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1. Introduction

Let D
n be the unit polydisc of C

n with boundary ∂D
n. If n = 1,we will denote the unit disk D

1

simply by D. The class of allholomorphic functions on D
n will be denoted by H(Dn), while

by H∞(Dn), we denote the space of all bounded analytic functions in the unit polydisc with
the norm ‖f‖∞ = supz∈Dn |f(z)|.

Let ϕ(z) = (ϕ1(z), . . . , ϕn(z)) and ψ(z) = (ψ1(z), . . . , ψn(z)) be holomorphic self-maps
of D

n. The composition operator, Cϕ, is defined by

Cϕ(f)(z) = f
(
ϕ(z)

)
(1.1)

for any f ∈ H(Dn) and z ∈ D
n.

Let X be a Banach space. Recall that the essential norm of a continuous linear operator
T : X → X is the distance from T to the compact operators, that is,

‖T‖e = inf
{‖T −K‖;K : X −→ X is compact

}
. (1.2)
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Notice that ‖T‖e = 0 if and only if T is compact, so that estimates on ‖T‖e lead to conditions
for T to be compact.

In the past few decades, boundedness, compactness, and essential norms of
composition and closely related operators between various spaces of holomorphic functions
have been studied by many authors (see, e.g., the following papers mostly in the settings of
the unit ball and the unit polydisc [1–23] and the references therein). Recently, several papers
focused on studying the mapping properties of the difference of two composition operators,
that is, of an operator of the form

T = Cϕ − Cψ. (1.3)

One of the first results of this type, in the setting of the Hardy space H2(D), belongs to
Berkson [24]. There, it was shown that if ϕ is an analytic self-map of the unit disk D whose
radial limit function ϕ∗ satisfies |ϕ∗(ζ)| = 1 for ζ ∈ E ⊂ ∂D, meas (E) > 0, then for any analytic
self-map ψ of the disk, ψ /=ϕ,

∥∥Cϕ − Cψ

∥∥ ≥
√

meas (E)
2

, (1.4)

where meas denotes the normalized Lebesgue measure on ∂D, which means that Cϕ is
isolated in the operator norm topology. Some other conditions for isolation in the same setting
are obtained in [15].

In [25], MacCluer et al., among other results, characterized the compactness of the
difference of two composition operators onH∞(D) in terms of the Poincaré distance. In [26],
isolated points and essential components of composition operators onH∞(D) are studied. In
[27, 28], the authors have independently extended the result to H∞(Bn) space, where Bn is
the unit ball of C

n. In [29], Moorhouse showed that if the pseudohyperbolic distance between
the image values ϕ and ψ converges to zero as z → ζ for every point ζ at which ϕ and ψ have
finite angular derivative, then the difference Cϕ − Cψ yields a compact operator. Differences
of composition operators on the Bloch and the little Bloch space are studied in [30, 31].
Motivated by these results, we give some upper and lower estimates of the essential norm
for the difference of composition operators induced by ϕ and ψ acting on the spaceH∞(Dn),
where ϕ and ψ are analytic self-maps of D

n. As a consequence, one obtains conditions in terms
of the Carthéodory distance on D

n that characterize those pairs of holomorphic self-maps of
the polydisc for which the difference of two composition operators onH∞(Dn) is compact.

2. Notation and background

The pseudohyperbolic distance on the unit disk is defined by

β(z,w) =
∣∣∣∣
z −w
1 − zw

∣∣∣∣, z,w ∈ D. (2.1)

It is easy to see that 0 ≤ β(z,w) ≤ 1.
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Definition 2.1. The Poincaré distance ρ on D is

ρ(z,w) := tanh−1β(z,w) =
1
2
ln

1 + β(z,w)
1 − β(z,w)

(2.2)

for z,w ∈ D.

Definition 2.2. The Carathéodory pseudodistance on a domain G ⊂ C
n is given by

cG(z,w) := sup
{
ρ
(
f(z), f(w)

)
: f ∈ H(G,D)

}
(2.3)

for z,w ∈ G, whereH(G,D) denotes the class of holomorphic mappings from G to D.

If we put

c∗G(z,w) := sup
{
β
(
f(z), f(w)

)
: f ∈ H(G,D)

}
, z,w ∈ G, (2.4)

then by the monotonicity of the function h(x) = ln((1+x)/(1−x)) on [0, 1) and the inequality
h(x) ≥ 2x, x ∈ [0, 1), we have that

cG = tanh−1(c∗G
) ≥ c∗G. (2.5)

Next, we introduce the following pseudodistance on G:

dG(z,w) := sup
{∣∣f(z) − f(w)

∣∣ : f ∈ H(G,D)
}
. (2.6)

For the case G = D, it is known that (see [32])

dD(z,w) =
2 − 2

√
1 − β(z,w)2

β(z,w)
. (2.7)

Hence, the Poincaré metric on D is

ρ(z,w) = tanh−1β(z,w) = ln
2 + dD(z,w)
2 − dD(z,w)

. (2.8)

It is easy to see that for z,w ∈ G,

dG(z,w) = sup
{∣∣g

(
f(z)

) − g(f(w)
)∣∣ : g ∈ H(D,D), f ∈ H(G,D)

}

= sup
f∈H(G,D)

dD

(
f(z), f(w)

)
.

(2.9)
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Since the map t → ln((2 + t)/(2 − t)) is strictly increasing on [0, 2), it follows that

ln
2 + dG
2 − dG = sup

f∈H(G,D)
ln

2 + dD

(
f(z), f(w)

)

2 − dD

(
f(z), f(w)

)

= sup
f∈H(G,D)

ρ
(
f(z), f(w)

)

= cG(z,w),

(2.10)

or equivalently for any domain G and any z,w ∈ G,

dG(z,w) =
2 − 2

√
1 − (

tanh cG(z,w)
)2

tanh cG(z,w)

=
2 − 2

√
1 − (

c∗G(z,w)
)2

c∗G(z,w)
.

(2.11)

It is well known that c∗
Dn(z,w) = max1≤j≤nβ(zj ,wj) (see [33, Corollary 2.2.4]). So we

have

dDn(z,w) =
2 − 2

√
1 − (

max1≤j≤nβ
(
zj ,wj

))2

max1≤j≤nβ
(
zj ,wj

) . (2.12)

Before formulating and proving the main theorem, we give some notations. For any
δ ∈ (0, 1), define

E
j

δ :=
{
z ∈ D

n :
∣∣ϕj(z)

∣∣ ∨ ∣∣ψj(z)
∣∣ > 1 − δ}, (2.13)

and we put Eδ = ∪nj=1 E
j

δ
,where ∨ means the maximum of two real numbers.

Lemma 2.3 (see [34]). Let {zn} be a sequence in D with |zn| → 1 as n → ∞. Then, there is a
subsequence {znj} of {zn}, a positive numberM, and a sequence of functions fm ∈ H∞(D) such that

(i) fm(znj ) = δ
j
m,

(ii)
∑

m|fm(z)| ≤M <∞ for any z ∈ D,

(the symbol δjm is equal to 1 ifm = j and 0, otherwise.)

Lemma 2.4. Let Ω be a domain in C
n, f ∈ H(Ω). If a compact set K and a neighborhood G of K

satisfy K ⊂ G ⊂⊂ Ω (i.e., G is relative compact in Ω) and η = dist (K, ∂G) > 0, then

sup
z∈K

∣∣∣∣
∂f

∂zj
(z)

∣∣∣∣ ≤
√
n

η
sup
z∈G

∣∣f(z)
∣∣, (2.14)

for each j ∈ {1, . . . , n}.
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Proof. Since η = dist (K, ∂G) > 0 for any a ∈ K, the polydisc

Pa =
{
(
z1, . . . , zn

) ∈ C
n :

∣
∣zj − aj

∣
∣ <

η√
n
, j = 1, . . . , n

}
(2.15)

is contained in G. Using Cauchy’s inequality, we have

∣
∣
∣
∣
∂f

∂zj
(a)

∣
∣
∣
∣ ≤

√
n

η
sup
z∈∂0Pa

∣
∣f(z)

∣
∣ ≤

√
n

η
sup
z∈G

∣
∣f(z)

∣
∣, (2.16)

as desired (where ∂0Pa is the distinguished boundary of Pa).

Lemma 2.5. For fixed 0 < δ < 1, let Fδ = {z ∈ D
n : max1≤j≤n|zj | > 1 − δ}. Then,

lim
r→ 1

sup
‖f‖∞=1

sup
z∈Fc

δ

∣∣f(z) − f(rz)∣∣ = 0 (2.17)

for any f in the unit ball ofH∞(Dn) (where Fc
δ
denotes the complement of Fδ relative to D

n).

Proof. We have

sup
z∈Fc

δ

∣∣f(z) − f(rz)∣∣

= sup
z∈Fc

δ

∣∣∣∣

n∑

j=1

(
f
(
rz1, rz2, . . . , rzj−1, zj , . . . , zn

) − f(z1, rz2, . . . , rzj , zj+1, . . . , zn
))
∣∣∣∣

≤ sup
z∈Fc

δ

n∑

j=1

∫1

r

∣∣zj
∣∣
∣∣∣∣
∂f

∂zj

(
rz1, . . . , rzj−1, tzj , zj+1, . . . , zn

)
∣∣∣∣dt

≤ (1 − r)sup
z∈Fc

δ

n∑

j=1

∣∣∣∣
∂f

∂zj
(z)

∣∣∣∣.

(2.18)

Consider Fcδ/2, then F
c
δ ⊂ Fcδ/2 and dist (Fcδ/2, ∂D

n) = δ/2.
From Lemma 2.4, we have that for each j ∈ {1, . . . , n}

sup
z∈Fc

δ

∣∣∣∣
∂f

∂zj
(z)

∣∣∣∣ ≤
2
√
n

δ
sup
z∈Fc

δ/2

∣∣f(z)
∣∣. (2.19)

From this and (2.18), it follows that

sup
z∈Fc

δ

∣∣f(z) − f(rz)∣∣ ≤ 2(1 − r)n√n
δ

‖f‖∞. (2.20)

Taking the supremum in (2.20) over the unit ball in H∞(Dn), then letting r → 1 in
(2.20), the lemma follows.
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3. Main theorem

In this section, we will state our main result and give its proof.

Theorem 3.1. Let ϕ, ψ : D
n → D

n and Cϕ − Cψ : H∞(Dn) → H∞(Dn). Then,

1
M

Ψ ≤ ∥
∥Cϕ − Cψ

∥
∥
e ≤

4 − 4
√
1 −Ψ2

Ψ
, (3.1)

where Ψ := max1≤k≤nlimδ→ 0supz∈Ek
δ
max1≤j≤nβ(ϕj(z), ψj(z)) andM is a positive constant.

Proof. First, we consider the upper estimate. For fixed r ∈ (0, 1), it is easy to check that both
Crϕ and Crψ are compact operators. Therefore,

∥
∥Cϕ − Cψ

∥
∥
e ≤

∥
∥Cϕ − Cψ − Crϕ + Crψ

∥
∥. (3.2)

Now, for any 0 < δ < 1,

∥∥Cϕ − Cψ − Crϕ + Crψ

∥∥ = sup
‖f‖∞=1

∥∥(Cϕ − Cψ − Crϕ + Crψ

)
f
∥∥
∞

= sup
‖f‖∞=1

sup
z∈Dn

∣∣f
(
ϕ(z)

) − f(ψ(z)) − f(rϕ(z)) + f(rψ(z))∣∣

≤ sup
‖f‖∞=1

sup
z∈Eδ

∣∣f
(
ϕ(z)

) − f(ψ(z)) − f(rϕ(z)) + f(rψ(z))∣∣

+ sup
‖f‖∞=1

sup
z∈Ec

δ

∣∣f
(
ϕ(z)

) − f(ψ(z)) − f(rϕ(z)) + f(rψ(z))∣∣

= I1 + I2.

(3.3)

From Lemma 2.5, we can choose r sufficiently close to 1 such that I2 is sufficiently small.
Applying the Schwarz-Pick lemma on the function φ(z) = rz, r ∈ (0, 1), and by the

monotony of the function f(x) = (2 − 2
√
1 − x2)/x, we obtain

I1 ≤ sup
‖f‖∞=1

sup
z∈Eδ

(∣∣f
(
ϕ(z)

) − f(ψ(z))∣∣ + ∣∣ − f(rϕ(z)) + f(rψ(z))∣∣)

= sup
z∈Eδ

sup
‖f‖∞=1

(∣∣f
(
ϕ(z)

) − f(ψ(z))∣∣ + ∣∣ − f(rϕ(z)) + f(rψ(z))∣∣)

≤ sup
z∈Eδ

(
dDn

(
ϕ(z), ψ(z)

)
+ dDn

(
rϕ(z), rψ(z)

))

≤ 2 sup
z∈Eδ

2 − 2
(
1 −max1≤j≤n

(
β
(
ϕj(z), ψj(z)

))2)1/2

max1≤j≤nβ
(
ϕj(z), ψj(z)

)

=
4 − 4

(
1 − supz∈Eδmax1≤j≤n

(
β
(
ϕj(z), ψj(z)

))2)1/2

supz∈Eδmax1≤j≤nβ(ϕj(z), ψj(z))

(3.4)

≤
4 − 4

(
1 −max1≤k≤nsupz∈Ek

δ
max1≤j≤n

(
β
(
ϕj(z), ψj(z)

))2)1/2

max1≤k≤nsupz∈Ek
δ
max1≤j≤nβ

(
ϕj(z), ψj(z)

) . (3.5)
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By direct calculation, it is easy to check that

lim
δ→ 0

max
1≤k≤n

sup
z∈Ek

δ

max
1≤j≤n

β(ϕj(z), ψj(z)) = max
1≤k≤n

lim
δ→ 0

sup
z∈Ek

δ

max
1≤j≤n

β(ϕj(z), ψj(z)). (3.6)

From which, and letting δ → 0 in (3.5), the upper estimate in (3.1) follows.
Now, we turn to the lower estimate.
Let

ak = lim
δ→ 0

sup
z∈Ek

δ

max
1≤j≤n

β
(
ϕj(z), ψj(z)

)
, k = 1, . . . , n. (3.7)

If we set δm = 1/m, then δm → 0 asm → ∞, and there exists zm ∈ Ej
δm

and some j such that

lim
m→∞

β
(
ϕj
(
zm

)
, ψj

(
zm

))
= ak. (3.8)

Since zm ∈ E
j

δm
and δm → 0, we have |ϕj(zm)| → 1 or |φj(zm)| → 1. Without loss

of generality, we can assume |ϕj(zm)| → 1. Let wm = ϕj(zm), by Lemma 2.3, we have that
there is a subsequence of wm (we may denote it again by wm), a positive number M, and a
sequence of functions fm ∈ H∞(D) such that

(i) fm(wk) = δkm,

(ii)
∑

m|fm(z)| ≤M <∞ for any z ∈ D.

Now, for any z ∈ D
n, we define f̃m(z) := fm(zj), where zj is the jth component of z,

then
∑

m|f̃m(z)| ≤M <∞.
Next we claim that f̃m converge weakly to 0. Let λ ∈ H∞(Dn)∗. For any natural N,

there exist some unimodular sequences αm such that

N∑

m=0

∣∣λ
(
f̃m

)∣∣ =
N∑

m=0

αmλ
(
f̃m

)

= λ
( N∑

m=0

αmf̃m

)

≤ ‖λ‖
∥∥∥∥

N∑

m=0

αmf̃m

∥∥∥∥
∞

≤ ‖λ‖M.

(3.9)

Thus, λ(f̃m) → 0 asm → ∞, that is, f̃m converge weakly to 0.
Set

gm(z) =
f̃m(z)
M

zj − ψj
(
zm

)

1 − ψj
(
zm

)
zj
, m ∈ N. (3.10)
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Then, ‖gm‖∞ ≤ 1 and similarly to f̃m, it is easy to see that gm converge weakly to 0. Thus, for
any compact operator K, we have ‖Kgm‖∞ → 0 asm → ∞.

Now, we have

J =
∥
∥Cϕ − Cψ −K∥

∥

≥ lim sup
m→∞

∥
∥(Cϕ − Cψ −K)

gm
∥
∥
∞

≥ lim sup
m→∞

(∥∥(Cϕ − Cψ

)
gm

∥
∥
∞ − ∥

∥Kgm
∥
∥
∞
)

= lim sup
m→∞

sup
z∈Dn

∣
∣gm

(
ϕ(z)

) − gm
(
ψ(z)

)∣∣

≥ 1
M

lim sup
m→∞

sup
z∈Dn

∣
∣∣
∣
ϕj(z) − ψj

(
zm

)

1 − ψj
(
zm

)
ϕj(z)

f̃m
(
ϕ(z)

) − ψj(z) − ψj
(
zm

)

1 − ψj
(
zm

)
ψj(z)

f̃m
(
ψ(z)

)
∣
∣∣
∣

≥ 1
M

lim sup
m→∞

∣∣ϕj
(
zm

) − ψj
(
zm

)∣∣
∣∣1 − ψj

(
zm

)
ϕj
(
zm

)∣∣

=
1
M

lim
m→∞

β
(
ϕj
(
zm

)
, ψj

(
zm

))

=
1
M

ak.

(3.11)

Then, we have

∥∥Cϕ − Cψ

∥∥
e ≥

1
M

max
1≤k≤n

lim
δ→ 0

sup
z∈Ek

δ

max
1≤j≤n

β
(
ϕj(z), ψj(z)

)
, (3.12)

finishing the proof of the theorem.

Corollary 3.2. The operator Cϕ − Cψ is compact if and only if

max
1≤k≤n

lim
δ→ 0

sup
z∈Ek

δ

max
1≤j≤n

β
(
ϕj(z), ψj(z)

)
= 0. (3.13)

Proof. By using the inequality (1 −
√
1 − x2)/x ≤ x (0 < x ≤ 1) and the fact that T is compact

if and only if ‖T‖e = 0, the corollary follows by Theorem 3.1.

Example 3.3. Let n = 2, ϕ(z) = (z1, (1/2)z2), and ψ(z) = (z1, (1/3)z2). Then, β(ϕ1(z), ψ1(z)) =
0 and β(ϕ2(z), ψ2(z)) = (1/6)(|z2|/(1 − (1/6)|z2|2)). A direct calculation shows that

max
1≤k≤2

lim
δ→ 0

sup
z∈Ek

δ

max
1≤j≤2

β
(
ϕj(z), ψj(z)

)
=

1
5
> 0; (3.14)

so by Corollary 3.2, Cϕ − Cψ is not compact.
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Example 3.4. Let n = 2, p > 1, 0 < c ≤ 1, ϕ(z) = ((z1 + 1)/2, (1/2)z2), and

ψ(z) =
(
z1 + 1
2

+ c
(
1 − z1
2

)p

,
1
2
z2

)
, (3.15)

where we choose the usual branch of the logarithm of w1, Rew1 > 0, in order to
define ((1 − z1)/2)p. By [35], ψ is a self-map of D

2, whenever c is small. Moreover,
max1≤j≤2β(ϕj(z), ψj(z)) = β(ϕ1(z), ψ1(z)). By Corollary 3.2 and the proof of Example 1 of
[25], we have, for these c,

(1) if 1 < p ≤ 2, then Cϕ − Cψ is noncompact;

(2) if 2 < p <∞, then Cϕ − Cψ is compact.
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