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A Lotka-Volterra-type predator-prey systemwith state-dependent feedback control is investigated
in both theoretical and numerical ways. Using the Poincaré map and the analogue of the Poincaré
criterion, the sufficient conditions for the existence and stability of semitrivial periodic solutions
and positive periodic solutions are obtained. In addition, we show that there is no positive periodic
solution with period greater than and equal to three under some conditions. The qualitative
analysis shows that the positive period-one solution bifurcates from the semitrivial solution
through a fold bifurcation. Numerical simulations to substantiate our theoretical results are
provided. Also, the bifurcation diagrams of solutions are illustrated by using the Poincaré map,
and it is shown that the chaotic solutions take place via a cascade of period-doubling bifurcations.

1. Introduction

In the last decades, some impulsive systems have been studied in population dynamics such
as impulsive birth [1, 2], impulsive vaccination [3, 4], and chemotherapeutic treatment of
disease [5, 6]. In particular, the impulsively controlled prey-predator population systems
have been investigated by a number of researchers [7–15]. Thus the field of research of
impulsive differential equations seems to be a new growing interesting area in recent years.
Many authors in the articles cited above have shown theoretically and numerically that prey-
predator systems with impulsive control are more efficient and economical than classical
ones to control the prey (pest) population. However, the majority of these studies only
consider impulsive control at fixed time intervals to eradiate the prey (pest) population. Such
control measure of prey (pest) management is called fixed-time control strategy, modeled
by impulsive differential equations. Although this control measure is better than classical
one, it has shortcomings, regardless of the growth rules of the prey (pest) and the cost
of management. In recent years, in order to overcome such drawbacks, several researchers
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have started paying attention to another control measure based on the state feedback control
strategy, which is taken only when the amount of the monitored prey (pest) population
reaches a threshold value [2, 16–19]. Obviously, the latter control measure is more reasonable
and suitable for prey (pest) control.

In order to investigate the dynamic behaviors of a population model with the state
feedback control strategy, an autonomous Lotka-Volterra system, which is one of the most
basic and important models, is considered. Actually, the principles of Lotka-Volterra models
have remained valid until today and many theoretical ecologists adhere to their principles
(cf. [8, 20–22]).

Thus, in this paper, we consider the following Lotka-Volterra type prey-predator
system with impulsive state feedback control:

x′(t) = x(t)
(
a − bx(t) − cy(t)), y′(t) = y(t)(−D + ex(t)), x /=h,

Δx(t) = −px(t), Δy(t) = qy(t) + r, x = h,
(1.1)

where all parameters except q and r are positive constants. Here, x(t) and y(t) are functions of
the time representing population densities of the prey and the predator, respectively, a is the
inherent net birth rate per unit of population per unit time of the prey, b is the self-inhibition
coefficient, c is the per capita rate of predation of the predator, D denotes the death rate of
the predator, e is the rate of conversion of a consumed prey to a predator, 0 < p < 1 presents
the fraction of the prey which die due to the harvesting or pesticide, and so forth, and q > −1
and r ≥ 0 represent the amount of immigration or stock of the predator. We denote by h the
economic threshold andΔx(t) = x(t+)−x(t) andΔy(t) = y(t+)−y(t). When the amount of the
prey reaches the threshold h at time th, controlling measures are taken and hence the amounts
of the prey and predator immediately become (1 − p)h and (1 + q)y(th) + r, respectively.

The main purpose of this research is to investigate theoretically and numerically the
dynamical behaviors of system (1.1).

This paper is organized as follows. In the next section, we present a useful lemma and
notations and construct a Poincaré map to discuss the dynamics of the system. In Section 3,
the sufficient conditions for the existence of a semi-periodic solution of system (1.1)with r = 0
are established via the Poincaré criterion. On the other hand, in Section 4, we find out some
conditions for the existence and stability of stable positive period-one solutions of system
(1.1). Further, under some conditions, we show that there exists a stable positive periodic
solution of period 1 or 2; however, there is no positive periodic solutions with period greater
than and equal to three. In order to testify our theoretical results by numerical simulations,
in Section 5, we give some numerical examples and the bifurcation diagrams of solutions
that show the existence of a chaotic solution of system (1.1). Finally, we have a discussion in
Section 6.

2. Preliminaries

Many considerable investigators have studied the dynamic behaviors of system (1.1)without
the state feedback control. (cf. [23, 24].) It has a saddle (0, 0), one locally stable focus
(D/e, (ae−bD)/ce) and a saddle (a/b, 0) if the conditionD/e < a/b holds. Since the carrying
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capacity of the prey population x(t) is b/a, so it is meaningful that the economical threshold
h is less than b/a. Thus, throughout this paper, we set up the following two assumptions:

(A1)
D

e
<
a

b
, (A2) h ≤ b

a
. (2.1)

From the biological point of view, it is reasonable that system (1.1) is considered to control
the prey population in the biological meaning space {(x, y) : x ≥ 0, y ≥ 0}.

The smoothness properties of f , which denotes the right hand of (1.1), guarantee the
global existence and uniqueness of a solution of system (1.1) (see [25, 26] for the details).

Let R = (−∞,∞) and R2
+ = {(x, y) | x ≥ 0, y ≥ 0}. Firstly, we denote the distance

between the point p and the set S by d(p, S) = infp0∈S|p − p0| and define, for any solution
z(t) = (x(t), y(t)) of system (1.1), the positive orbit of z(t) through the point z0 ∈ R2

+ as

O+(z0, t0) =
{
z ∈ R2

+ | z = z(t), t ≥ t0, z(t0) = z0
}
. (2.2)

Now, we introduce some definitions (cf. [27]).

Definition 2.1 (orbital stability). z∗(t) is said to be orbitally stable if, given ε > 0, there exists
δ = δ(ε) > 0 such that, for any other solution z(t) of system (1.1) satisfying |z∗(t0)−z(t0)| < δ,
then d(z(t), O+(z0, t0)) < ε for t > t0.

Definition 2.2 (asymptotic orbital stability). z∗(t) is said to be asymptotically orbitally stable
if it is orbitally stable and for any other solution z(t) of system (1.1), there exists a constant
η > 0 such that, if |z∗(t0) − z(t0)| < η, then limt→∞d(z(t), O+(z0, t0)) = 0.

In order to discuss the orbital asymptotical stability of a positive periodic solution
of system (1.1), a useful lemma, which follows from Corollary 2 of Theorem 1 given in
Simeonov and Bainov [28], is considered as follows.

Lemma 2.3 (analogue of the Poincaré criterion). The T-periodic solution x = ϕ(t), y = ζ(t) of
system

x′(t) = P
(
x, y

)
, y′(t) = Q

(
x, y

)
, if φ

(
x, y

)
/= 0,

Δx = α
(
x, y

)
, Δy = β

(
x, y

)
, if φ

(
x, y

)
= 0,

(2.3)

is orbitally asymptotically stable if the multiplier μ2 satisfies the condition |μ2| < 1, where

μ2 =
q∏

k=1

Δk exp

[∫T

0

∂P

∂x

(
ζ(t), η(t)

)
+
∂Q

∂y

(
ζ(t), η(t)

)
dt

]

,

Δk =
P+

((
∂β/∂y

)
� − (

∂β/∂x
)
� +�

)
+Q+

(
(∂α/∂x)� − (

∂α/∂y
)
� + �

)

P� +Q�
,

(2.4)

where � denotes (∂φ/∂x) and � denotes (∂φ/∂y) and P , Q, ∂α/∂x, ∂α/∂y, ∂β/∂x, ∂β/∂y,
∂φ/∂x, and ∂φ/∂y are calculated at the point (ϕ(τk), ζ(τk)), P+ = P(ϕ(τ+

k
), ζ(τ+

k
)), and
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Q+ = Q(ϕ(τ+k ), ζ(τ
+
k )). Also φ(x, y) is a sufficiently smooth function on a neighborhood of the points

(ϕ(τk), ζ(τk)) such that gradφ(x, y)/= 0 and τk is the moment of the kth jump, where k = 1, 2, . . . , q.

From now on, we construct two Poincaré maps to discuss the dynamics of system
(1.1). For this, we introduce two cross-sections

∑
1 = {(x, y) : x = (1 − p)h, y ≥ 0} and∑

2 = {(x, y) : x = h, y ≥ 0}. In order to establish the Poincaré map of
∑

2 via an approximate
formula, suppose that system (1.1) has a positive period-1 solution z(t) = (ϕ(t), ζ(t)) with
period T and the initial condition z0 = A+((1 − p)h, y0) ∈

∑
1, where y(0) ≡ y0 > 0. Then the

periodic trajectory intersects the Poincaré section
∑

2 at the point A(h, y1) and then jumps to
the point A+ due to the impulsive effects with Δx(t) = −px(t) and Δy(t) = qy(t) + r. Thus

ϕ(0) =
(
1 − p)h, ζ(0) = y0, ϕ(T) = h, ζ(T) = y1 =

y0
1 + q

− r. (2.5)

Now, we consider another solution z(t) = (ϕ(t), ζ(t)) with the initial condition z0 =
A0((1 − p)h, y0 + δy0). Suppose that this trajectory which starts form A0 first intersects

∑
2 at

the point A1(h, y1) when t = T + δt and then jumps to the point A+
1 ((1 − p)h, y2) on

∑
1. Then

we have

ϕ(0) =
(
1 − p)h, ζ(0) = y0 + δy0 , ϕ(T + δt) = h, ζ(T + δt) = y1. (2.6)

Set u(t) = ϕ(t) − ϕ(t) and v(t) = ζ(t) − ζ(t), then u0 = u(0) = ϕ(0) − ϕ(0) = 0 and v0 = v(0) =
ζ(0) − ζ(0). Let v1 = y2 − y0 and v∗

0 = y1 − y1. It is well known that, for 0 < t < T , the variables
u(t) and v(t) are described by the relation

(
u(t)

v(t)

)

= Φ(t)

(
u0

v0

)

+ o
(
u20 + v

2
0

)
= Φ(t)

(
0

v0

)

+ o

(
0

v2
0

)

, (2.7)

where the fundamental solution matrix Φ(t) satisfies the matrix equation

dΦ(t)
dt

=

(
a − 2bϕ(t) − cζ(t) −cϕ(t)

eζ(t) −D + eϕ(t)

)

Φ(t) (2.8)

with Φ(0) = I(the identity matrix). Set g1(t) = ϕ(t)(a − bϕ(t) − cζ(t)) and g2(t) = ζ(t)(−D +
eϕ(t)). We can express the perturbed trajectory in a first-order Taylor expansion

ϕ(T + δt) ≈ ϕ(T) + u(T) + g1(T)δt,

ζ(T + δt) ≈ ζ(T) + v(T) + g2(T)δt.
(2.9)

It follows from ϕ(T + δt) = ϕ(T) = h that

δt = − u(T)
g1(T)

and hence v∗
0 = y1 − y1 = v(T) −

g2(T)u(T)
g1(T)

. (2.10)
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Since y2 = (1 + q)y1 + r and y2 − y0 = (1 + q)(y1 − y1), we obtain v1 = (1 + q)v∗
0. So, we can

construct a Poincaré map F of
∑

1 as follows:

v1 = Fq(v0) =
(
1 + q

)
[
v(T) − g2(T)u(T)

g1(T)

]
, (2.11)

where u(T) and v(T) are calculated according to (2.7).
Now we construct another type of Poincaré maps. Suppose that the point Bk(h, yk)

is on the section
∑

2. Then B
+
k((1 − p)h, (1 + q)yk + r) is on

∑
1 due to the impulsive effects,

and the trajectory with the initial point B+
k
intersects

∑
2 at the point Bk+1(h, yk+1), where yk+1

is determined by yk and the parameters q and r. Thus we can define a Poincaré map F as
follows:

yk+1 = F
(
q, r, yk

)
. (2.12)

The function F is continuous on q, r, and ykbecause of the dependence of the solutions on the
initial conditions.

Definition 2.4. A trajectory O+(z0, t0) of system (1.1) is said to be order k-periodic if there
exists a positive integer k ≥ 1 such that k is the smallest integer for y0 = yk.

Definition 2.5. A solution z(t) = (x(t), y(t)) of system (1.1) is called a semitrivial solution if
its one component is zero and another is nonzero.

Note that, for each fixed point of the map F in (2.12), there is an associated periodic
solution of system (1.1), and vice versa.

3. The Existence and Stability of a Periodic Solution When r = 0

In this section, we consider system (1.1)with r = 0 as follows:

x′(t) = x(t)
(
a − bx(t) − cy(t)), y′(t) = y(t)(−D + ex(t)), x /=h,

Δx(t) = −px(t), Δy(t) = qy(t), x = h.
(3.1)

First, let y(t) = 0 to calculate a semitrivial periodic solution of system (3.1). Then
system (3.1) can be changed into the following impulsive differential equation:

x′(t) = x(t)(a − bx(t)), x(t)/=h,

Δx(t) = −px(t), x(t) = h.
(3.2)

Under the initial value x(0) = (1−p)h ≡ x0, the solution of the equation x′(t) = x(t)(a−bx(t))
can be obtained as x(t) = a exp(at)/(β+b exp(at)), where β = (a−bh(1−p))/(1−p)h. Assume
that x(T) = h and x(T+) = x0 in order to get a periodic solution of (3.2). Then we have the
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period T = (1/a) ln((a − bh(1 − p))/(a − bh)(1 − p)) of a semitrivial periodic solution of (3.1).
Thus system (1.1) with r = 0 has a semitrivial periodic solution with the period T as follows:

ϕ(t) =
a exp(a(t − (k − 1)T))

β + b exp(a(t − (k − 1)T))
,

ζ(t) = 0,

(3.3)

where (k − 1)T < t < kT .
Using the Poincaré map F defined in (2.12), we will have a criterion for the stability of

this semitrivial periodic solution (ϕ(t), ζ(t)).

Theorem 3.1. The semitrivial periodic solution of system (1.1) with r = 0 is locally stable if the
condition

−1 < q < q0 (3.4)

holds, where q0 = (1 − p)−D/a((a − bh(1 − p))/(a − bh))D/a−e/b − 1.

Proof. We already discussed the existence of the semitrivial periodic solution (ϕ(t), 0). It
follows from (2.8) that

dΦ(t)
dt

=

(
a − 2bϕ(t) −cϕ(t)

0 −D + eϕ(t)

)

Φ(t), Φ(0) = I2. (3.5)

Let Φ(t) =
( w1(t) w2(t)

w3(t) w4(t)

)
. Then we can infer from (3.5) that, for 0 < t < T = (1/a) ln((1 −

(1 − p)h)/(1 − h)(1 − p)),

w′
1(t) =

(
a − 2bϕ(t)

)
w1(t) − cϕ(t)w3(t), w1(0) = 1,

w′
2(t) =

(
a − 2bϕ(t)

)
w2(t) − cϕ(t)w4(t), w2(0) = 0,

w′
3(t) =

(−D + eϕ(t)
)
w3(t), w3(0) = 0,

w′
4(t) =

(−D + eϕ(t)
)
w4(t), w4(0) = 1.

(3.6)

Since u0 = u(0) = 0 and g2(t) = 0, we obtain that v1 = Fq(v0) = (1 + q)[v(T) −
g2(T)u(T)/g1(T)] = (1 + q)w4(T)v0. Thus it is only necessary to calculate w4(t). From the
fourth equation of (3.6), we obtainw4(t) = w exp(

∫ −D+eϕ(t)dt). Since
∫
ϕ(t)dt = (1/b) ln(β+

b exp(at)) and w4(0) = 1, so we obtain w4(T) = ((β + b exp(aT))/(β + b))e/b exp(−DT).
Therefore,

v1 =
(
1 + q

)(
1 − p)D/a

(
a − bh(1 − p)

a − bh

)e/b−D/a
v0. (3.7)
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Note that v0 is a fixed point of Fq(v0) and

Dv0Fq(0) =
(
1 + q

)(
1 − p)D/a

(
a − bh(1 − p)

a − bh

)e/b−D/a
. (3.8)

Under condition (3.4), we get 0 < Dv0Fq(0) < 1. So system (1.1) with r = 0 has a stable
semitrivial periodic solution.

Remark 3.2. From the proof of Theorem 3.1, we note that Dv0Fq(0) > 1 if q > q0. It means that
the semitrivial periodic solution system (1.1)with r = 0 is unstable if q > q0.

Now, we discuss the existence of a positive periodic solution of the system (3.1) with
r = 0.

Theorem 3.3. System (1.1) with r = 0 has a positive period-one solution if the condition

q > q0 (3.9)

holds, where q0 = (1 − p)−D/a((a − bh(1 − p))/(a − bh))D/a−e/b − 1.

Proof. It follows from Theorem 3.1 that the semitrivial periodic solution passing through
the points A((1 − p)h, 0) and B(h, 0) is stable if −1 < q < q0, where q0 =
(1 − p)−D/a((a − bh(1 − p))/(a − bh))D/a−e/b − 1. Now, define G(x) = F(q, 0, x) − x, where F is
the Poincaré map. From now on, we will show that there exist two positive numbers ε1 and
ω0 such that G(ε1) > 0 and G(ω0) ≤ 0 by following two steps.

Step 1. Wewill show thatG(ε1) > 0 for some ε1 > 0. First, consider the trajectory starting with
the point A1 = ((1 − p)h, ε) for a sufficiently small number ε > 0. This trajectory meets the
Poincaré section

∑
2 at the point B1 = (h, ε1) and then jumps to the point A2 = ((1 − p)h, (1 +

q)ε1) and reaches the point B2 = (h, ε2). Since q > q0, the semitrivial solution is unstable by
Remark 5.4. So we can choose an ε such that (1 + q)ε1 > ε for q > q0 + ε. Thus the point B2 is
above the point B1. So we have ε1 < ε2. From (2.12), we know that

ε1 − F
(
q, 0, ε1

)
= ε1 − ε2 < 0. (3.10)

Thus we know that G(ε1) > 0.

Step 2. We will show that G(ω0) ≤ 0 for some ω0 > 0. To do this, suppose that the line
bx + cy − a = 0 meets

∑
1 at A3 = ((1 − p)h, (a − b(1 − p)h)/c). The trajectory of system

(1.1) with the initial point A3 meets the line
∑

2 at B3 = (h,ω0) then jumps to the point
A+

3 = ((1 − p)h, (1 + q)ω0) and then reaches the point B4 = (h,ω0) on the Poincaré section
∑

2
again. However, for any q > 0, the point B4 is not above the point B3 in view of the vector
field of system (1.1). Thus ω0 ≤ ω0. So we have only to consider the following two cases.

Case (i): If ω0 = ω0, that is, G(ω0) = 0, then system (1.1) has a positive period-one
solution.
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Case (ii): If ω0 < ω0, then

ω0 − F
(
q, 0, ω0

)
= ω0 −ω0 > 0, that is, G(ω0) < 0. (3.11)

Thus, it follows from (3.10) and (3.11) that the Poincaré map F has a fixed point, which
corresponds to a positive period-one solution for system (1.1) with r = 0. Thus we complete
the proof.

Remark 3.4. Under the condition r = 0, we show that the semitrivial periodic solution of
system (1.1) is stable when −1 < q < q0 and there exists a positive period-one solution of
system (1.1). Since Dv0Fq0(0) = 1, a fold bifurcation takes place at q = q0. Furthermore, from
the proof of Theorem 3.3, we know that system (1.1) with r = 0 has a positive period-one
solution (θ(t), ψ(t)) passing through the points L+ = ((1 − p)h, (1 + q)ψ(0)) and L = (h, ψ(0))
and satisfying the condition (a − b(1 − p)h)/c = (1 + q1)ψ(0) for some q1 > q0.

Now we discuss the stability of the positive periodic solution of system (1.1).

Theorem 3.5. Assume that r = 0. Let (θ(t), ψ(t)) be the positive period-one solution of system (1.1)
with period τ passing through the pointsM+ = ((1 − p)h, (1 + q)ψ(0)) andM = (h, ψ(0)). Then the
positive periodic solution is orbitally asymptotically stable if the condition

q0 < q < q2 (3.12)

holds, where g(q2) = −1 and g(u) = ((a − b(1 − p)h − c((1 + u)ψ(0)))/(a − bh −
cψ(0))) exp(

∫τ
0 −bθ(t)dt).

Proof. In order to discuss the stability of the positive periodic solution (θ(t), ψ(t)) of system
(1.1), we will use the Lemma 2.3. First, we note that

P
(
x, y

)
= x(t)

(
a − bx(t) − cy(t)), Q

(
x, y

)
= y(t)(−D + ex(t)),

α
(
x, y

)
= −px(t), β

(
x, y

)
= qy(t), φ

(
x, y

)
= x(t) − h,

(
θ(τ), ψ(τ)

)
=
(
h, ψ(0)

)
,

(
θ(τ+), ψ(τ+)

)
=
((
1 − p)h, (1 + q)ψ(0)).

(3.13)

Since

∂P

∂x
= a − 2bx(t) − cy(t), ∂Q

∂y
= −D + ex(t),

∂φ

∂x
= 1,

∂φ

∂y
= 0,

∂α

∂x
= p,

∂α

∂y
= 0,

∂β

∂x
= 0,

∂β

∂y
= q,

(3.14)
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we obtain that

Δ1 =
P+

(
θ(τ+), ψ(τ+)

)(
1 + q

)

P
(
θ(τ), ψ(τ)

)

=

(
1 − p)(a − b(1 − p)h − c((1 + q)ψ(0)))(1 + q)

a − bh − cψ(0) ,

∫ τ

0

∂P

∂x
+
∂Q

∂y
dt =

∫ τ

0
a − 2bθ(t) − cψ(t) −D + eθ(t)dt

=
∫ τ

0

θ̇(t)
θ(t)

+
ψ̇(t)
ψ(t)

(−bθ(t))dt =
∫ τ

0
d ln

(
θ(t)ψ(t)

)
+
∫ τ

0
(−bθ(t))dt

= ln

(
1

(
1 − p)(1 + q)

)

+
∫ τ

0
(−bθ(t))dt.

(3.15)

Thus we have μ2 = ((a−b(1−p)h−c((1+q)ψ(0)))/(a−bh−cψ(0))) exp(∫τ0 (−bθ(t))dt) ≡ g(q).
By Remark 3.4, for q = q1, we have (1+q1)ψ(0) = (a−b(1−p)h)/c, and so we get μ2 = 0 when
q = q1 which means that this periodic solution is stable. In addition, for q = q0, we know
μ2 = 1 due to ψ(0) = 0 and τ = (1/a) ln((a − bh(1 − p))/(a − bh)(1 − p)). Since the derivative
dμ2/dq with respect to q is negative, so we know that 0 < μ2 < 1 when q0 < q < q1. Further,
we can find q2 > q1 such that μ2 = g(q2) = −1. Therefore, if the condition (3.12) holds, then
we obtain −1 < μ2 < 1, which implies from Lemma 2.3 that the positive periodic solution
(θ(t), ψ(t)) is orbitally asymptotically stable.

Remark 3.6. System (1.1) has a stable periodic semitrivial solution and a stable positive
period-1 solution if 0 < q < q0 and q0 < q < q2, respectively.We already know fromRemark 3.4
that a fold bifurcation occurs at q = q0. Thus, from the facts, we can suppose that a flip (period-
doubling) bifurcation occurs at q = q2. Moreover, we can figure out that system (1.1) might
have a chaotic solution via a cascade of period doubling.

4. The Existence and Stability of a Positive Periodic Solution
When r > 0

In this section we will take into account the existence and stability of positive periodic
solutions in the two cases of h < D/e and D/e < h. In fact, under the condition h < D/e, the
trajectories starting from any initial point (x0, y0)with x0 < h intersects the section

∑
2 infinite

times. However, under the condition D/e < h, the trajectories starting from any initial point
(x0, y0) with x0 < h do not intersect the section

∑
2.

4.1. The Case of h < D/e

Theorem 4.1. Assume that h ≤ D/e, q > −1, and r > 0. Then the system (1.1) has a positive
period-one solution. Moreover, if this periodic solution (ϕ(t), ζ(t)) has a period λ and passes through
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the points M+ = ((1 − p)h, (1 + q)ζ(0) + r) and M = (h, ζ(0)), then it is asymptotically orbitally
stable provided with

q∗ < q < q∗∗, (4.1)

where γ(q∗) = 1 and γ(q∗∗) = −1 and γ(q) = (a − b(1 − p)h − c((1 + q)ζ(0) + r))/(a − bh −
cζ(0)) exp(

∫λ
0 bζ(t)dt).

Proof. We will use the similar method to Theorem 3.3 to prove the existence of a periodic
solution of system (1.1).

Firstly, in order to show F(q, r, r1) > r1 for some r1 > 0, let U1 = ((1 − p)h, r1) be in the
Poincaré section

∑
1, where r1 is small enough such that 0 < r1 < r. The trajectory of system

(1.1)with the initial pointU1 intersects the point V1 = (h, r1) on the Poincaré section
∑

2, then
jumps to the pointU2 = ((1 − p)h, (1 + q)r1 + r), and then reaches the point V2 = (h, r2) on

∑
2

again. From the choice of the value r1, we know that (1 + q)r1 + r > r1 and hence the points
U2 and V2 are above the pointsU1 and V1, respectively. Thus we have r1 < r2. It follows from
(2.12) that

r1 − F
(
q, r, r1

)
= r1 − r2 < 0. (4.2)

Secondly, to find a positive number m0 such that m0 − F(q, r,m0) ≥ 0 suppose that
the line bx + cy − a = 0 meets

∑
1 at A = ((1 − p)h, (a − b(1 − p)h)/c). The trajectory of

system (1.1) with the initial point Ameets the line
∑

2 at B = (h,m0) then jumps to the point
A+ = ((1 − p)h, (1 + q)m0 + r) and then reaches the point B1 = (h,m0) on the line

∑
2 again.

Suppose that there exists a q0 > 0 such that (1 + q0)m0 + r = (a − b(1 − p)h)/c. Then the point
A+ is just the point A if q = q0. The point A+ lies above the point A if q > q0, while it lies
under A if q < q0. However, for any q > 0, the point B1 is not above the point B in view of the
vector field of the system (1.1). Thusm0 ≥ m0 and hencem0 − F(q, r,m0) ≥ 0.

Therefore, we have a periodic solution by the similar method to Theorem 3.3. Further,
the stability condition for this period-one solution can be obtained by using the same method
used in the proof of Theorem 3.5. Thus we complete the proof.

4.2. The Case of D/e < h

Theorem 4.2. Assume that D/e < h, q > −1, and r > 0. Then there exists r0 > 0 such that system
(1.1) has a stable positive solution of period 1 or 2 if r > r0, where r0 depends on the value h. Moreover,
system (1.1) has no periodic solutions of period k ( k ≥ 3).

Proof. First, assume that the orbit, which just touches
∑

2 at the point B0 = (h, y1) with y1 =
(a − bh)/c, meets

∑
1 at the two points B = ((1 − p)h, y2) and B1 = ((1 − p)h, y3), where

y3 < (a − b(1 − p)h)/c < y2. We will prove this theorem by the following five steps.

Step 1. We will show that if r > y2, then any trajectory of system (1.1) intersects with
∑

2
infinite times. Note that every trajectory passing through the point ((1 − p)h, y) with y ∈
(y3, y2) cannot intersect with

∑
1 as time goes to infinite and tends to the focus (D/e, (ae −

bD)/ce) eventually. Therefore, if all trajectories of system (1.1) pass through the points ((1 −
p)h, y) with y ∈ (y3, y2) after finite times impulsive effects on

∑
2, they all tend to the focus
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and there are no positive periodic solutions. From this fact, we know that the condition r > y2,
in which y2 depends on the value h as a function g(h), is a sufficient condition for a trajectory
of system (1.1) which intersects with

∑
2 infinite times in view of the impulsive effects Δx =

−px and Δy = qy + r.

From now on, let the condition r > y2 hold.

Step 2. Next, we will show that yj+1 < ym+1 for ym < yj , where (h, yk+1) is the next point
of (h, yk) that touches

∑
2. Note that for any point (h, y) with 0 < y < (a − b(1 − p)h)/c,

the point ((1 − p)h, (1 + q)y + r) is above the point B. Thus, for any two points Em(h, ym)
and Ej(h, yj), where 0 < ym < yj < (a − bh)/c, the points E+

m((1 − p)h, (1 + q)ym + r) and
E+
j ((1 − p)h, (1 + q)yj + r) lie above the point B and, further, it follows from the vector field of

the system (1.1) that 0 < yj+1 < ym+1 < (a − bh)/c, that is,

yj+1 < ym+1 for ym < yj. (4.3)

Thus, from the Poincaré map and r > y2, we obtain y1 = F(q, r, y0), y2 = F(q, r, y1), and
yn+1 = F(q, r, yn) (n = 3, 4, . . .) for given y0 ∈ (0, (a − bh)/c). Therefore, we have only to
consider three cases as follows:

Case (i): y0 = y1,

Case (ii): y0 /=y1,

Case (iii): yi /=yj (0 ≤ i < j ≤ k − 1, k ≥ 3).

Step 3. In order to show the existence of a positive solution of period 1 or 2, consider the Cases
(i) and (ii). First, if Case (i) is satisfied, then it is easy to see that system (1.1) has a positive
period-one solution. Now, suppose that Case (ii) is satisfied. Then without loss of generality,
we can say that y1 < y0. It follows form (4.3) that y2 > y1. Furthermore, if y2 = y0, then there
exists a positive period-two solution of system (1.1).

Step 4. Now, we will prove that system (1.1) cannot have periodic solutions of period k (k ≥
3) if Case (iii) holds. For this, assume that y0 = yk, which means that system (1.1) has a
positive period-k solution. However, we will show that this is impossible. If y0 < y1, then
from (4.3), we obtain that y1 < y2 and then y2 < y0 < y1 or y0 < y2 < y1. If y0 > y1, then from
(4.3), we have y1 < y2 and then y1 < y2 < y0 and y1 < y0 < y2. So the relation of y0, y1, and y2
is one of the following:

(a) y2 < y0 < y1, (b) y0 < y2 < y1, (c) y1 < y2 < y0, (d) y1 < y0 < y2. (4.4)

(a) If y2 < y0 < y1, then from (4.3), we have y2 < y1 < y3. It is also true that y2 < y0 < y1 < y3.
We again obtain y4 < y2 < y1 < y3 and then y4 < y2 < y0 < y1 < y4. By means of induction,
we have

0 < · · · < y2k < · · · < y4 < y2 < y0 < y1 < y3 < y5 < · · · < y2k+1 < · · · < 1. (4.5)
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Similar to (a), for Cases (b), (c), and (d), we obtain

(b) 0 < y0 < y2 < y4 < · · · < y2k < · · · < y2k+1 < · · · < y5 < y3 < y1 < 1,

(c) 0 < y1 < y3 < y5 < · · · < y2k+1 < · · · < y2k < · · · < y4 < y2 < y0 < 1,

(d) 0 < · · · < y2k+1 < · · · < y5 < y3 < y1 < y2 < y4 < y6 < · · · < y2k < · · · < 1,

(4.6)

respectively. If there exists a positive period-k solution (k ≥ 3) in the system (1.1), then yi /=yj ,
(0 ≤ i < j ≤ k − 1), yk = y0 which is a contradiction to (4.5)–(4.6). Thus there is no positive
period-k solution (k ≥ 3) if r > y2.

Step 5. From Step 4, we can show that there exists a stable period-1 or-2 solution in these
cases. In fact, it follows from (4.5) that

lim
k→∞

y2k = y∗
0, lim

k→∞
y2k+1 = y∗

1, (4.7)

where 0 < y∗
0 < y∗

1 < (a − bh)/c. Therefore, y∗
1 = F(q, r, y∗

0) and y
∗
2 = F(q, r, y∗

1). Thus system
(1.1) has a positive period-2 solution in the case (a). Moreover, it is easily proven from (4.5)
and (4.7) that this positive period-2 solution is local stable. Similarly, we have system (1.1)
has a stable positive period-1 solution in cases (b) and (c) and has a stable positive period-2
solution in case (d).

5. Numerical Examples

In this section, we will present some numerical examples to discuss the various dynamical
aspects of system (1.1) and to testify the validity of our theoretical results obtained in the
previous sections.

Example 5.1. In order to exhibit the dynamical complexity as q varies, let r = 0 and fix the
other parameters as follows:

a = 0.4, b = 0.8, c = 0.8, D = 0.4, e = 0.8, h = 0.1, p = 0.35.
(5.1)

In this example, we set an initial value as (0.05, 0.1). It is from Theorem 3.1 that the periodic
semitrivial solution is stable if −1 < q < q0 = (1−p)−D/a((a − bh(1 − p))/(a − bh))D/a−e/b − 1 ≈
0.4286 (see Figures 1 and 2). We display the bifurcation diagram in Figure 2(a). From the
Remark 3.4, we know that a fold bifurcation takes place at q = q0. Figure 2(a) shows that
a positive period-one solution bifurcates from the periodic semitrivial solution at q = q0 ≈
0.4286 and a positive period-two solution bifurcates from the positive period-one solution
via a flip bifurcation at q = q2 ≈ 6.25, which leads to the period-doubling bifurcation and then
chaos (see Figures 2(b) and 3). It follows from Theorem 4.2 that system with r > 0 cannot
have positive period-3 solution under some conditions. However, if r = 0, a period-3 solution
can exist (see Figure 4).
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Figure 1: (a) The trajectory of system (1.1) with r = 0 when q = 0.42. (b-c) Time series.
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Figure 2: (a) The bifurcation diagram of system (1.1) r = 0. (b)A chaotic solution of system (1.1)with r = 0
when q = 20.

Example 5.2. Under the condition r > 0, we know that there is no semitrivial solution in
system (1.1). In this case, set the parameters as follows:

a = 1.0, b = 0.6, c = 0.8, D = 0.4, e = 0.8, p = 0.2, r = 0.1. (5.2)

Throughout this example, we regard the point (0.1, 0.2) as an initial value. Figure 5(a)
shows the bifurcation diagrams of system (1.1) with q as a bifurcation parameter when
h = 0.3 < D/e. It follows from Theorem 4.1 that there exists a period-one solution for any
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Figure 3: (a) A period-4 solution when r = 0 and q = 14. (b) A period-8 solution when r = 0 and q = 15.5.
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Figure 4: (a) A period-3 solution when r = 0 and q = 26.5. (b) The enlarged part of (a) for 0.063 ≤ x ≤ 1.
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Figure 5: (a) The bifurcation diagram of system (1.1) with h = 0.3. (b) The bifurcation diagram of system
(1.1)with h = 0.52.
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Figure 6: The bifurcation diagram of system (1.1) with h = 0.3 and q = 5 with respect to r > 0.

q > −1 and this solution is stable when q∗ < q < q∗∗ ≈ 4.35 as shown in Figure 5(a). It is
easy to see that there are no fold bifurcations. However, at q = q∗∗ ≈ 4.35, a flip bifurcation
occurs and the cascade of the flip bifurcation leads to chaotic solutions like the previous
example. Thanks to Figure 5(a), we know that system (1.1) undergoes the complex dynamical
behaviors including periodic doubling, chaotic behaviors, and periodic windows.

Example 5.3. It follows from Theorem 4.2 that if the value h satisfies the condition D/e <
h < a/b, there exists some r0 > 0 such that, for all q > 0, system (1.1) has a stable positive
period-one or-two solution if r > r0, but does not have period-k (k ≥ 3) solutions. To
substantiate these theoretical results by numerical simulation, let h = 0.52 and r = 1.2, and
let the other parameters be the same as in Example 5.2. Then we obtain D/e < h < b/a.
Figure 5(b) of the bifurcation diagram of system (1.1) numerically displays that there exist
no period-k solutions (k ≥ 3) except stable positive period-1 or-2 solutions. Thus the value r
is also an important parameter in the dynamical aspects of system (1.1). For this reason, we
investigate the effects of the parameter r on system (1.1). For this, let q = 5 and h = 0.52, and
let r be a bifurcation parameter. It is easy to see from Figure 6 that the parameter r causes
various dynamical behaviors of system (1.1) such as a cascade of reverse period-doubling
bifurcations, also called period halving, period windows, chaotic regions, stable period-2
solutions, and so forth.

From a biological point of view, as mentioned in Section 1, the value r represents
the amount of immigration or releasing of the predator. Particularly, from Figure 6, one can
figure out that the number of the predator cannot be easily estimated when the amount of
r is small due to chaotic behaviors of solutions to the system; on the contrary, if sufficient
amount of the predator is released impulsively, then the number of the predator (eventually,
the number of the prey) can be predictable due to periodic behaviors of solutions to the
system.

Remark 5.4. Now, we will demonstrate the superiority of the state-dependent feedback
control in comparison with the fixed-time control via an example. For this, assume that
a = 1.0, b = 0.6, c = 0.8, D = 0.4, e = 0.8, h = 0.3, p = 0.6, q = 4, and r = 0.1 in system
(1.1) with an initial value (0.05, 4.1). Figure 7(b) shows that the prey population cannot be
controlled below the threshold value if we take the impulsive control measure at fixed time
t = 6k (k = 1, 2, . . .). However, it is seen from Figure 7(a) that only after several attempts of
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Figure 7: The trajectories of system (1.1) with h = 0.3 (a) under the state feedback control and (b) under
the fixed time control when t = 6k (k = 1, 2 . . .).

control does the solution approach the periodic solution. Thus this example shows that the
impulsive state feedback measure is more effective in real biological control.

6. Conclusion

In this paper, a state-dependent impulsive dynamical system concerning control strategy has
been proposed and analyzed. Particularly, a state feedback measure for controlling the prey
population is taken when the amount of the prey reaches a threshold value. The dynamical
behaviors have been investigated, including the existence of periodic solutions with period
1 and 2 and their stabilities. In addition, we have numerically shown that system (1.1) has
various dynamical aspects including a chaotic behavior. Based on the main theorems of this
paper, the amount of the prey population can be completely controlled below the threshold
value by one, two, or at most finite number of applying impulsive effects. From a biological
point of view, it will be very helpful and useful to control the prey population.
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