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Combiningwith the Crank-Nicolson/leapfrog scheme in time discretization, Chebyshev-Legendre
spectral method is applied to space discretization for numerically solving the Benjamin-Bona-
Mahony-Burgers (gBBM-B) equations. The proposed approach is based on Legendre Galerkin
formulation while the Chebyshev-Gauss-Lobatto (CGL) nodes are used in the computation.
By using the proposed method, the computational complexity is reduced and both accuracy
and efficiency are achieved. The stability and convergence are rigorously set up. Optimal error
estimate of the Chebyshev-Legendre method is proved for the problem with Dirichlet boundary
condition. The convergence rate shows “spectral accuracy.” Numerical experiments are presented
to demonstrate the effectiveness of the method and to confirm the theoretical results.

1. Introduction

We are interested in numerically solving initial boundary value problem of the generalised
Benjamin-Bona-Mahony-Burgers (gBBM-B) equations in the following form:

ut − μuxxt − αuxx + βux +
(
g(u)

)
x = 0, (1.1)

where u = u(x, t) represents the fluid velocity in horizontal direction x, parameters μ ∈ [0, 1],
α > 0 and β are any given constants, and g(u) is a nonlinear function with certain smoothness.
Notation ut denotes the first derivative of uwith respect to temporal t and ux, uxx are the first
and second derivatives with respect to space variable x.
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When g(u) = (1/2)u2 with α = 0 and β = 1, (1.1) is the alternative regularized long-
wave equation proposed by Peregrine [1] and Benjamin et al. [2]. Equation (1.1) features
a balance between nonlinear and dispersive effects but takes no account of dissipation for
the case α = 0. In the physical sense, (1.1) with the dissipative term αuxx is proposed if the
good predictive power is desired, such problem arises in the phenomena for both the bore
propagation and the water waves.

The well posedness and some asymptotic properties of solutions to this problem were
discussed by Karch [3], Zhang [4], and so on. For more knowledge about BBM-B equations,
please consult with [5, 6] and so forth.

In [7], Al-Khaled et al. implemented the Adomian decomposition method for obtain-
ing explicit and numerical solutions of the BBM-B equation (1.1). By applying the classical Lie
method of infinitesimals, Bruzón et al. [8–10] obtained, for a generalization of a family of BBM
equations, many exact solutions expressed by various single and combined nondegenerative
Jacobi elliptic functions. Tari and Ganji [11] have applied twomethods known as “variational
iteration” and “homotopy perturbation” methods to derive approximate explicit solution
for (1.1) with g(u) = (1/2)u2. El-Wakil et al. [12] and Kazeminia et al. [13] used the “exp-
function” method with the aid of symbolic computational system to obtain the solitary
solutions and periodic solutions for (1.1)with g(u) = (1/2)u2. Variational iteration combining
with the exp-function method to solve the generalized BBM equation with variable
coefficients was conducted by Gómez and Salas [14]. In [15], Fakhari et al. solved the BBM-
B equation by the homotopy analysis method to evaluate the nonlinear equation (1.1) with
g(u) = (1/2)u2, α = 0, and β = 1. A tanh method and sinc-Galerkin procedure were used by
Alqruan and Al-Khaled [16] to solve gBBM-B equations. Omrani and Ayadi [17] used Crank-
Nicolson-type finite difference method for numerical solutions of the BBM-B equation in one
space dimension. In [18], a local discontinuous Galerkin finite element method was used
and an optimal error estimate was derived by the authors for numerical solution to BBM-B
equation. To our knowledge, there is little work on spectral method for numerical solution of
the gBBM-B equations.

For completeness, (1.1) may be complemented with certain initial and boundary
conditions. Here in this paper we will deal with the initial boundary value problem

ut − μuxxt − αuxx + βux +
(
g(u)

)
x = f, x ∈ Λ := [−1, 1], t > 0, (1.2)

with Dirichlet-type boundary conditions

u(1, t) = u(−1, t) = 0, t ≥ 0, (1.3)

and initial condition

u(x, 0) = u0(x), x ∈ Λ, (1.4)

The appearance of the right-hand side term in (1.2) is just for convenience in order to test
the numerical efficiency of the proposed method. For other kinds of boundary conditions, a
penalty method may be used as in [19–21].
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Let L2(Λ) be a square integrable function space with inner product and norm as
follows:

(u, v) =
∫

Λ
u(x)v(x)dx, ‖u‖ =

√
(u, u). (1.5)

For any positive integer r, Hr(Λ) denotes the Sobolev-type space defined as

Hr(Λ) =

{

u ∈ L2(Λ) :
∂ku

∂xk
∈ L2(Λ), 0 ≤ k ≤ r

}

. (1.6)

We denote the norm and seminorm of Hr(Λ) by ‖ · ‖r and | · |r , respectively. For any real r,
Hr(Λ) is defined by space interpolation [22]. H1

0(Λ) is a subspace of H1(Λ) in which the
function vanishes at ±1.

We reformulate the problem (1.2)–(1.4) in weak form: find u(t) ∈ H1
0(Λ), such that,

for all φ ∈ H1
0(Λ),

(
ut, φ

)
+ μ
(
uxt, φx

)
+ α
(
ux, φx

)
= β
(
u, φx

)
+
(
g(u), φx

)
+
(
f, φ
)
, t ∈ (0, T],

(
u, φ
)
=
(
u0, φ

)
, t = 0.

(1.7)

Due to the high accuracy, spectral/pseudospectral methods are increasingly popular
during the last two decades [23–27]. In the context of spectral methods, Legendre and Cheby-
shev orthogonal polynomials are extensively used for the nonperiodic cases. The Legendre
method is natural in the theoretical analysis due to the unity weight function. However, it is
well known that the applications of Legendre method are limited by the lack of fast transform
between the physical space and the spectral space and by the lack of explicit evaluation
formulation of the Legendre-Gauss-Lobatto (LGL) nodes. A Chebyshev-Legendre method
that implements the Legendre method at Chebyshev nodes was proposed by Don and
Gottlieb [19] for the parabolic and hyperbolic equations. The approach enjoys advantages
of both the Legendre and Chebyshev methods. The Chebyshev-Legendre methods were
also applied to elliptic problems [28], nonlinear conservative laws in [29, 30], Burgers-like
equations in [21], KdV equations in [31], generalised Burgers-Fisher equation [32], nonclas-
sical parabolic equation [33], and optimal control problems [34]. In this paper, Chebyshev-
Legendre spectral method will be applied to solving the initial boundary value problem
(1.2)–(1.4). The proposed approach is based on Legendre-Galerkin formulation while the
Chebyshev-Gauss-Lobatto (CGL) nodes are used in the computation. The computational
complexity is reduced and both accuracy and efficiency are achieved by using the proposed
method. Compared with the generalised Burgers equation, the gBBM-B equation has an
additional term −μuxxt, which serves as a stabilizer. Due to this reason, numerical analysis of
the Chebyshev-Legendre schemes for gBBM-B equations is actually much easier than that for
generalised Burgers equations in [20, 21].

This paper is organized as follows. In Section 2, we set up Chebyshev-Legendre
spectral method for gBBM-B equations and show how to implement the scheme. Section 3 is
preliminary that involves some lemmas which will be used later. In Section 4, error analysis is
performed for both semidiscretization and fully discretization schemes. We obtain an optimal
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convergence rate in sense of H1-norm. In Section 5, numerical experiments are presented to
support the theoretical results. Conclusion is given in Section 6.

2. Chebyshev-Legendre Spectral Method

In this section, we first set up semidiscretization and fully discretization Chebyshev-Legendre
spectral method for problem (1.2) and then give how to implement the proposed scheme.

2.1. Chebyshev-Legendre Spectral Method

Let PN be the set of all algebraic polynomials of degree at mostN. We introduce the operator
of interpolation at the CGL nodes {ηi = cos(iπ/N)}0≤i≤N , denoted by ΠC

N , which satisfies
ΠC

Nf ∈ PN and

ΠC
Nf
(
ηi
)
= f
(
ηi
)
, 0 ≤ i ≤ N. (2.1)

Denote

VN = PN(Λ) ∩H1
0(Λ). (2.2)

The weak form (1.7) leads to the following semidiscretization Legendre-Galerkin
scheme: find uN(t) ∈ VN , such that, for all φN ∈ VN ,

(
uNt, φN

)
+ μ
(
uNxt, φNx

)
+ α
(
uNx, φNx

)

= β
(
uN, φNx

)
+
(
g(uN), φNx

)
+
(
f, φN

)
, t ∈ (0, T],

(
uN, φN

)
=
(
u0, φN

)
, t = 0.

(2.3)

Now we give a Chebyshev-Legendre spectral scheme for the problem (1.2).
The semidiscretization Chebyshev-Legendre spectral method for (1.2) is to find

uN(t) ∈ VN , such that, for all φN ∈ VN ,

(
uNt, φN

)
+ μ
(
uNxt, φNx

)
+ α
(
uNx, φNx

)

= β
(
uN, φNx

)
+
(
ΠC

Ng(uN), φNx

)
+
(
ΠC

Nf, φN

)
, t ∈ (0, T],

(
uN, φN

)
=
(
ΠC

Nu0, φN

)
, t = 0.

(2.4)

Remark 2.1. The difference between Legendremethod (2.3) and Chebyshev-Legendremethod
(2.4) lies in the treatment of three terms: nonlinear term, source term and initial data. But such
treatment leads to two advantages: one is improvement of convergence rate in theoretical
analysis, the other is free from computing the LGL nodes.We only need Chebyshev transform
and Chebyshev-Legendre transform in computing, and the former can perform through FFT.
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For the time advance, we adopt the second-order Crank-Nicolson/leapfrog. For a
given time step τ , let St = {kτ : k = 1, 2, . . . ,Mt, t = Mtτ}; the notations vt̂(t) and v̂(t) are
used as

vt̂(t) =
v(t + τ) − v(t − τ)

2τ
, v̂(t) =

v(t + τ) + v(t − τ)
2

. (2.5)

Let tk = kτ and uk = u(tk). The fully discretization Chebyshev-Legendre spectral method for
(1.2) is to find uk

N(k = 0, 1, . . . ,MT = �T/τ�) ∈ VN , such that, for all φN ∈ VN ,

(
uk
Nt̂
, φN

)
+ μ
(
uk
Nxt̂

, φNx

)
+ α
(
ûk
Nx, φNx

)

= β
(
ûk
N, φNx

)
+
(
ΠC

Ng
(
uk
N

)
, φNx

)
+
(
ΠC

Nf̂k, φN

)
, k = 1, . . . ,MT − 1,

(
u1
N − u0

N

τ
, φN

)

+ μ

(
u1
Nx − u0

Nx

τ
, φNx

)

+ α

(
u1
Nx + u0

Nx

2
, φNx

)

= β

(
u1
N + u0

N

2
, φNx

)

+
(
ΠC

Ng
(
u0
N

)
, φNx

)
+

(

ΠC
N

f1 + f0

2
, φN

)

,

u0
N = ΠC

Nu0.

(2.6)

2.2. Implementation of the Chebyshev-Legendre Spectral Method

Let Lk be the kth degree Legendre polynomial that is mutually orthogonal in L2(Λ), that is,

(
Lk, Lj

)
=
∫

Λ
Lk(x)Lj(x)dx =

2
2k + 1

δkj . (2.7)

We define (in [35])

Φk(x) = Lk(x) − Lk+2(x). (2.8)

One useful property of the Legendre polynomials is

(2n + 1)Ln(x) = L′
n+1(x) − L′

n−1(x), (2.9)

which gives the following relation:

Φ′
k(x) = −(2k + 3)Lk+1(x). (2.10)

It is easy to verify that, forN ≥ 2,

VN = span{Φ0,Φ1, . . . ,ΦN−2}. (2.11)
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Let us denote

ui
N =

N−2∑

k=0

ûi
kΦk, ûi =

(
ûi
0, û

i
1, . . . , û

i
N−2
)T

,

ĝi
k =
(
ΠC

Ng
(
ui
N

)
,Φ′

k

)
, ĝi =

(
ĝi
0, ĝ

i
1, . . . , ĝ

i
N−2
)T

,

f̂ i
k =
(
ΠC

Nfi,Φk

)
, f̂i =

(
f̂ i
0, f̂

i
1, . . . , f̂

i
N−2
)T

,

û0,k =
(
ΠC

Nu0,Φk

)
, û0 = (û0,0, û0,1, . . . , û0,N−2)

T ,

mij =
(
Φj ,Φi

)
, M =

(
mij

)
i,j=0,1,...,N−2,

sij =
(
Φj ,Φ′

i

)
, S =

(
sij
)
i,j=0,1,...,N−2,

pij =
(
Φ′

j ,Φ
′
i

)
, P =

(
pij
)
i,j=0,1,...,N−2.

(2.12)

Then, scheme (2.6) leads to the following linear system series: For k = 1, 2, . . . ,MT

[
M +

(
μ + ατ

)
P − βτS

]
ûk+1 =

[
M +

(
μ − ατ

)
P + βτS

]
ûk−1 + 2τ ĝk + τ

(
f̂k+1 + f̂k−1

)
, (2.13)

starting with

[
M +

(
μ +

ατ

2

)
P − βτ

2
S
]
û1 =

[
M +

(
μ − ατ

2

)
P +

βτ

2
S
]
û0 + τ ĝ0 +

τ

2

(
f̂1 + f̂0

)
,

Mû0 = û0.

(2.14)

By using integration by parts and orthogonality of Legendre polynomials, one can
easily determine that the matrix M is pentadiagonal and P diagonal. Moreover, the nonzero
entries of the matrices M, P can be determined by using the orthogonal relation (2.7) and
(2.10) as follows:

mjk = mkj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2
2k + 1

+
2

2k + 5
, j = k,

− 2
2k + 5

, j = k ± 2,

0, otherwise,
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sjk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2, j = k − 1,

2, j = k + 1,

0, otherwise,

pjk = pkj =

⎧
⎨

⎩

4k + 6, j = k;

0, otherwise.

(2.15)

Hence, the matrices in the left-hand side of (2.13) are banded and the linear system
(2.13) can be easily solved.

For evaluation of the last three terms on the right-side hand in (2.13), it can be split
into two steps: one step is the transform from its values at CGL nodes to the coefficients of its
Chebyshev expansion, which can be done by using fast Chebyshev transform or fast Fourier
transform. The other step involves the fast Legendre transform between the coefficients of the
Chebyshev expansion and of the Legendre expansion, which has been addressed by Alpert
and Rokhlin [36]. It is worthy to note that Shen suggested an algorithm [28] that seems more
attractive for moderate N.

3. Preliminaries

In this section, we introduce a suitable comparison function and give some lemmas needed in
error analysis. We denote by C a generic positive constant independent ofN or any function.
Now we introduce two projection operators and their approximation properties. One is PL

N :
L2(Λ) → PN such that

(
PL
Nv, φ

)
=
(
v, φ
)
, ∀φ ∈ PN. (3.1)

The approximation property (Theorem 6.1 and (6.8) in [24], page 258, 261) is the following.

Lemma 3.1. For any u ∈ Hr(Λ)(r > 1), there exists a positive constant C independent of N such
that

∥∥∥u − PL
Nu
∥∥∥ ≤ CN−r‖u‖r , (3.2)

∥∥∥u − PL
Nu
∥∥∥
s
≤
⎧
⎨

⎩

CN3s/2−r‖u‖r , s ≤ 1,

CN2s−1/2−r‖u‖r , s ≥ 1.
(3.3)

The other projection operator is defined as follows:

PNu(x) =
∫x

−1
PL
N−1uy

(
y
)
dy. (3.4)
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It is easy to know that PN : H1
0(Λ) → VN such that

(
(PNv)x, φx

)
=
(
vx, φx

)
, ∀φ ∈ VN. (3.5)

Its approximation property (Theorem 6.2 in [24], page 262) is the following.

Lemma 3.2. For any u ∈ Hr(Λ) ∩H1
0(Λ), there exists a positive constant C independent ofN such

that

‖u − PNu‖s ≤ CNs−r‖u‖r , 0 ≤ s ≤ 1 ≤ r. (3.6)

For the interpolation operatorΠC
N at the Chebyshev-Gauss-Lobatto points, we cite the

following approximation result [29].

Lemma 3.3. If u ∈ H1(Λ), then

N
∥∥∥ΠC

Nu − u
∥∥∥ +
∣∣∣ΠC

Nu
∣∣∣
1
≤ C‖u‖1, (3.7)

moreover, if u ∈ Hs(Λ)(s ≥ 1), then

∥∥∥ΠC
Nu − u

∥∥∥
l
≤ CNl−s‖u‖s, 0 ≤ l ≤ 1. (3.8)

In general, the discretization inner product and norm are defined as follows:

(u, v)N =
N∑

j=0

u
(
yj

)
v
(
yj

)
ωj, ‖u‖N =

√
(u, u)N, (3.9)

where yj and ωj (j = 0, 1, . . . ,N) are the Legendre-Gauss-Lobatto points and the
corresponding quadrature weights. Associating with this quadrature rule, we denote by ΠL

N

the Legendre interpolation operator. The following result is cited from [26].

Lemma 3.4. If u ∈ Hσ(Λ)(σ ≥ 1), then

∥∥∥ΠL
Nu − u

∥∥∥
l
≤ CNl−σ‖u‖σ, 0 ≤ l ≤ 1,

|(u, v) − (u, v)N | ≤ CN−σ‖u‖σ‖v‖, ∀v ∈ PN.

(3.10)

Further, if u ∈ PN , then

‖u‖ ≤ ‖u‖N ≤
√

2 +
1
N

‖u‖, (3.11)

‖u‖L∞(Λ) ≤
N + 1√

2
‖u‖. (3.12)
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4. Error Analysis of the Schemes

In this section, we set up the stability and convergence results first for the semidiscretization
Chebyshev-Legendre spectral method (2.4) and then for the fully discretization scheme (2.6).

4.1. Stability and Convergence of Scheme (2.4)

Since the initial value and the right-hand side term cannot be exactly evaluated, we consider
here how stable the numerical solution of (2.4) depending on the initial value and the right-
hand side term. As in [21], we suppose that uN and f are computed with errors ũ and f̃
respectively. That is,

(
ũt, φN

)
+ μ
(
ũxt, φNx

)
+ α
(
ũx, φNx

)
= β
(
ũ, φNx

)
+
(
ΠC

NG, φNx

)
+
(
ΠC

Nf̃, φN

)
, ∀φN ∈ VN,

(4.1)

where G := [g(uN + ũ) − g(uN)]. Since ũ ∈ VN leads to (ũ, ũx) = 0, we come out to, by taking
φN = ũ in (4.1),

1
2
d

dt

[
‖ũ‖2 + μ|ũ|21

]
+ α|ũ|21 =

(
ΠC

NG, ũx

)
+
(
ΠC

Nf̃, ũ
)
. (4.2)

Now we need to estimate the nonlinear term ΠC
NG in the right-hand side (4.2). Let C0

be a positive constant and

uM = max
0≤s≤T

{
‖u(s)‖L∞(Λ) + ‖ux(s)‖L∞(Λ)

}
,

Cg(z1, z2) = max
|z|≤|z1|+|z2|

∣∣g ′(z)
∣∣ + (|z1| + |z2|) max

|z|≤|z1|+|z2|

∣∣g ′′(z)
∣∣.

(4.3)

For any given t ∈ (0, T], if

‖ũ(s)‖L∞(Λ) ≤ C0, ∀s ∈ (0, t), (4.4)

then

|G| = ∣∣g ′(uN + θũ)ũ
∣∣ ≤ Cg(uM,C0)|ũ|,

∣∣G′∣∣ ≤ ∣∣g ′′(uN + θũ)uNxũ + g ′(uN + ũ)ũx

∣∣

≤ Cg(uM,C0)(|ũx(s)| + |ũ(s)|).

(4.5)
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As an immediate consequence of the above estimates and inequality (3.8), it is true that, for
large N,

∥
∥
∥ΠC

NG
∥
∥
∥ ≤
∥
∥
∥ΠC

NG −G
∥
∥
∥ + ‖G‖ ≤ CN−1|G|1 + ‖G‖

≤ CN−1Cg(uM,C0)(|ũ|1 + ‖ũ‖) + Cg(uM,C0)‖ũ‖

≤ CCg(uM,C0)
(
N−1 + 1

)
‖ũ‖ + CCg(uM,C0)

N
|ũ|1.

(4.6)

Hence, it is true that, for large N,

∣
∣
∣ΠC

NG, ũx

∣
∣
∣ ≤ C∗‖ũ‖2 + α

2
|ũ|21. (4.7)

Therefore, integrating (4.2) in time leads to

‖ũ(s)‖2 + μ|ũ(s)|21 + α

∫ s

0
|ũ(t)|21dt ≤ ‖ũ(0)‖2 + μ|ũ(0)|21 + C

∫s

0
‖ũ(t)‖2dt

+ 2
∫ s

0

∥∥∥ΠC
Nf̃(t)

∥∥∥
2
dt.

(4.8)

Denoting

E(ũ, s) = ‖ũ(s)‖2 + μ|ũ(s)|21 + α

∫ s

0
|ũ(t)|21dt,

ρ(ũ, s) = ‖ũ(0)‖2 + μ|ũ(0)|21 + 2
∫ s

0

∥∥∥ΠC
Nf̃(t)

∥∥∥
2
dt,

(4.9)

then, we have

E(ũ, t) ≤ ρ(ũ, t) + C

∫ t

0
E(ũ(s), s)ds. (4.10)

We have the following stability result.

Theorem 4.1. If g ∈ C2(R) and

ρ(ũ, T) ≤ 2C2
0

e−CT

(N + 1)2
, (4.11)

then there holds the following inequality:

E(ũ, t) ≤ ρ(ũ, t)eCt, ∀t ∈ (0, T]. (4.12)
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Proof. We need to verify that

‖ũ(s)‖L∞(Λ) ≤ C0, ∀s ∈ (0, t). (4.13)

Otherwise, there must exist t1 < T such that

max
0≤s≤t1

‖ũ(s)‖L∞(Λ) ≤ C0, ‖ũ(t1)‖L∞(Λ) = C0, (4.14)

while by (4.10), (4.11), and the Gronwall inequality, we have

E(ũ, t1) ≤ ρ
(
ũ, f̃ , t1

)
eCt1 < ρ

(
ũ, f̃ , T

)
eCT ≤ 2C2

0(N + 1)−2. (4.15)

Thus, from Lemma 3.4,

‖ũ(t1)‖L∞(Λ) ≤
N + 1√

2
‖ũ(t1)‖ ≤ N + 1√

2

√
E(ũ, t1) < C0, (4.16)

which is contradictorywith (4.14). Thus, (4.35) holds, andwe derive (4.12) from the Gronwall
inequality.

Remark 4.2. Condition (4.11) in Theorem 4.1 means that errors occurrs during evaluation of
the initial value and the right-hand side term should not be larger than 2C2

0(e
−CT/(N + 1)2),

which becomes small when N goes large. This condition may be caused by the nonlinearity
of the problem. Also, the condition could be satisfied because the orthogonal polynomial
approximation goes faster than 1/(N + 1)2 in general. As for the result (4.12) in Theorem 4.1,
it is analogous to those in [29–33] just for different energy norm E(u, t).

Next we turn to convergence of the semidiscretization scheme (2.4). Let u(t) and uN(t)
be the solutions to (1.7) and (2.4), respectively.We denote u∗ = PNu, e(t) = uN(t)−u∗(t). Then
we have the following result.

Theorem 4.3. If u ∈ C1(0, T ;Hr(Λ) ∩H1
0(Λ)), f ∈ C(0, T ;Hr(Λ) ∩H1

0(Λ))(r > 1), and g(z) ∈
C1(R) which satisfies the assumption of Theorem 4.1, then the following error estimate

‖e(t)‖2 + μ|e(t)|21 + α

∫ t

0
|e(s)|21ds ≤ C

(
1 + μN2

)
N−2r , 0 ≤ t ≤ T, (4.17)

holds.

Proof. From (1.7), (2.4), and (3.5), we know that

[(
et, φ
)
+ μ
(
ext, φx

)
+ α
(
ex, φx

)] − β
(
e, φx

)
=
[(

ΠC
Ng(uN) − g(u), φx

)]
+
[(
(u − u∗)t, φ

)]

+ β
[(
u − u∗, φx

)]
+
[(

f −ΠC
Nf, φ

)]
.

(4.18)
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Taking φ = e in (4.18), we have

1
2
d

dt

[
‖e‖2 + μ|e|21

]
+ α|e|21 ≤ I1 + I2 + I3 + I4, (4.19)

I1 :=
∣
∣
∣
(
ΠC

Ng(uN) − g(u), ex
)∣∣
∣ ≤
∥
∥
∥ΠC

Ng(uN) − g(u)
∥
∥
∥|e|1 ≤

1
α

∥
∥
∥ΠC

Ng(uN) − g(u)
∥
∥
∥
2
+
α

4
|e|21,

I2 := |((u − u∗)t, e)| ≤ ‖ut − PNut‖‖e‖ ≤ CN−2r‖ut‖2r + ‖e‖2,

I3 := β|((u − u∗), ex)| ≤ ‖u − PNu‖|e|1 ≤
1
α
CN−2r‖u‖2r +

α

4
|e|21,

I4 :=
∣
∣
∣
(
f −ΠC

Nf, e
)∣∣
∣ ≤
∥
∥
∥f −ΠC

Nf
∥
∥
∥
2
+ ‖e‖2 ≤ CN−2r∥∥f

∥
∥2
r + ‖e‖2.

(4.20)

Next, we estimate ‖ΠC
Ng(uN) − g(u)‖,

∥∥∥ΠC
Ng(uN) − g(u)

∥∥∥ ≤
∥∥∥ΠC

Ng(uN) − g(uN)
∥∥∥ +
∥∥g(uN) − g(u∗)

∥∥ +
∥∥g(u∗) − g(u)

∥∥

≤ CN−r∥∥g(uN)
∥∥
r +
∥∥g ′(uN + θu∗)

∥∥‖e‖ + ∥∥g ′(u∗ + θu)
∥∥‖u∗ − u‖

≤ CN−r‖u‖r + C′‖e‖.
(4.21)

Combining with the estimates above, inequality (4.19) becomes

d

dt

[
‖e‖2 + μ|e|21

]
+ α|e|21 ≤ CN−2r

(
‖u‖2r + ‖ut‖2r +

∥∥f
∥∥2
r

)
+ C′‖e‖2. (4.22)

Denoting

E(t) = ‖e(t)‖2 + μ|e(t)|21 + α

∫ t

0
|e(s)|21ds,

ρ(t) = ‖e(0)‖2 + μ|e(0)|21 + CN−2r
(∫ t

0
‖u(s)‖2r + ‖ut(s)‖2r +

∥∥f(t)
∥∥2
rds

)

,

(4.23)

we have

E(t) ≤ ρ(t) + C

∫ t

0
E(s)ds. (4.24)

Thanks to the Gronwall inequality, we get

E(t) ≤ ρ(t)eCt, 0 < t ≤ T. (4.25)
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Because of e(0) = PNu0 − ΠC
Nu0 = (u0 − PNu0) − (u0 − ΠC

Nu0), we combine with the
approximation properties (3.6)–(3.3) to obtain

‖e(0)‖ ≤ ‖u0 − PNu0‖ +
∥
∥
∥u0 −ΠC

Nu0

∥
∥
∥ ≤ CN−r‖u‖r ,

|e(0)|1 ≤ |u0 − PNu0|1 +
∣∣
∣u0 −ΠC

Nu0

∣∣
∣
1
≤ CN1−r‖u‖r .

(4.26)

Then it is easy to show the desired result.

Remark 4.4. The result in Theorem 4.3 is optimal in sense of H1 estimation.

4.2. Stability and Convergence of the Fully Discretization Scheme

In this section we consider the stability and convergence of the fully discretization scheme
of (2.6). We assume that all functions below are valued at time s unless otherwise specified.
Suppose that uN and f in (2.6) have the errors ũ and f̃ , respectively. Then, we have

(
ũt̂, φ

)
+ μ
(
ũxt̂, φx

)
+ α
(
̂̃ux, φx

)
= β
(
̂̃u, φx

)
+
(
ΠC

Ng̃, φx

)
+
(
ΠC

N
̂̃
f, φ

)
, (4.27)

where g̃ = g(uk
N + ũ) − g(uk

N). Taking φ = ̂̃u in (4.27), we get

1
2

[
‖ũ‖2

t̂
+ μ
(
|ũ|21
)

t̂

]
+ α
∣∣∣̂̃u
∣∣∣
2

1
=
(
ΠC

Ng̃, ̂̃ux

)
+
(
ΠC

N
̂̃
f, ̂̃u
)
. (4.28)

Now we need to estimate ‖ΠC
Ng̃‖, which would be easy to do, provided that ΠC

N is replaced
by Legendre interpolation operator or the norm is in the weighted Chebyshev one. But here
we cannot deal with this directly. Just like in [21], by taking φ = ũt̂ in (4.27), we again get

[∥∥ũt̂

∥∥2 + μ|ũt̂|21
]
+
1
2
α
(
|ũ|21
)

t̂
= β
(
̂̃u, ũxt̂

)
+
(
ΠC

Ng̃, ũxt̂

)
+
(
ΠC

N
̂̃
f, ũt̂

)
. (4.29)

Combining (4.28) and (4.29) through the factor N−2, we arrive at

(
‖ũ‖2 + μ|ũ|21 +N−2α|ũ|21

)

t̂
+ 2
[
N−2∥∥ũt̂

∥∥2 +N−2μ|ũt̂|21 + α
∣∣∣̂̃u
∣∣∣
2

1

]

= 2
(
ΠC

Ng̃, ̂̃ux

)
+ 2
(
ΠC

N
̂̃
f, ̂̃u
)
+N−22β

(
̂̃u, ũxt̂

)

+N−22
(
ΠC

Ng̃, ũxt̂

)
+N−22

(
ΠC

N
̂̃
f, ũt̂

)
.

(4.30)
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By using the Hölder inequality, we have

∣
∣
∣2
(
ΠC

Ng̃, ̂̃ux

)∣∣
∣ ≤ 2

∥
∥
∥ΠC

Ng̃
∥
∥
∥
∣
∣
∣̂̃u
∣
∣
∣
1
≤ 3

α

∥
∥
∥ΠC

Ng̃
∥
∥
∥
2
+
α

3

∣
∣
∣̂̃u
∣
∣
∣
2

1
,

∣
∣
∣
∣2
(
ΠC

N
̂̃
f, ̂̃u
)∣∣
∣
∣ ≤ 2

∥
∥
∥
∥Π

C
N
̂̃
f

∥
∥
∥
∥
−1

∣
∣
∣̂̃u
∣
∣
∣
1
≤ 3

α

∥
∥
∥
∥Π

C
N
̂̃
f

∥
∥
∥
∥

2

−1
+
α

3

∣
∣
∣̂̃u
∣
∣
∣
2

1
,

∣
∣
∣N−22β

(
̂̃u, ũxt̂

)∣∣
∣ ≤ N−22β

∣
∣
∣̂̃u
∣
∣
∣
1

∥
∥ũt̂

∥
∥ ≤ N−22β2

∣
∣
∣̂̃u
∣
∣
∣
2

1
+
1
2
N−2∥∥ũt̂

∥
∥2,

∣
∣
∣N−22

(
ΠC

Ng̃, ũxt̂

)∣∣
∣ ≤ N−22

∣
∣
∣ΠC

Ng̃
∣
∣
∣
1

∥
∥ũt̂

∥
∥ ≤ N−22

∣
∣
∣ΠC

Ng̃
∣
∣
∣
2

1
+N−2 1

2
∥
∥ũt̂

∥
∥2,

∣
∣
∣
∣N

−22
(
ΠC

N
̂̃
f, ũt̂

)∣∣
∣
∣ ≤ N−22

∥
∥
∥
∥Π

C
N
̂̃
f

∥
∥
∥
∥
−1
|ũt̂|1 ≤ N−2μ−1

∥
∥
∥
∥Π

C
N
̂̃
f

∥
∥
∥
∥

2

−1
+N−2μ|ũt̂|21.

(4.31)

Thus, ifN ≥ β
√
6/α, we have

(
‖ũ‖2 + μ|ũ|21 +N−2α|ũ|21

)

t̂
+
[
N−2∥∥ũt̂

∥∥2 +N−2μ|ũt̂|21 + α
∣∣∣̂̃u
∣∣∣
2

1

]

≤ 3
α

∥∥∥ΠC
Ng̃
∥∥∥
2
+N−22

∣∣∣ΠC
Ng̃
∣∣∣
2

1
+
3
α

∥∥∥∥Π
C
N
̂̃
f

∥∥∥∥

2

−1
+N−2μ−1

∥∥∥∥Π
C
N
̂̃
f

∥∥∥∥

2

−1

≤ C

(∥∥∥ΠC
Ng̃
∥∥∥
2
+N−2

∣∣∣ΠC
Ng̃
∣∣∣
2

1
+
∥∥∥∥Π

C
N
̂̃
f

∥∥∥∥

2

−1
+N−2

∥∥∥∥Π
C
N
̂̃
f

∥∥∥∥

2

−1

)

,

(4.32)

where C is a positive constant dependent on α−1, μ−1. Summing (4.32) for s ∈ St−τ gives

E(ũ, t) ≤ ρ
(
ũ, f̃ , t

)
+ Cτ

∑

s∈St−τ

(∥∥∥ΠC
Ng̃(s)

∥∥∥
2
+N−2

∣∣∣ΠC
Ng̃
∣∣∣
2

1

)
, (4.33)

where

E(ũ, t) = ‖ũ(t)‖2 + μ|ũ(t)|21 +N−2α|ũ(t)|21

+ 2τ
∑

s∈St−τ

(
N−2∥∥ũt̂(s)

∥∥2 +N−2μ|ũt̂(s)|21 + α
∣∣∣̂̃u(s)

∣∣∣
2

1

)
,

ρ
(
ũ, f̃ , t

)
= ‖ũ(0)‖2 + μ|ũ(0)|21 +N−2α|ũ(0)|21 + ‖ũ(τ)‖2 + μ|ũ(τ)|21

+N−2α|ũ(τ)|21 + Cτ
∑

s∈St−τ

(∥∥∥∥Π
C
N
̂̃
f(s)

∥∥∥∥

2

−1
+N−2

∥∥∥∥Π
C
N
̂̃
f(s)

∥∥∥∥

2

−1

)

.

(4.34)

For any given t ∈ ST , if

‖ũ(s)‖L∞(Λ) ≤ C0, ∀s ∈ St−τ , (4.35)
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then, by (3.7) and (3.8),

∥
∥
∥ΠC

Ng̃
∥
∥
∥ +N−1

∣
∣
∣ΠC

Ng̃
∣
∣
∣
1
≤ ∥∥g̃∥∥ +

∥
∥
∥ΠC

Ng̃ − g̃
∥
∥
∥ +N−1

∣
∣
∣ΠC

Ng̃
∣
∣
∣
1

≤ ∥∥g̃∥∥ + CN−1∣∣g̃
∣
∣
1 ≤ Cg(uM,C0)

(
‖ũ‖ +N−1|ũ|1

)
, ∀s ∈ St−τ .

(4.36)

Thus, we have shown that for any t ∈ ST , if (4.35) holds, then

E(ũ, t) ≤ ρ
(
ũ, f̃ , t

)
+ C∗τ

∑

s∈St−τ

E(ũ, s), (4.37)

where C∗ is a positive constant dependent on Cg(uM,C0), α−1 and μ−1.

Theorem 4.5. Let τ be suitably small and N ≥ β
√
6/α. If g ∈ C2(R) and ρ(ũ, f̃ , T) ≤

2C2
0(e

−C∗T/(N + 1)2), then

E(ũ, t) ≤ ρ
(
ũ, f̃ , t

)
eC

∗t, ∀t ∈ ST . (4.38)

Proof. We verify the result by induction over t ∈ ST . It is easy to see that the result is true for
t = τ . Assume that it is true for all s ∈ St−τ that

E(ũ, s) ≤ ρ
(
ũ, f̃ , s

)
eC

∗s. (4.39)

Then, from the inverse inequality (3.12)we have

‖ũ(s)‖2L∞(Λ) ≤
(N + 1)2

2
‖ũ(s)‖2 ≤ (N + 1)2

2
ρ
(
ũ, f̃ , s

)
eC

∗s ≤ C2
0, (4.40)

which means that (4.35) holds. Therefore, we have, from (4.37) and (4.39), that

E(ũ, t) ≤ ρ
(
ũ, f̃ , t

)
+ C∗τ

∑

s∈ST−τ

E(ũ, s) ≤ ρ
(
ũ, f̃ , t

)
+ C∗τ

∑

s∈ST−τ

ρ
(
ũ, f̃ , s

)
eC

∗s

≤ ρ
(
ũ, f̃ , t

)(

1 + C∗τ
∑

s∈ST−τ

eC
∗s

)

≤ ρ
(
ũ, f̃ , t

)
eC

∗t.

(4.41)

Thus, the proof is completed.
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Next we consider the convergence of scheme (2.6). Let u(t) and uk
N be the solutions to

(1.7) and (2.6), respectively. Setting v(t) = PNu(t), ek = vk − uk
N , we have

(
ek
t̂
, φ
)
+ μ
(
ek
xt̂
, φx

)
+ α
(
êkx, φx

)
= β
(
êk, φx

)
+
(
ΠC

NG̃, φx

)
+
(
ΠC

Nf̂k − f̂ k, φ
)

+
(
(PNu)k

t̂
− ûk

t , φ
)
+ μ
(
(PNu)k

xt̂
− ûxt, φx

)

+ β
(
ûk − PNûk, φx

)
+
(
ĝ
(
uk
)
−ΠC

Ng
(
uk
N + ek

)
, φx

)
,

(4.42)

where G̃ = g(uk
N + ek) − g(uk

N) and ĝ(uk) = (g(u(tk + τ)) + g(u(tk − τ)))/2. It is easy to obtain
the following estimate:

∥∥∥ΠC
Nf̂k − f̂ k

∥∥∥ ≤ CN−r∥∥f
∥∥
r ,

∥∥∥(PNu)k
t̂
− ûk

t

∥∥∥ ≤
∥∥∥PNuk

t̂
− uk

t̂

∥∥∥ +
∥∥∥uk

t̂
− ûk

t

∥∥∥ ≤ CN−r‖u‖r +
∥∥∥uk

t̂
− ut(tk)

∥∥∥

+
∥∥∥ut(tk) − ûk

t

∥∥∥ ≤ CN−r‖u‖r + C′τ2‖uttt(tk)‖ + C′′τ2‖utt(tk)‖,
∥∥∥(PNu)k

xt̂
− ûk

xt

∥∥∥ ≤
∥∥∥PNuk

xt̂
− uk

xt̂

∥∥∥ +
∥∥∥uk

xt̂
− ûk

xt

∥∥∥ ≤ CN1−r‖u‖r +
∥∥∥uk

xt̂
− uxt(tk)

∥∥∥

+
∥∥∥uxt(tk) − ûk

xt

∥∥∥ ≤ CN1−r‖u‖r+C′τ2‖uxttt(tk)‖+C′′τ2‖uxtt(tk)‖,
∥∥∥ûk − PNûk

∥∥∥ ≤ CN−r‖u‖r ,
∥∥∥ĝ
(
uk
)
−ΠC

Ng
(
uk
N + ek

)∥∥∥ ≤
∥∥∥ĝ
(
uk
)
−ΠC

Nĝ
(
uk
)∥∥∥ +

∥∥∥ΠC
N

(
ĝ
(
uk
)
− g
(
uk
N + ek

))∥∥∥

≤ CN−r‖u‖r + C′
∥∥∥ĝ
(
uk
)
− g(u(tk))

∥∥∥ + C′′
∥∥∥g
(
uk
)
− g
(
uk
N + ek

)∥∥∥

≤ CN−r‖u‖r + C′τ2‖u‖ + C′′N−r‖u‖r .
(4.43)

Combining with the stability results of Theorem 4.5, we can obtain the following convergence
result.

Theorem 4.6. Let u and uk
N be the solutions of (1.7) and (2.6), respectively. If u(x, t) ∈

C3(0, T ;Hr(Λ) ∩H1
0(Λ))(r ≥ 2) and g ∈ C2(R) and τ is suitably small, then one has

∥∥∥u(tk) − uk
N

∥∥∥ + μ
∣∣∣u(tk) − uk

N

∣∣∣
1
≤ C
(
τ2 +N1−r

)
. (4.44)

5. Numerical Experiments

In this section, we will present some numerical experiments to confirm the effectiveness and
robustness of scheme (2.6) or (2.13).
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Table 1: Convergence rates at t = 1 with μ = 0, α = 1, β = 1, γ = 3, n = 2.

N L∞-error Order L2-error Order

4 2.875E − 01 — 3.504E − 02 —

8 1.279E − 03 N−7.81 1.278E − 04 N−8.10

12 2.499E − 06 N−15.4 2.771E − 07 N−15.1

16 2.573E − 09 N−23.9 2.816E − 10 N−24.1

Table 2: Convergence rates at t = 1 with μ = 1, α = 1, β = 1, γ = 3, n = 2.

N L∞-error Order L2-error Order

4 2.474E − 01 — 2.962E − 02 —

8 4.189E − 04 N−9.21 4.912E − 05 N−9.24

12 1.491E − 07 N−19.6 1.781E − 08 N−19.5

16 4.408E − 09 N−12.2 5.606E − 10 N−12.0

Table 3: Convergence rates at t = 1 with μ = 1, α = β = 1, γ = 3, and n = 2.

τ L∞-error Order L2-error Order

2 ∗ 10−2 8.242E − 05 — 1.252E − 05 —

1 ∗ 10−2 2.061E − 05 τ2.00 3.129E − 06 τ2.00

2 ∗ 10−3 8.249E − 07 τ2.00 1.252E − 07 τ2.00

1 ∗ 10−3 2.063E − 07 τ2.00 3.133E − 08 τ2.00

2 ∗ 10−4 8.279E − 09 τ2.00 1.258E − 09 τ2.00

1 ∗ 10−4 2.076E − 09 τ2.00 3.155E − 10 τ2.00

Example 5.1. We consider the initial boundary problem (1.2)–(1.4) with the exact solution as
follows:

u(x, t) = tγ sin(πx). (5.1)

The data u0(x) is zero function, and the source term f is determined by (1.2) and g(u) = un/n,
that is,

f(x, t) = tγ−1 sin(πx)
[
γ + μπ2γ + απ2t

]
+ βπtγ cos(πx) + πtnsinn−1(πx) cos(πx). (5.2)

Because the exact solution is known, we can compute the error between the numerical
solution and the exact solution. In Table 1, the convergent rate in L∞ and L2 errors for spatial
discretization is computed by fixing time step τ = 2× 10−5 and changingN from 22 to 24 with
the parameters μ = 0, α = 1, β = 1, γ = 3, and n = 2 at t = 1. In Table 2, the convergent rate in
L∞ and L2 errors for spatial discretization is computed by fixing time step τ = 2 × 10−5 and
changing N from 22 to 24 with the parameters μ = 1, α = 1, β = 1, γ = 3, and n = 2 at t = 1.
The results show clearly “spectral accuracy.”
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Table 4: Convergence rates at t = 1 with μ = 0.1, α = 1, β = 0.01, γ = 3, and n = 2.

N τ L∞-error Order L2-error Order

4

2E − 5

2.986E − 01 — 4.722E − 01 —
8 2.064E − 03 N−7.18 1.403E − 03 N−8.39

12 5.166E − 06 N−14.77 2.429E − 06 N−15.68

16 5.213E − 09 N−23.98 1.899E − 09 N−24.88

20 2.750E − 10 N−13.19 7.859E − 11 N−14.27

36

2 ∗ 10−3 2.734E − 06 — 4.368E − 07 —
1 ∗ 10−3 6.836E − 07 τ2.00 1.092E − 07 τ2.00

2 ∗ 10−4 2.734E − 08 τ2.00 4.368E − 09 τ2.00

1 ∗ 10−4 6.836E − 09 τ2.00 1.092E − 09 τ2.00

2 ∗ 10−5 2.733E − 10 τ2.00 4.366E − 11 τ2.00

Table 5: Convergence rates at t = 1 with μ = 0.1, α = 1, β = 0.01, γ = 3, and n = 2.

N τ L∞-error Order L2-error Order

4

1E − 5

1.722E − 02 — 2.112E − 02 —
8 2.049E − 05 N−9.71 1.437E − 05 N−10.52

12 3.901E − 09 N−21.13 1.845E − 09 N−22.10

16 4.639E − 12 N−23.41 1.963E − 12 N−23.80

20 4.718E − 12 — 1.570E − 12 —

36

2 ∗ 10−3 2.048E − 07 — 3.511E − 08 —
1 ∗ 10−3 5.119E − 08 τ2.00 8.777E − 09 τ2.00

2 ∗ 10−4 2.047E − 09 τ2.00 3.511E − 10 τ2.00

1 ∗ 10−4 5.117E − 10 τ2.00 8.778E − 11 τ2.00

2 ∗ 10−5 2.028E − 11 τ2.01 3.535E − 12 τ2.00

For temporal discretization, the convergent rate in L∞ and L2 errors is computed by
fixing N = 32 and changing time step τ from 2 × 10−2 to 1 × 10−4 with the parameters μ = 0,
α = β = 1, γ = 3, and n = 2 at t = 1. In Table 3, the results show clearly second-order con-
vergence for time discretization.

In Table 4, the results show clearly second-order convergence for time discretization
and spectral accuracy for space discretization again.

Example 5.2. We consider the initial boundary problem (1.2)–(1.4) with the exact solution as
follows:

u(x, t) =
(
1 − x2

)
ex−t. (5.3)

The data u0(x) = (1 − x2)ex and the source term f is determined by (1.2) and g(u) = un/n.
In Table 5, the results show clearly second-order convergence for time discretization

and spectral accuracy for space discretization again.
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Figure 1: The evolution of u(x, t) with different α.

Example 5.3. We consider the gBBM-B equation

ut − μuxxt − αuxx + βux + γuux = 0, (5.4)

with initial profile as

u0(x) = e−40x
2
. (5.5)

In Figures 1 and 2, the results show how the numerical diffusion does with the increasing
diffusion α and reaction coefficient β.
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Figure 2: The evolution of u(x, t) with different β.

6. Conclusion

In this paper, we have developed the Chebyshev-Legendre spectral method to the generalised
Benjamin-Bona-Mahony-Burgers (gBBM-B) equations. As is well known, Chebyshev method
is popular for its explicit formulae and fast Chebyshev transform. But the Chebyshev weight
makes much trouble in error analysis. Legendre method is natural in the theoretical analysis
due to the unity weight function. However, it is well known that the applications of Legendre
method are limited by the lack of fast transform between the physical space and the spectral
space and by the lack of explicit evaluation formulation of the LGL nodes. Chebyshev-
Legendre method adopts advantages of both Chebyshev method and Legendre method.
Hence, it gives a better scheme. Also, error analysis shows that an optimal convergence
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rate can be obtained by using the Chebyshev-Legendre method. The numerical results show
that this scheme is an efficient one. For the problems of high dimension and with complex
geometry boundary, Chebyshev-Legendre method could perform well. This will be left for
our further research.
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