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1. Introduction and preliminaries

Throughout this paper, unless otherwise specified, we always let X and Y be real Hausdorff
topological vector spaces, K ⊆ X a nonempty convex set, C : K → 2Y with pointed closed
cone convex values (we recall that a subset A of Y is convex cone and pointed whenever
A + A ⊆ Y, tA ⊆ A, for t ≥ 0, and A ∩ −A = {0}, resp.), where 2Y denotes all the subsets of
Y. Denote by L(X,Y ) the set of all continuous linear mappings from X into Y. For any given
l ∈ L(X,Y ), x ∈ X, let 〈l, x〉 denote the value of l at x. Let T : K → L(X,Y ) and g : K → K be
two mappings. Finally, let F : K ×K → 2Y be a set-valued mapping. We need the following
definitions and results in the sequel.

Definition 1.1. Let F : K ×K → 2Y be a set-valued mapping. One says that F is

(i) strongly C-pseudomonotone if, for any given x and y ∈ K,
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/⊆ − intC(x) =⇒ F(y, x) ⊆ −C(y). (1.1)

(ii) C-pseudomonotone if, for any given x and y ∈ K,

F(x, y)/⊆ − C(x) \ {0} =⇒ F(y, x) ⊆ −C(y). (1.2)

Remark 1.2. (1) Strongly C-pseudomonotonicity implies C-pseudomonotonicity.
(2) Let T : K → 2L(X,Y ) be a set-valued mapping and let g : K → K be

a mapping. If we define F(x, y) = 〈Tx, y − g(x)〉, for each (x, y) ∈ K × K, then
strongly C-pseudomonotonicity and C-pseudomonotonicity reduce to the strongly C-
pseudomonotonicity and C-pseudomonotonicity, of T with respect to g, respectively,
introduced in [1].

Definition 1.3. Let X and Y be two topological spaces. A set-valued mapping G : X → 2Y is
called

(i) upper semicontinuous (u.s.c.) at x ∈ X if for each open set V containing G(x), there is
an open setU containing x such that for each t ∈ U, G(t) ⊆ V ; G is said to be u.s.c.
on X if it is u.s.c. at all x ∈ X;

(ii) lower semicontinuous (l.s.c.) at x ∈ X if for each open set V with G(x) ∩ V /=∅, there
is an open setU containing x such that for each t ∈ U, G(t) ∩ V /=∅; G is said to be
l.s.c. on X if it is l.s.c. at all x ∈ X;

(iii) closed if the graph of G, that is, the set {(x, y) : x ∈ X, y ∈ G(x)}, is a closed set in
X × Y ;

(iv) compact if the closure of range G, that is, clG(X), is compact, where G(X) =
⋃

x∈XG(x).

Remark 1.4. One can see that (ii) is equivalent to the following statement:
G is l.s.c. at x ∈ X if for each closed set C ⊆ Y, any net {xα} ⊆ K,xα converges to x, and

G(xα) ⊆ C, for all α imply that G(x) ⊆ C.

Lemma 1.5 (see [2]). Let X and Y be two topological spaces. Suppose that G : X → 2Y is a set-
valued mapping. Then the following statements are true.

(a) If G is closed and compact, then G is u.s.c.

(b) Let, for any x ∈ X, G(x) be compact. If G is u.s.c. on X then for any net {xα} ⊂ X such
that xα → x and for every yα ∈ G(xα), there exist y ∈ G(x) and a subnet {yβ} of {yα}
such that yβ → y.

For the converse of (b) in Lemma 1.5, we refer the reader to [3].

Definition 1.6. Let X be a topological vector space and Y a topological space. A set-valued
mapping G : X → 2Y is called upper hemicontinuous if the restriction of G on straight lines
is upper semicontinuous.
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Definition 1.7. One says that the mapping G : K ×K → 2Y is C-upper sign continuous if, for
all x, y ∈ K, the following implication holds:

G((1 − t)x + ty, y) ∩ C((1 − t)x + ty)/=∅, ∀t ∈]0, 1[=⇒ G(x, y) ∩ C(x)/=∅. (1.3)

Remark 1.8. Let f : K×K → R be a mapping. If we defineG(x, y) = {f(x, y)}, for all x, y ∈ K
and C(x) = [0,∞), then Definition 1.7 reduces to the upper sign continuous introduced by
Bianchi and Pini in [4]. The upper sign continuity notion was first introduced by Hadjisavvas
[5] for a single-valued mapping in the framework of variational inequality problems.

2. Main results

In this section, we consider the following generalized vector equilibrium problems (for short,
GVEPs) in the topological vector space setting:

(GVEP1) find x ∈ K such that F(x, y)/⊆ − intC(x), ∀y ∈ K, and

(GVEP2) find x ∈ K such that F(x, y)/⊆ − C(x) \ {0}, ∀y ∈ K.

Clearly, a solution of GVEP2 is also a solution of problem GVEP1. We need the
following lemma in the sequel.

Lemma 2.1. Suppose that

(i) F is C-pseudomonotone;

(ii) F(x, x) ∩ C(x)/=∅ for each x ∈ K;

(iii) F is C-upper sign continuous;

(iv) for each fixed x ∈ K, the mapping z → F(x, z) is convex, that is, F(x, (1 − t)y + tz) ⊆
(1 − t)F(x, y) + tF(x, z) − C(x), ∀y ∈ K, ∀t ∈]0, 1[.

Then for any given y ∈ K, the following are equivalent:

(I) F(y, z)/⊆ − C(y) \ {0}, ∀z ∈ K;

(II) F(z, y) ⊆ −C(z), ∀z ∈ K.

Proof. (I) ⇒ (II) is obvious from the definition of C-pseudomonotonicity of F. Suppose that
(II) holds. For each z ∈ K, put zt = y + t(z − y), where t ∈]0, 1[ and y ∈ K as above. By (II),
we have

F
(
zt, y

) ⊆ −C(zt), ∀t ∈]0, 1[. (2.1)

We claim that F(zt, z) ∩ C(zt)/=∅. Suppose F(zt, z) ∩ C(zt) = ∅, for some t ∈]0, 1[. Then

F
(
zt, z

) ⊆ Y \ C(zt
)
, for this t ∈]0, 1[, (2.2)

and so F(zt, zt) ⊆ (1 − t)F(zt, y) + tF(zt, z) − C(zt) ⊆ −C(zt) + (Y \ C(zt)) − C(zt) = (Y \
C(zt)) − C(zt) ⊆ Y \ C(zt), which contradicts (ii) (note the first inclusion follows from (iv),
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the second inclusion follows from (2.1) and (2.2), and the third follows from the relation
Y \ C(zt) − C(zt) ⊆ Y \ C(zt)). Therefore, for all t ∈]0, 1[, the set F(zt, z) ∩ C(zt) is nonempty.
Thus, by (iii) there is a u ∈ F(y, z) ∩ C(y). Hence, since C(y) ∩ −C(y) \ {0} = ∅, we get
u/∈(−C(y) \ {0}). Consequently, F(y, z)/⊆ − C(y) \ {0}. This completes the proof.

Remark 2.2. If the set-valued mapping C : K → 2Y has closed graph and for each fixed z ∈ K
the mapping x → F(x, z) is upper hemicontinuous with nonempty compact values, then
condition (iii) in Lemma 2.1 holds. To see this, let x and y be arbitrary elements of K and
ut ∈ F(zt, y) ∩ C(zt)/=∅, where zt = (1 − t)x + ty, t ∈]0, 1[. By Lemma 1.5(b), there exists
a subnet of (ut) (without loss of generality (ut)) and u ∈ F(x, y) such that ut → u, where
t → 0. Now, since C : K → 2Y has closed graph (note ut → u and zt → x as t → 0) and
ut ∈ C(zt),we have u ∈ C(x).Hence, u ∈ F(x, y)∩C(x) and so F(x, y)∩C(x)/=∅. This shows
that F is C-upper sign continuous. Therefore, Lemma 2.1 improves Lemma 2.3 in [1].

By a similar argument as in Lemma 2.1 and using Remark 2.2, we can deduce the
following result.

Lemma 2.3. Suppose that

(i) for each fixed z ∈ K, the mapping x → F(x, z) is upper semicontinuous with compact
values;

(ii) F is strongly C-pseudomonotone;

(iii) F(x, x)/⊆ − intC(x), for each x ∈ K;

(iv) the mapping x → W(x) = Y \ (−intC(x)), for each x ∈ K, has closed graph;

(v) for each fixed x ∈ K, the mapping z → F(x, z) is convex.

Then for any given y ∈ K, the following are equivalent:

(I) F(y, z)/⊆ − intC(y), ∀z ∈ K;

(II) F(z, y) ⊆ −C(z), ∀z ∈ K.

Remark 2.4. Let T : K → 2L(X,Y ) be a set-valued mapping. If we define F(x, y) = 〈Tx, y − x〉,
where x, y ∈ K, then Lemma 2.3 reduces to Lemma 3 of Yin and Xu [6].

Lemma 2.5. Under the assumptions of Lemma 2.1, the solution set of (GVEP2) is convex.

Proof. Let x1 and x2 be solutions of (GVEP2). By Lemma 2.1, we have

F
(
z, xi

) ⊆ −C(z), ∀z ∈ K, i = 1, 2. (2.3)

From this and condition (iv) of Lemma 2.1, for all t ∈]0, 1[, we deduce that

F
(
z, (1 − t)x1 + tx2

) ⊆ (1 − t)F
(
z, x1

)
+ tF

(
z, x2

) − C(z) ⊆ −C(z), (2.4)

for all z ∈ K. Hence, from Lemma 2.1, we get

F
(
(1 − t)x1 + tx2, z

)
/⊆ − C

(
(1 − t)x1 + tx2

)) \ {0}, ∀z ∈ K. (2.5)

This means that (1 − t)x1 + tx2 is a solution of (GVEP2). The proof is complete.
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Similarly, we can prove the following lemma.

Lemma 2.6. Under the assumptions of Lemma 2.3, the solution set of (GVEP1) is convex.

Remark 2.7. Lemma 2.5 extends Theorem 3 of Yin and Xu [6] and Lemma 2.5 of Fang and
Huang [1].

Definition 2.8. Let K0 be a nonempty subset of K. A set-valued mapping Γ : K0 → 2K is said
to be a KKM map if coA ⊆ ⋃

x∈AΓ(x), for every finite subset A of K0, where co denotes the
convex hull.

Lemma 2.9 ((Fan-KKM lemma) [7]). Let K be a nonempty subset of a topological vector space
X and Γ : K → 2X be a KKM mapping with closed values. Assume that there exists a nonempty
compact convex subset B of K such that

⋂
x∈BΓ(x) is compact. Then

⋂

x∈K
Γ(x)/=∅. (2.6)

Lemma 2.10 (see [8]). Let K be a convex subset of a metrizable topological vector space X and
F : K → 2K be a compact upper semicontinuous set-valued mapping with nonempty closed convex
values. Then F has a fixed point in K.

Theorem 2.11. Let all the assumptions of Lemma 2.1 hold and for each fixed x ∈ K, the mapping
y → F(x, y) is lower semicontinuous, where y ∈ K. If there exist a nonempty compact subset B ofK
and a nonempty convex compact subset D of K such that, for each x ∈ K \ B there exists y ∈ D such
that F(y, x)/⊆ − C(y), then the solution set of problem (GVEP2) is nonempty and compact inK.

Proof. Define Γ, Γ̂ : K → 2K by

Γ(y) = {x ∈ K : F(x, y)/⊆ − C(x) \ {0}},
Γ̂(y) = {x ∈ K : F(y, x) ⊆ −C(y)}.

(2.7)

We claim that Γ is a KKM mapping. If not, there exist y1, y2, . . . , yn ∈ K and ti > 0,
∑n

i=1ti = 1
such that z =

∑n
i=1tiyi/∈Γ(yi), that is,

F
(
z, yi

) ⊆ −C(z) \ {0}, i = 1, 2, 3, . . . , n, (2.8)

and so, since −C(z) is a closed convex pointed cone,

n∑

i=1

tiF
(
z, yi

) ⊆ −C(z) \ {0}. (2.9)

It follows from condition (iv) of Lemma 2.1 that

F(z, z) ⊆
n∑

i=1

tiF
(
z, yi

) − C(z). (2.10)
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Now, by combining (2.9) and (2.10), we get

F(z, z) ⊆
n∑

i=1

tiF
(
z, yi

) − C(z) ⊆ −C(z) \ {0} − C(z) ⊆ −C(z) \ {0}, (2.11)

which is a contradiction to condition (ii) of Lemma 2.1. Therefore, Γ is a KKMmapping and so
Γ̂ is also a KKMmapping (note, Γ(y) ⊆ Γ̂(y), for all y ∈ K). By Remark 1.4, the values of Γ̂ are
closed in K (note, for each fixed x ∈ K, the mapping y → F(x, y) is lower semicontinuous)
and by our assumption, we obtain that

⋂
y∈DΓ̂(y) is a closed subset of the compact set B and

hence
⋂

y∈DΓ̂(y) is compact inK. Therefore, Γ̂ fulfils all the assumptions of Lemma 2.9 and so
⋂

y∈KΓ̂(y)/=∅. This means that there exists z ∈ K such that

F(y, z) ⊆ −C(z), ∀y ∈ K. (2.12)

Now, it follows from Lemma 2.1 that

F(z, y)/⊆ − C(y) \ {0}, ∀y ∈ K, (2.13)

and hence z is a solution of the problem (GVEP2). This proves that the solution set of (GVEP2)
is nonempty. By Lemma 2.1, the solution set of (GVEP2) equals

⋂
y∈KΓ̂(y) and so it is a

compact set in K (note, in the above that the set
⋂

y∈KΓ̂(y) is a closed subset of the compact
set B). The proof is complete.

As an application of Theorem 2.11, we derive the existence result for a solution of the
following problem which consists of finding a u ∈ K such that

〈A(u, u), v − g(u)〉/⊆ − C(u) \ {0}, ∀v ∈ K, (2.14)

where A : K ×K → 2L(X,Y ) and g : K → K.
This problem was considered by Fang and Huang [1] in reflexive Banach spaces

setting for a set-valued mapping which is demi-C-pseudomonotone.

Theorem 2.12. Let X be metriziable topological vector space, K nonempty convex subset of X, A :
K ×K → 2L(X,Y ), and g : K → K be two mappings. Assume that

(i) for each fixed w ∈ K, the mapping (u, v) → 〈A(w,u), v − g(u)〉 is C-pseudomonotone
and C-upper sign continuous;

(ii) 〈A(w,u), u − g(u)〉 ∩ C(u)/=∅, for each (w,u);

(iii) for each fixed v ∈ K, the mapping (w,u) → 〈A(w,u), u−g(v)〉 is lower semicontinuous;

(iv) for each finite dimensional subspace M of X with KM = K ∩M/=∅, there exist compact
subset BM and compact convex subsetDM ofKM such that ∀(w, z) ∈ KM × (KM \ BM),
∃u ∈ DM such that 〈A(w,u), z − g(u)〉/⊆ − C(u).

Then there exists u ∈ K such that

〈A(u, u), v − g(u)〉/⊆ − C(u) \ {0}, ∀v ∈ K. (2.15)
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Proof. Let M ⊂ X be a finite dimensional subspace with KM = K ∩ M/=∅. For each fixed
w ∈ K, consider the problem of finding a u ∈ KM such that

〈A(w,u), v − g(u)〉/⊆ − C(u) \ {0}, ∀v ∈ KM. (2.16)

By Theorem 2.11, the problem (2.16) has a nonempty compact solution set in K (note, in
Theorem 2.11 take F(u, v) = 〈A(w,u), v − g(u)〉, (u, v) ∈ K × K). For w ∈ KM, we define a
set-valued mapping T : KM → 2KM by

T(w) =
{
u ∈ KM : 〈A(w,u), v − g(u)〉/⊆ − C(u) \ {0}, ∀v ∈ KM

}
. (2.17)

Then T(w) is a nonempty closed subset of BM, in fact, T(w) is the solution set of (2.16)
corresponding to w. By Lemma 2.1, we have

T(w) =
{
u ∈ KM : 〈A(w,v), u − g(v)〉 ⊆ −C(v), ∀v ∈ KM

}
, (2.18)

which is a convex set. By condition (iii) via Remark 1.4, T is closed. By (iv), we have T(KM) =
⋃

w∈KM
T(w) ⊆ BM. Hence, Lemma 1.5(a) implies that T is upper semicontinuous. Hence, T

satisfies all the assumptions of Lemma 2.1 and so T has a fixed point w0 ∈ KM, that is,

〈
A
(
w0, v

)
, w0 − g(v)

〉 ⊆ −C(v), ∀v ∈ KM. (2.19)

Set M = {M ⊂ X : M is a finite dimensional subspace with KM /=∅} and for M ∈ M,

WM =
{
u ∈ KM : 〈A(u, v), u − g(v)〉 ⊆ −C(v), ∀v ∈ KM

}
. (2.20)

By (2.19) and conditions (iii) and (iv), WM is a nonempty and closed subset of the compact
set BM and henceWM is compact inK. Let {Mi}ni=1 be a finite subset ofM. From the definition
ofWM, we haveW∪iMi ⊂

⋂n
i=1WMi and so {WM : M ∈ M} has the finite intersection property,

so, there is u ∈ ⋂
M∈MWM (note, if

⋂
M∈MWM = ∅, thenWM0 ⊆

⋃
M/=M0

K \WM,whereM0 is
an arbitrary element ofM, so the family {K \WM}M/=M0

is an open covering for the compact
set WM0 and so there exist Mi1 , . . . ,Min such that WM0 ⊆ ⋃n

j=1K \ Wij , which implies that
⋂n

j=1Wij

⋂
WM0 = ∅,which is a contradiction).

We claim that

〈A(u, u), v − g(u)〉/⊆ − C(u) \ {0}, ∀v ∈ K. (2.21)

Indeed, for each v ∈ K, there is Mv ∈ M such that v ∈ KM. Hence, by u ∈ WMv (note,
u ∈ ⋂

M∈MWM) and the definition of WMv , we have

〈A(u, v), u − g(v)〉 ⊆ −C(v), (2.22)
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and so since v was an arbitrary element ofK, then (2.21) is true, for all v ∈ K. This completes
the proof of claim. From (2.21) and Lemma 2.1, we have

〈A(u, u), v − g(u)〉/⊆ − C(u) \ {0}, ∀v ∈ K, (2.23)

and so the proof of the theorem is complete.
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