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This paper considers the bounded travelling waves of the RLW-Burgers equation. We prove
that there only exist two types of bounded travelling waves, the monotone kink waves and
the oscillatory kink waves. For the oscillatory kink wave, the regularity of its maximum
oscillation amplitude changing with parameters is discussed. Exact expressions of the monotone
kink waves and approximate expressions of the oscillatory ones are obtained in some special
cases. Furthermore, all bounded travelling waves of the RLW-Burgers equation under different
parameter conditions are identified and the evolution of them is discussed to explain the
corresponding physical phenomena.

1. Introduction

The RLW-Burgers equation,

ut + αux + βuux − μuxx − δuxxt = 0, (1.1)

is put forward to describe propagation of surface water waves in a channel [1], where all
variables are rescaled with x proportional to the horizontal coordinate along the channel,
t proportional to the elapsed time, and u(x, t) proportional to the vertical displacement
of the surface of the water from its equilibrium position. In (1.1) constant β characterizes
the nonlinearity. Constants μ and δ are dissipative and dispersive coefficients, respectively.
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In particular, when the Burgers-type dissipative term μuxx disappears, (1.1) becomes the
regularized long-wave (RLW) equation [2]:

ut + αux + βuux − δuxxt = 0. (1.2)

In 1981, Bona et al. [1] developed a numerical scheme to solve (1.1) and found that
the model could give quite a good description of the spatial and temporal development
of periodically generated waves. In 1989 Amick et al. [3] discussed large-time behavior of
solutions to the initial-value problem of (1.1) and used the methods such as energy estimates,
a maximum principle, and a transformation of Cole-Hopf type to obtain sharp rates of
temporal decay of certain norms of the solution. Later, travelling wave solutions of (1.1)
were considered due to their important roles in understanding the complicated nonlinear
wave phenomena and long-time behavior of solution. People paid more attention to some
special exact travelling wave solutions of (1.1) because of the nonintegrability of travelling
wave system of it. In [4], Zhang and Wang gave an exact solution of (1.1) for α = 0, β = 1
by the method of undetermined coefficient in 1992. Later, Wang [5] gave a kink-shape exact
solutions of (1.1) for α = 1, β = 12 by reducing it to the equation of homogeneous form with
a function transformation.

Though there have been some profound results about travelling wave solutions of
(1.1) which contributed to our understanding of nonlinear physical phenomena and wave
propagation, there still exist some unresolved problems from the viewpoint of physics. For
instance, are there other types of bounded travelling waves such as solitary waves, periodic
waves, and oscillatory travelling waves? If they exist, how do they evolve? How does the
oscillatory amplitude of the oscillatory travelling waves vary with dissipative and dispersive
parameters? How can we get their exact expressions and plot their wave profiles? To answer
these questions, we need to figure out how the travelling wave solutions of (1.1) depending
on the parameters. In fact, it has involved bifurcation of travelling wave solutions. In general,
three basic types of bounded travelling waves could occur for a PDE, which are periodic
waves, kink waves, and solitary waves. Sometimes, they are also called periodic wave trains,
fronts, and pulses, respectively. Recall that heteroclinic orbits are trajectories which have two
distinct equilibria as their α and ω-limit sets and homoclinic orbits are trajectories whose
α and ω-limit sets consist of the same equilibrium. So, the three basic types of bounded
travelling wavesmentioned above correspond to periodic, heteroclinic, and homoclinic orbits
of the travelling wave system of a PDE, respectively, (see [6, 7]). It is just the relationship that
make the bifurcation theory of dynamical system become an effective method to investigate
bifurcations of travelling waves of PDEs. In recent decade, many efforts have been devoted to
bifurcations of travelling waves of PDEs since it is an effective method to investigate bounded
travelling waves. In 1997 Peterhof et al. [8] investigated persistence and continuation of
exponential dichotomies for solitary wave solutions of semilinear elliptic equations on
infinite cylinders so that Lyapunov-Schmidt reduction can be applied near solitary waves.
Sánchez-Garduño andMaini [9] considered the existence of one-dimensional travelling wave
solutions in nonlinear diffusion degenerate Nagumo equations and employed a dynamical
systems approach to prove the bifurcation of a heteroclinic cycle. Later Katzengruber et al.
[6] analyzed the bifurcation of travelling waves such as Hopf bifurcation, multiple periodic
orbit bifurcation, homoclinic bifurcation and heteroclinic bifurcation in a standard model
of electrical conduction in extrinsic semiconductors, which in scaled variables is actually
a singular perturbation problem of a 3-dimensional ODE system. In 2002 Constantin and
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Strauss [10] constructed periodic travelling waves with vorticity for the classical inviscid
water wave problem under the influence of gravity, described by the Euler equation with a
free surface over a flat bottom, and used global bifurcation theory to construct a connected set
of such solutions, containing flat waves as well as waves that approach flows with stagnation
points. In 2003 Huang et al. [11] employed the Hopf bifurcation theorem to established the
existence of travelling front solutions and small amplitude travelling wave train solutions
for a reaction-diffusion system based on a predator-prey model, which are equivalent to
heteroclinic orbits and small amplitude periodic orbits in R

4, respectively. Besides, many
results on bifurcations of travelling waves for Camassa-Holm equation, modified dispersive
water wave equation, and KdV equation can be found from [12–15].

Motivated by the reasons above, we try to seek all bounded travelling waves of
the RLW-Burgers equation and investigate their dynamical behaviors. By some techniques
including analyzing the ω-limit set of unstable manifold, investigating the degenerate
equilibria at infinity to give global phase portrait, and so forth, we obtain existence and
uniqueness of bounded travelling waves of the RLW-Burgers equation. We prove that there
only exist two types of bounded travelling waves for the RLW-Burgers equation, a type of
monotone kink waves and a type of oscillatory ones. For the oscillatory kink wave, the
regularity of its maximum oscillation amplitude changing with parameters is discussed.
In addition, exact and approximate expressions for the monotone kink waves and the
oscillatory ones are obtained, respectively, by tanh function method in some special cases.
By these results, all bounded travelling waves of the RLW-Burgers equation are identified
under different parameter conditions. Furthermore, evolution of the two types of bounded
travelling waves is discussed to explain the corresponding physical phenomena. It shows
that the ratio μ/δ and the travelling wave velocity c are critical factors to affect the evolution
of them.

2. Preliminaries

It is well known that the travelling wave solution has the form u(x, t) = u(x − ct), where c /= 0
is the wave velocity. So, we can make the transformation ξ = x − ct to change (1.1) into its
corresponding travelling wave system

δcu′′′ − μu′′ + (α − c)u′ + βuu′ = 0, (2.1)

where ’ denotes d/dξ. Integrating (2.1) once, we get

u′′ − gu′ − eu − fu2 = 0, (2.2)

which has the equivalent form

u′ = v = P(u, v),

v′ = eu + gv + fu2 = Q(u, v),
(2.3)

where e = (c − a)/δc, g = μ/δc, and f = −β/2δc.
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In the following discussion, without loss of generality, we only need to consider the
case e > 0, g < 0, and f < 0. In fact, if e < 0, we can make the transformation u = U − e/f ,
v = v which converts (2.3) into

U′ = v,

v′ = EU + gv + fU2,
(2.4)

where E = −e > 0, that is, the case e > 0 for system (2.3). If g > 0, we can make transformation
v = −V , ξ = −τ which converts (2.3) into

u′ = V,

V ′ = eu +GV + fu2,
(2.5)

where G = −g < 0, that is, the case g < 0 for system (2.3). Similarly, if f > 0, we can make
transformation u = −U, v = −V which converts (2.3) into

U′ = V,

V ′ = eU + gV + FU2,
(2.6)

where F = −f < 0, that is, the case f < 0 for system (2.3).
System (2.3) has two equilibria E1(0, 0) and E2(−e/f, 0) with the Jacobian matrices,

respectively,

J(E1) :=
(
0 1
e g

)
, J(E2) :=

(
0 1
−e g

)
. (2.7)

Obviously, E1 is a saddle and E2 is a stable node (resp., focus) for g2 − 4e ≥ 0 (resp.,
g2 − 4e < 0).

As a special case, when g = 0, E1 is a saddle and E2 is a center. In fact, in this case
system (2.3) is a Hamiltonian system with the first integral

H(u, v) :=
1
2
v2 − e

2
u2 − f

3
u3. (2.8)

By the properties of planar Hamiltonian system, we know there is a unique homoclinic
orbit Υ0 connecting the saddle E1(0, 0). Taking e = 1, f = −1, we can give the global phase
portrait of system (2.3) in Figure 1(a). The homoclinic orbit Υ0 corresponds to the bell-shape
solitary wave of system (1.1) as shown in Figure 1(b).

The homoclinic orbit Υ0 corresponds to the level curve (1/2)v2 − (e/2)u2 − (f/3)u3 =
0 which intersects u-axis at the point (u0, 0), where u0 = −3e/2f . Letting u(0) = u0, from
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Figure 1: Homoclinic orbit and solitary wave.

the first equation of system (2.3), we can compute the expression of the bell-shape solitary
wave as follows:

u(ξ) =
−3e
2f

sech2
(√

e

2
ξ

)
, for ξ ∈ (−∞,+∞), (2.9)

by two integrals

∫u0

u

du

u
√
e +
(
2f/3

)
u
=
∫0

ξ

dξ, for ξ < 0,

∫u

u0

du

−u
√
e +
(
2f/3

)
u
=
∫ ξ

0
dξ, for ξ > 0.

(2.10)

3. The Existence and Uniqueness of Bounded Travelling Waves

By the Bendixon Theorem, for system (2.3), the expression

∂P(u, v)
∂u

+
∂Q(u, v)

∂v
= g, (3.1)

has a fixed sign when g /= 0. It means that system (2.3) has neither closed orbit nor singular
closed orbit (homoclinic loop and heteroclinic loop) when g /= 0. So, all bounded travelling
waves of system (1.1) can only correspond to heteroclinic orbits connecting the two equilibria
E1 and E2. Furthermore, if there exists such a heteroclinic orbit, it is unique (otherwise,
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a heteroclinic loop will arise). Hence, to seek the bounded travelling waves of (1.1) is
equivalent to seek the heteroclinic orbits of the system

u′ = v,

v′ = eu + gv + fu2,

u(−∞) = 0, u(+∞) = − e

f
.

(3.2)

Theorem 3.1. Suppose that e > 0, g < 0 and f < 0. Then system (1.1) has either a unique monotone
increasing bounded kink wave solution if g2 − 4e ≥ 0 or a unique bounded damped oscillatory kink
wave solution if g2 − 4e < 0.

Proof. In the case e > 0, g < 0, f < 0, and g2 − 4e ≥ 0, the E1(0, 0) is a saddle and E2(−e/f, 0)
is a stable node. Furthermore, by [16], there is an unstable manifold Γ of the saddle E1 in first
quadrant, which intersects neither the u-axis nor the v-axis in the neighborhood U(0, ε) for ε
small enough. Take a line L1 : v = k(u + e/f) with the constant k < 0, which intersects v-axis
at point P2. A triangle region is formed by the three lines u = 0, v = 0, and L1 as shown in
Figure 2. If Γ cannot go out of the triangle region, it will tend to E2, since there is no periodic
closed orbit and singular closed orbit. It means we need to prove E2 is theω-limit set of Γ.

From the vector field defined by (2.3), orbits in first quadrant can only go right when
ξ increases. It means that Γ can not intersect the line u = 0.

Assume that Γ intersects the boundary u2 + v2 = ε2 of the neighborhood U(0, ε) at the
point (u0, v0). Obviously, u0 > 0, v0 > 0. Take a point P1(0, v∗), 0 < v∗ < ε. So, on the line
segment P1E2: v = (v∗f/e)u + v∗, u ∈ [0,−e/f], we have

dv

du
|P1E2

=
fu2 +

(
e +
(
gv∗f/e

))
u + v∗g(

v∗f/e
)
u + v∗ . (3.3)
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The denominator (v∗f/e)u + v∗ > 0 for u ∈ (0,−e/f). The numerator have two zeroes
u1 = −gv∗/e and u2 = −e/f . If there exists a v∗ which satisfies the relations of both −gv∗/e <
u0 and v∗fu0/e + v∗ ≤ v0, then (dv/du)|P1E2

> 0 for u ∈ (u0,−e/f). It means that Γ cannot
intersect the line segment P1E2. Therefore, it impossibly intersects the line segment E1E2. In
fact, we can take ε so small that 0 < (fu0/e) + 1 < 1. So v∗ can be chosen by 0 < v∗ <
min (−eu0/g, v0/(1 + fu0/e)).

On the line segment P2E2: v = k(u + e/f), u ∈ [0,−e/f], we have

dv

du
|P2E2

=
F(u)

k
(
u + e/f

) + g, (3.4)

where F(u) = fu2 + eu. From the fact F(−e/f) = 0,

F(u)
u + e/f

=
F(u) − F

(−e/f)[
u − (−e/f)] > F ′

(
− e

f

)
= −e. (3.5)

So, (dv/du)|P2E2
= F(u)/k(u + e/f) + g < −e/k + g. There exists a constant k which satisfies

−e/k + g < k since g2 − 4e > 0. Hence, we can choose the constant k in the interval ((g −√
g2 − 4e)/2), ((g +

√
g2 − 4e)/2)) to make Γ not intersect the line segment P2E2.

Now, we can see that E2 is exactly the ω-limit set of Γ. So, Γ is the unique heteroclinic
orbit connecting E1 and E2. Moreover, from the proof, we can see du/dξ = v > 0, which
means that the bounded kink wave solution corresponding to Γ is monotone increasing with
respect to ξ.

In the case e > 0, g < 0, f < 0, and g2 − 4e < 0, E1 and E2 are a saddle and a stable
focus, respectively. We need to discuss (2.3) globally. By the Poincaré transformation u = 1/y,
v = x/y and dτ = dξ/y, (2.3) can be changed into

x′ = f + ey + gxy − x2y,

y′ = −xy2,
(3.6)

which has no equilibrium in the (x, y)-plane.
Then by another Poincaré transformation u = x/y, v = 1/y, and dτ = dξ/y, (2.3) can

be changed into

x′ = y + P2
(
x, y
)
,

y′ = Q2
(
x, y
)
,

(3.7)

where P2(x, y) = −gxy− ex2y−fx3,Q2(x, y) = −gy2 − exy2 −fx2y. We only need to consider
the equilibrium (0, 0) of system (3.7), which corresponds to the equilibria E+∞ and E−∞ at
infinity in v-axis, seen in Figure 4. One can check that (0, 0) is a degenerate equilibrium with
nilpotent Jacobian matrix. So, we need more precise analysis for it.
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Letting y + p2(x, y) = 0, we can obtain that the implicit function

φ(x) = fx3 + fgx4 +O
(
x5
)
. (3.8)

Then, we have

Ψ(x) = Q2
(
x, φ(x)

)
= −f2x5 − 2f2gx6 +O

(
x7
)
,

δ(x) =
∂P2
(
x, φ(x)

)
∂x

+
∂Q2
(
x, φ(x)

)
∂y

= −4fx2 − 3gfx3 +O
(
x4
)
.

(3.9)

By Theorem 7.2 and its corollary in [17], we know that k = 2m + 1 = 5, m = 2, ak = −f2 < 0,
n = 2, bn = −4f > 0, λ = (−4f)2 + 4(m + 1)(−f2) = 4f2 > 0, which means that the
degenerate equilibrium (0, 0) is an unstable degenerate node. Correspondingly, E+∞ is an
unstable degenerate node, whereas E−∞ is a stable degenerate node.

Further, we need to judge the behaviors of orbits in (u, v)-plane. From system (2.3),
two curves v = 0 and eu + gv + fu2 = 0 divide (u, v)-plane to five regions. In each region,
we need to judge the signs of du/dξ and dv/dξ, which determine the behaviors of orbits. We
show our results in Figure 3.

Next, we prove the existence of a saddle-focus heteroclinic orbit. In fact, from [16],
there exist four invariant manifolds near the saddle E1(0, 0), which are, respectively, the
unstable manifold Γ+1 in the first quadrant, the stable manifold Γ−2 in the second quadrant, the
unstable manifold Γ+3 in the third quadrant and the stable manifold Γ−4 in the fourth quadrant.
Since there is no closed orbits and singular closed orbits in whole (u, v)-plane, E+∞ is the
common α-limit set of Γ−2 and Γ−4 , that is, Γ

−
2 and Γ−4 will tend to E+∞ when ξ → −∞. From the

fact that du/dξ > 0 and dv/dξ < 0 in the second quadrant, one can see the unstable manifold
Γ−2 can not go out of the second quadrant for ξ ∈ (−∞,+∞). Further, noting that the signs of
du/dξ and dv/dξ in regions I, III, IV, and V, when ξ → −∞, one can check that Γ−4 will cross
the u-axis from the right hand of the focus E2(−e/f, 0) to tend to E+∞. So, Γ−2 ∪ Γ−4 ∪ E+∞ ∪ E1

forms a boundary of a closed region which contains the unstable manifold Γ+1 and the focus
E2. By using the result that there is no closed orbits and singular closed orbits in whole (u, v)-
plane again, we can come to the conclusion that the ω-limit set of Γ+1 is the stable focus E2.
Thus, we prove the existence of saddle-focus heteroclinic orbit.

In addition, from Figure 3, one can check that the unstable manifold Γ+3 can not go
out of the third quadrant for ξ ∈ (−∞,+∞) and therefore tends to its ω-limit set E−∞ when
ξ → +∞. Now we are in a position to give the rough global phase portrait of system (2.3) in
Figure 4.

In fact, the saddle-focus heteroclinic orbit shown by us corresponds to the oscillatory
kink wave. These points on the right (left) hand side of focus E2, where the saddle-focus
heteroclinic orbit intersects the u-axis, correspond to the peaks (valleys) of the oscillatory
kink wave. Let (un, 0) be the point where the saddle-focus heteroclinic orbit intersects the
u-axis for the nth time. Obviously, u1 > u2 > u3 > · · · , since E2 is a stable focus. It means that
the oscillatory kink wave is a damped wave.

Theorem 3.2. For the oscillatory kink wave in Theorem 3.1, the maximal oscillation amplitude of it
is increasing with respect to the parameter g.
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Figure 4: Global phase portrait of (2.3) for e > 0, g < 0, and g2 − 4e < 0.

Proof. Let (u∗, 0) be the point at which the saddle-focus heteroclinic orbit firstly intersects the
u-axis when ξ = ξ0. So, u∗ corresponds to the maximal oscillation amplitude of the oscillatory
kink wave. Consider Γ∗, shown by dotted curve in Figure 3, which is the part of the saddle-
focus heteroclinic orbit for ξ ∈ (−∞, ξ0). It is equivalent to consider the solution v(u) of the
following problem:

dv

du
− F(u)

v
= g, u ∈ (0, u∗),

v(0) = 0,

v(u) > 0,

(3.10)

where F(u) = fu2 + eu.
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Assume that v1(u)(u ∈ (0, u∗
1)) and v2(u)(u ∈ (0, u∗

2)) satisfy (3.10) for g = g1 and
g = g2, respectively, where g1 < g2. Let p∗ = min(u∗

1, u
∗
2). Consider the problem

dvi

du
− F(u)

vi
= gi, u ∈ (0, p∗),

vi(0) = 0,

vi(u) > 0,

(3.11)

where i = 1, 2.
Construct two functions

M(u) = exp
(∫u

δ

F(t)
v1(t)v2(t)

dt

)
,

N(u) = (v1(u) − v2(u))M(u),

(3.12)

where 0 < u < p∗ and constant δ ∈ (0,−e/f). Noting that

(v1 − v2)′ +
F(u)
v1v2

(v1 − v2) = g1 − g2, (3.13)

we have dN/du = (g1 − g2)M < 0 for u ∈ (0, p∗). Furthermore, limu→ 0+N(u) = 0 since∫0
δ F(t)/v1(t)v2(t)dt either diverges to −∞ or converges. It means thatN(u) < 0 for u ∈ (0, p∗)
that is, v1(u) < v2(u) for u ∈ (0, p∗). So, u∗

1 ≤ u∗
2.

4. Explicit Expressions of Monotone and Oscillatory Kink Waves

It is difficult to give all exact expressions of the monotone kink waves under the conditions
required in Theorem 3.1. But for some special case, for example, e = 6g2/25, it can be found.

Next, we will apply the extended tanh-function method [18] to deal with the problem.
Firstly, we guess that the monotone kink wave can be expressed as a finite series of tanh
function. Noting that the fact that the Riccati equation:

v′(ξ) = b − v(ξ)2, b > 0 (4.1)

has the particular solution v(ξ) =
√
b tanh(

√
bξ), we suppose that the exact expression of the

monotone kink wave has the form

u(ξ) =
n∑
i=0

aiv(ξ)
i, (4.2)

where v(ξ) satisfies (4.1), n and ai (i = 0, 1 . . . n) are constants to be determined later.
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Substituting (4.2) into (2.2) and replacing v′(ξ) by b − v(ξ)2 repeatedly, we can obtain
a identity with respect to v(ξ). Here, as an example, we calculate the highest nonlinear term
u2 and the highest order derivative term u′′ as follows:

u2 =

(
n∑
i=0

aiv
i

)2

,

u′′ =
(
u′)′ =

(
n∑
i=1

iaiv
i−1v′

)′
=

(
n∑
i=1

iaiv
i−1
(
b − v2

))′

=

(
n∑
i=1

ibaiv
i−1 −

n∑
i=1

iaiv
i+1

)′

=
n∑
i=2

i(i − 1)baiv
i−2v′ −

n∑
i=1

i(i + 1)aiv
iv′

=
n∑
i=2

i(i − 1)baiv
i−2
(
b − v2

)
−

n∑
i=1

i(i + 1)aiv
i
(
b − v2

)
.

(4.3)

One can check that the highest degree of u2 is 2n, whereas the highest degree of u′′ is n + 2.
In order to determine parameter n, we need to balance u2 and u′′ according to the method in
[18, 19]. It requires that the highest degrees of u2 and u′′ should be equal, that is, 2n = n + 2.
Obviously, it is easy to see that n = 2. Thus, the identity mentioned above has the form

(
6 a2 − fa2

2
)
v4 +

(
2 ga2 + 2 a1 − 2 fa1 a2

)
v3

+
(
−8 a2 b + ga1 − f

(
2 a0 a2 + a1

2
)
− e a2

)
v2

+
(−2 a1 b − 2 ga2 b − e a1 − 2 fa0 a1

)
v − fa0

2

+ 2 a2 b2 − ga1 b − e a0 ≡ 0.

(4.4)

Letting all coefficients of vi (i = 0, 1, 2, 3, 4) be zero, we can obtain a0 = −9g2/50f , a1 = 6g/5f ,
a2 = 6/f , b = g2/100, and e = 6g2/25. Substituting these parameters back into (4.2) and the
particular solution of (4.1), we obtain a solution of (2.2) expressed by

u(ξ) = − 3g2

50f

(
2 + 2 tanh

(
g

10
ξ

)
+ sech2

(
g

10
ξ

))
. (4.5)

One can check that u(ξ) → 0 when ξ → −∞ and u(ξ) → −e/f when ξ → +∞.
So, by the uniqueness, it is the exact expression of monotone increasing kink wave of (1.1)
corresponding to the heteroclinic orbit of system (2.3) connecting the two equilibria E1(0, 0)
and E2(−e/f, 0). Taking g = −10, f = −1, we can give the picture of the solution in Figure 5(a).

In contrast to the monotone kink wave, it is more difficult to give the exact expression
of the oscillatory kinkwave solution. Evenwhen |g| is small, we can only give an approximate
solution of it. In fact, the saddle-focus heteroclinic orbit is generated by the unstable manifold
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Figure 5: The monotone and oscillatory kink wave.

of saddle E1(0, 0) when the homoclinic orbit discussed in Section 2 breaks. So, when |g| is
small enough, enlightened by the expression of homoclinic orbit in Section 2, we can assume
that the approximate expression of the oscillatory kink wave solution is of the form

u(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

−3e
2f

sech2
(√

e

2
ξ

)
, ξ ∈ (−∞, 0],

− e

f
− e

2f
exp(bξ) cos aξ, b < 0, ξ ∈ (0,+∞).

(4.6)

Next, we only need to determine the coefficients a and b in (4.6). Substituting the
second expression of (4.6) into (2.3), we get

−e
2(exp(bξ))2 cos (aξ)2

4f
+
e
(−b2 + a2 + gb − e

)
2f

cos aξ +
ea
(
2 b − g

)
2f

sin aξ ≡ 0. (4.7)

Neglecting the first small term, we can solve a =
√
4e − g2/2, b = g/2. Taking e = 1, g = −0.3,

f = −1, we can give picture of the approximate solution in Figure 5(b).

5. Results

From the transformation made in Section 2 and the proofs in Section 3, we can obtain
complete results about bounded travelling waves of (1.1) under different parameter
conditions as listed in Table 1. Furthermore, from these results and Theorem 3.2, we can see,
for the oscillatory kink wave solution, the maximum oscillation amplitude increases with
respect to g for g < 0 but decreases for g > 0. It means that the maximum oscillation
amplitude decreases with respect to |g|.

So, taking the case e > 0, g < 0, f < 0, for example, we can exhibit the evolution of
bounded travelling waves of (1.1) as follows: when g = 0, there is a bell-shape solitary wave
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Table 1: Bounded travelling waves of (1.1) under different parameter conditions.

Probability of parameters Type of traveling wave

e > 0

f > 0
g2 − 4e ≥ 0 g > 0 I

g < 0 II

g2 − 4e < 0 g > 0 III
g < 0 IV

f < 0
g2 − 4e ≥ 0 g > 0 II

g < 0 I

g2 − 4e < 0 g > 0 III
g < 0 IV

e < 0

f > 0
g2 + 4e ≥ 0 g > 0 I

g < 0 II

g2 + 4e < 0 g > 0 III
g < 0 IV

f < 0
g2 + 4e ≥ 0 g > 0 II

g < 0 I

g2 + 4e < 0 g > 0 III
g < 0 IV

I: monotone increasing kink wave; II: monotone decreasing kink wave; III: increasing oscillatory kink wave; IV: damped
oscillatory kink wave.

for system (1.1). Then the solitary wave evolves to an oscillatory kink wave when −√4e < g <
0. The oscillation amplitude of it becomes smaller and smaller when g approaches to −√4e.
Until g = −√4e, the oscillation disappears thoroughly and a monotone kink wave appears
instead.

From the variable transformation g = μ/δc made in Section 2 and the discussion
above, one can see that the ratio μ/δ and the wave velocity c play important roles in
the evolution of travelling wave of system (1.1). When μ/δ = 0, that is, without the
dissipative term, the RLW-Burgers equation has a solitary wave because of the balance
between nonlinearity and dispersion. Once μ varies from 0 to nonzero, the solitary wave
evolves an oscillatory kink wave. Either the ratio |μ/δ| increasing or |c| decreasing will lead
to |g|, the absolute value of coefficient of damping terms in the travelling wave system (2.2),
increasing. So, the oscillation amplitude of the oscillatory kink wave will decrease until it
evolves to a monotone kink wave with the oscillation disappearing thoroughly.
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