ, σ) + y(0)(t), (3.34)

where y(1)(t, τ, σ) is a function in the form of (3.11), and y(0)(t) is a function in the form of
(3.23); moreover, functions αk(t) ∈ C∞([0, T], C1) are found uniquely in (3.11), and functions
γiqi(t) are determined up to arbitrary constants γ0iqi in the form of (3.27).

Let us give the following result.

Theorem 3.6. Let h(0)(t) ∈ U(0), h(1)(t, τ, σ) ∈ U(1), and conditions (i)–(iv), (3.6), (3.24)–(3.26)
hold. Then, there exist unique numbers γ0iqi involved in (3.27), such that the function (3.34) satisfies
the condition

Py ≡ −∂y
(0)

∂t
−

m∑
i=1

si−1∑
qi=0

(t − ti)qi
qi!

∂y(1)

∂σiqi
+H(0)(t) ∈ V (0), (3.35)

whereH(0)(t) ∈ V (0) is a fixed vector function.

Proof. To determine functions uniquely, calculate

Py ≡ −
m∑
i=1

[
hi(t)
ki(t)

ci(t)
]′
−

n∑
j=m+1

[
hj(t)
λj(t)

cj(t)

]′
−

m∑
i=1

si−1∑
qi=0

(t − ti)qi
qi!

γiqi(t)ci(t)

+
n∑
k=1

m∑
i=1
i /= k

si−1∑
qi=0

(t − ti)qi
qi!

· hiqi(t)
λi(t) − λk(t)ck(t) +H

(0)(t),
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(
Py, di(t)

) ≡ −
[
hi(t)
ki(t)

]′
−

m∑
i=1

hi(t)
ki(t)

[ċi(t), di(t)] −
n∑

j=m+1

[
hj(t)
kj(t)

](
ċj(t), di(t)

)

−
si−1∑
qi=0

m∑
i=1

(t − ti)qi
qi!

γiqi(t) +
[
H(0)(t), di(t)

]
, i = 1, m.

(3.36)

Denote by ri(t) the known function

ri(t) ≡ −
[
hi(t)
ki(t)

]′
−

m∑
i=1

hi(t)
ki(t)

[ċi(t), di(t)] −
n∑

j=m+1

[
hj(t)
kj(t)

](
ċj(t), di(t)

)
+
(
H(0)(t), di(t)

)
,

(3.37)

andwrite the conditions (3.13) for (Py, di(t)). Taking into account expression (3.27) for γiqi(t),
we get

si−1∑
qi=0

γ0iqi

[
Dli

(
(t − ti)qi
qi!

ePiqi (x)
)]

t=ti

+
si−1∑
qi=0

[
Dlifiqi(t)

]
t=ti

=
[
Dliri(t)

]
t=ti
, i = 1, m, li = 0, si − 1.

(3.38)

Using the Leibnitz formula, we obtain that

[
Dli

(
(t − ti)qi
qi!

ePiqi (t)
)]

t=ti

=

[
li∑
ν=0

Cν
li

(
(t − ti)qi
qi!

)(ν)(
ePiqi (t)

)(li−ν)]
t=ti

=

[
qi∑
ν=0

Cν
li

(
(t − ti)qi
qi!

)(ν)(
ePiqi (t)

)(li−ν)]
t=ti

= Cqi
li

(
ePiqi (t)

)(li−qi)
t=ti

,
(3.39)

for li ≥ qi,

[
Dli

(
(t − ti)qi
qi!

ePiqi (t)
)]

t=ti

= 0, (3.40)

for 0 ≤ li ≤ qi.
Therefore, previous equalities are written in the form of

si−1∑
qi=0

γ0iqiC
qi
li

(
ePiqi (t)

)(li−qi)
t=ti

= r0ili
(
i = 1, m, li = 0, si − 1

)
, (3.41)
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where

r0ili = −
si−1∑
qi=0

[
Dlifiqi(t)

]
t=ti

−
[
Dliri(t)

]
t=ti
,

for li = 0, we get γ0i0e
Piqi (ti) = r0i0;

for li = 1, we get γ0i0c
0
1

[
ePiqi (t)

]′
t=ti

+ γ0i1e
Piqi (ti) = r0i1;

...

for li = si − 1, we get γ0i0c
0
si−1
[
ePiqi (t)

]si−1
t=ti

+ · · · + γ0isi−1ePiqi (ti) = r0isi−1.

(3.42)

We obtain from here sequentially the numbers γ0i0, . . . , γ
0
isi−1. Theorem 3.6 is proved.

Thus, if conditions (3.24)–(3.26), (3.35) hold, all summands of solution (3.11) are
defined uniquely.

So, if h(0)(t) ∈ U(0), h(1)(t, τ, σ) ∈ U(1), and conditions (3.6), (3.24)–(3.26), and (3.35)
are valid, then the systems (3.4), (3.5) (and (3.3) together with them) are solvable uniquely
in the class U = U(1) ⊕U(0). Two sequential problems (εk) and (εk+1) are connected uniquely
by conditions (3.23)–(3.25), (3.30); therefore, by virtue of Theorems 3.1–3.6, they are solvable
uniquely in the spaceU.

4. Asymptotical Character of Formal Solutions

Let y−1(t, τ, σ), . . . , yk(t, τ, σ) be solutions of formal problems (ε−1), . . . , (εk) in the space
U, respectively. Compose the partial sum for series (2.4):

Sn(t, τ, σ) =
n∑

k=−1
εkyk(t, τ, σ), (4.1)

and take its restriction yεn(t) = S n(t, ϕ(t)/ε, ψ(t, ε)).
We have the following result.

Theorem 4.1. Let conditions (i)–(v) hold. Then, for sufficiently small ε (0 ≤ ε ≤ ε0), the estimates

∥∥y(t, τ) − yεn(t)∥∥C[0,T] ≤ Cnε
n+1, n = −1, 0, 1, . . . , (4.2)

hold. Here, y(t, ε) is the exact solution of problem (1.1), and yεn(t) is the states above restriction of
the nth partial sum of series (2.4).

Proof. The restriction yεn(t) of series (2.4) satisfies the initial condition yεn(0) = y0 and system
(1.1) up to terms containing εn+1, that is,

ε
dyεn(t)
dt

= A(t)yεn(t) + εn+1Rn(t, ε) + h(t), (4.3)
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where Rn(t, s) is a known function satisfying the estimate

‖R(t, ε)‖C[0,T] ≤ Rn, Rn—const. (4.4)

Under conditions of Theorem 4.1 on the spectrum of the operator A(t) for the fundamental
matrix Y (t, s, ε) ≡ Y (t, ε)Y−1(t, ε) of the system εẎ = A(t)Y , the estimate

‖Y (t, s, ε)‖ ≤ const ∀(t, ε) ∈ Q ≡ {0 ≤ s ≤ t ≤ T}, ∀ε > 0 ∈ [0, ε0], (4.5)

is valid. Here, ε0 > 0− is sufficiently small. Now, write the equation

ε
dΔ(t, ε)
dt

= A(t)Δ(t, ε) − εn+1Rn(t, ε), Δ(0, ε) = 0, (4.6)

for the remainder term Δ(t, ε) ≡ y(t, ε) − yεn(t). We obtain from this equation that

Δ(t, ε) = −εn
∫ t
0
Y (x, s, ε)Rn(s, ε)ds, (4.7)

whence we get the estimate

‖Δ(t, ε)‖C[0,T] ≤ −εnRn, (4.8)

where Rn = max(t,s)∈Q‖Y (t, s, ε)‖ · ‖Rn(t, s)‖ · T . So, we obtain the estimate

∥∥y(t, ε) − yεn(t)∥∥C[0,T] ≤ εnRn, n = −1, 0, 1, . . . . (4.9)

Taking instead of yεn(t) the partial sum

yε,n+1(t) ≡ yεn(t) + εn+1yn+1
(
t,
ϕ(t)
ε
, ψ(t, ε)

)
, (4.10)

we get

∥∥∥∥(y(t, ε) − yεn(t)) − εn+1yn+1
(
t,
ϕ(t)
ε
, ψ(t, ε)

)∥∥∥∥ ≤ εn+1Rn+1, (4.11)

which implies the estimates (4.2). Theorem 4.1 is proved.
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5. Example

Let it be required to construct the asymptotical solution for the Cauchy problem

ε

(
ẏ

ż

)
=

( −5t2 + 4 2t2 − 2

−10t2 + 10 4t2 − 5

)(
y

z

)
+

(
t2h1(t)

0

)
, y(0, ε) = y0, z(0, ε) = z0, (5.1)

where h1(t) ∈ C∞[0, 2], ε > 0 is a small parameter. Eigenvalues of the matrix A(t) =(
−5t2+4 2t2−2

−10t2+10 4t2−5

)
are λ1(t) = −t2, λ2(t) = −1. Eigenvectors of matrices A(t) and A∗(t), are, res-

pectively,

ϕ1 =

(
1

2

)
, ϕ2 =

(
2

5

)
, ψ1 =

(
5

−2

)
, ψ2 =

(−2
1

)
. (5.2)

We get (h(t), ψ1(t)) ≡ 5t2h1(t). Therefore,

(
h(0), ψ1(0)

)
= 0,

d

dt

(
h(0), ψ1(0)

)
= 0. (5.3)

Hence, we can apply to problem (5.1) the above developed algorithm of the regulari-
zation method.

At first, obtain the basic Lagrange-Silvestre polynomials Kji(t). Since ψ(t) ≡ λ1(t) =
−t2, there will be two such polynomials: K00(t) and K01(t).

Take the arbitrary numbers a00(t) and a01(t), and set the interpolation conditions for
the polynomial r(t),

r(t) = a00, ṙ(1) = a01. (5.4)

Expand r(t) onto partial fractions

r(t)
ψ(t)

=
A

t2
+
B

t
, (5.5)

from where

r(t) ≡ A + Bt. (5.6)

Use the interpolation polynomial (5.4). We get A = a00, B = a01. Hence, (5.6) takes the form

r(t) ≡ a00 + ta01. (5.7)

Since numbers a00 and a01 are arbitrary, basic Lagrange-Silvestre polynomials will be coeffici-
ents standing before them, that is,

K00(t) ≡ 1, K01(t) ≡ t. (5.8)
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Introduce the regularizing variables

σ00 = e(1/ε)
∫ t
0 λ1ds

∫ t
0
e−(1/ε)

∫s
0 λ1dx ·K00(s)ds = e−t

3/3ε
∫ t
0
es

3/3εds ≡ p00(t),

σ01 = e(1/ε)
∫ t
0 λ1ds

∫ t
0
e−(1/ε)

∫s
0 λ1dx ·K01(s)ds = e−t

3/3ε
∫ t
0
es

3/3ε · s ds ≡ p01(t),

τ1 =
1
ε

∫ t
0
λ1ds = − t

3

3ε
≡ q1(t), τ2 =

1
ε

∫ t
0
λ2ds = − t

ε
≡ q2(t).

(5.9)

Construct the extended problem corresponding to problem (5.1):

ε
∂w

∂t
+ λ1(t)

∂w

∂τ1
+ λ2(t)

∂w

∂τ2
+ λ1(t)σ00

∂w

∂σ00
+ λ1(t)σ01

∂w

∂σ01
+ ε

∂w

∂σ00
+ εt

∂w

∂σ01
−A(t)w

= h(t), w(0, 0, 0, ε) = w0,

(5.10)

where τ ≡ (τ1, τ2), σ = (σ00, σ01), w = w(t, τ, σ, ε).
Determining solutions of problem (5.10) in the form of a series

w(t, τ, σ, ε) =
∞∑
k=0

εkwk(t, τ, σ), (5.11)

we obtain the following iteration problems:

Lw0 ≡ λ1(t)
[
∂w0

∂τ
+
∂w0

∂σ00
+ t · σ01 ∂w0

∂σ01

]
+ λ2(t)

∂w0

∂τ2
−A(t)w0 = h(t), w0(0, 0, 0) = w0,

(5.12)

Lw1 = −∂w0

∂t
− ∂w0

∂σ00
− t ∂w0

∂σ01
, w1(0, 0, 0) = 0,

...

(5.13)

We determine solutions of iteration problems (5.12), (5.13), and so on in the space U
of functions in the form of

w(t, τ, σ) = w1(t)eτ1 +w2(t)eτ2 +w00(t)σ00 +w01(t)σ01 +w0(t),

w0(t), w1(t), w2(t), w00(t), w01(t) ∈ C∞
(
[0, 2], C2

)
.

(5.14)

Directly calculating, we obtain the solution of system (5.12) in the form of

w0(t, τ, σ) = α1(t)ϕ1e
τ1 + α2(t)ϕ2e

τ2 + γ00(t)ϕ1σ00 + γ01(t)ϕ1σ01 + 5h1(t)ϕ1 − 2t2h1(t)ϕ2,

(5.15)

where αj(t), γji(t) ∈ C∞[0, 2] are for now arbitrary functions.
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To calculate the functions αj(t) and γij(t), we pass to the following iteration problem
(5.13). Taking into account (5.15), it will be written in the form of

Lw1 = −α̇1(t)ϕ1e
τ1 − α̇2(t)ϕ2e

τ2 − γ̇00(t)ϕ1σ00 − γ̇01(t)ϕ1σ01

− 5ḣ1(t)ϕ1 −
(
2t2h1(t)

)′
ϕ2 − γ00(t)ϕ1 − tγ01(t)ϕ1.

(5.16)

For solvability of problem (5.13) in the space U, it is necessary and sufficient to fulfill
the conditions

−α̇1(t) = 0, −α̇2(t) = 0, −γ̇00(t) = 0, −γ̇01(t) = 0,

−5ḣ1(0) − γ00(0) = 0, −5ḧ1(0) − γ̇00(0) − γ01(0) = 0.
(5.17)

Using solution (5.15) and the initial conditionw0(0, 0, 0) = w0, we obtain the equation

α1(0)ϕ1 + α2(0)ϕ2 + 5h1(0)ϕ1 = w0. (5.18)

Multiplying it (scalar) on ψ1 and ψ2, we obtain the values

α1(0) =
(
w0, ψ1

)
− 5h1(0) ≡ 5y0 − 2z0 − 5h1(0),

α2(0) =
(
w0, ψ2

)
= z0 − 2y0.

(5.19)

Using equalities (5.17), and also the initial data (5.19), we obtain uniquely the func-
tions αj(t) and γji(t):

α1(t) = 5y0 − 2z0 − 5h1(0), α2(t) = z0 − 2y0.

γ00(t) = −5ḣ1(0), γ01(t) = −5ḧ1(0).
(5.20)

Substituting these functions into (5.15), we obtain uniquely the solution of problem
(5.12) in the spaceU,

w0(t, τ, σ) =
(
5y0 − 2z0 − 5h1(0)

)
ϕ1e

τ1 +
(
z0 − 2y0

)
ϕ2e

τ2

− 5ḣ1(0)ϕ1σ00 − 5ḧ1(0)ϕ1σ01 + 5h1(t)ϕ1 − 2t2h1(t)ϕ2.

(5.21)
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Producing here restriction on the functions τ = q(t), σ = p(t), we obtain the principal
term of the asymptotics for the solution of problem (5.1):

w0ε(t) =
(
5y0 − 2z0 − 5h1(0)

)
ϕ1e

−t3/3ε +
(
z0 − 2y0

)
ϕ2e

−t/ε

− 5ḣ1(0)ϕ1e
−t3/3ε

∫ t
0
es

3/3εds − 5ḧ1(0)ϕ1e
−t3/3ε

∫ t
0
es

3/3εs ds + 5h1(t)ϕ1

− 2t2h1(t)ϕ2.

(5.22)

The zero-order asymptotical solution is obtained: it satisfies the estimate

‖w(t, ε) −w0ε(t)‖C[0,2] ≤ C1 · ε, (5.23)

where w(t, ε) is an exact solution of problem (1.1), and C1 > 0 is a constant independent of
ε at sufficiently small ε (0 < ε ≤ ε0).
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