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1. Introduction

In the second half of the past century, the discoveries of new special functions and applications
of special functions to new areas of mathematics have initiated a resurgence of interest in this
field [1]. These discoveries include work in combinatories initiated by Schutzenberger and
Foata. Moreover, in recent years, particular cases of long familiar special functions have been
clearly defined and applied to orthogonal polynomials [1].

The Wright function is one of the special functions, which plays an important role in
the solution of fractional differential equations. The Wright function is defined by the series
representation for all complex variable z as [2]:

Wα,β(z) =
∞∑

n=0

zn

n!Γ(αn + β)
, α > −1, β ∈ C. (1.1)

The Barnes integral representation of Wright function is defined by

Wα,β(z) =
1

2πi

∫

D

Γ(−s)
Γ(β + αs)

(−z)sds, (1.2)
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where D is a contour in the complex s-plane which runs from s = −i∞ to s = i∞, so that the
points s = n, n = 0, 1, 2, . . . lie to the right of D. There are two auxiliary functions of Wright
function defined as

Mα(z) = W−α,1−α(−z) =
∞∑

n=0

(−1)nzn
n!Γ
(
1 − α(n + 1)

) , 0 < α < 1,

Fα(z) = W−α,0(−z) =
∞∑

n=1

(−1)nzn
n!Γ(−αn) , 0 < α < 1.

(1.3)

Here, we listed some of special cases of Wright function and its auxiliary functions [2]:

W0,1(z) = ez,

W−1/2,1(z) = Erfc
(
− z

2

)
,

(
z

2

)ν

W1,1+ν

(
− z2

4

)
= Jν(z),

(
z

2

)ν

W1,1+ν

(
z2

4

)
= Iν(z),

W−1,β(z) =
1

Γ(β)
(1 + z)β−1, β /= 0, − 1,−2, . . . , |z| < 1,

Fα(z) = αzMα(z),

M1/2(z) =
1√
π

exp
(
− z2

4

)
,

M1/3(z) = 32/3A
(

z

31/3

)
,

(1.4)

where Erfc (z) is the complementary error function, Jν(z), Iν(z) are the Bessel and modified
Bessel functions, and A(z) is Airy’s function, defined as

A(z) =
√
z

3

[
I−1/3

(
2
3
z3/2
)
− I1/3

(
2
3
z3/2
)]

. (1.5)

2. Preliminaries

2.1. q-hypergeometric series

A q-hypergeometric series is a power series in one complex variable z with power series
coefficients which depend, apart from q, on r complex upper parameters a1, a2, . . . , ar and s



M. El-Shahed and A. Salem 3

complex lower parameters b1, b2, . . . , bs as follows [3]:

rφs

[a1,a2,...,ar

b1,b2,...,bs
; q, z

]
= rφs

(
a1, a2, . . . , ar ; b1, b2, . . . , bs; q, z

)
,

:=
∞∑

n=0

(
a1, a2, . . . , ar , q

)
n(

b1, b2, . . . , bs, q
)
n

(
(−1)nq(n2 )

)s−r+1
zk,

(2.1)

where q /= 0 when r > s + 1.

2.2. q-exponential series

The q-analogues of the exponential functions are given by [1, 3]

Ez
q := 0φ0

(−;−; q,−(1 − q)z
)
=

∞∑

n=0

q(
n
2 )zn

[n]q!
=
( − (1 − q)z, q

)
∞,

ezq := 1φ0

(
0;−; q, (1 − q)z

)
=

∞∑

n=0

zn

[n]q!
=

1
(
(1 − q)z, q

)
∞
.

(2.2)

2.3. Jackson q-derivative

In 1908, Jackson reintroduced and started a systematic study of the q-difference operator [1, 3]:

(
Dqf

)
(x) :=

f(x) − f(qx)
(1 − q)x

, q /= 1, x /= 0, (2.3)

which is now sometimes referred to as Euler-Jackson , Jackson q-difference operator, or simply
the q-derivative. By definition, the limit as q-approaches to 1 is the ordinary derivative, that is,

lim
q→1

(
Dqf

)
(x) =

df

dx
(x), (2.4)

if f is differentiable at x. The two exponential functions have the q-derivative:

DqE
ax
q = aE

qax
q ,

Dqe
ax
q = aeaxq .

(2.5)

2.4. Jackson q-integrals

Thomae (1869) and Jackson (1910) introduced the q-integral defined in [3]

∫a

0
f(x)dqx := a(1 − q)

∞∑

n=0

f
(
aqn
)
qn, (2.6)
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Jackson also defined an integral from 0 to∞ by

∫∞

0
f(x)dqx := (1 − q)

∞∑

n=−∞
f
(
qn
)
qn, (2.7)

provided the sums converge absolutely.
The q-Jackson integral in a generic interval [a, b] is given by

∫b

a

f(x)dqx :=
∫b

0
f(x)dqx −

∫a

0
f(x)dqx. (2.8)

The q-integration by parts is given for suitable functions f and g by [3]

∫b

a

f(x)Dqg(x)dqx := f(b)g(b) − f(a)g(a) −
∫b

a

g(qx)Dqf(x)dqx. (2.9)

2.5. q-Gamma function

Jackson (1910) defined the q-analogue of the gamma function by

Γq(x) :=
(q, q)∞
(qx, q)∞

(1 − q)1−x, 0 < q < 1. (2.10)

Moreover, it has the q-integral representations [1, 3]:

Γq(x) :=
∫1/1−q

0
tx−1E−qt

q dqt, 0 < q < 1, R(x) > 0. (2.11)

Let k denote a positive integer. In the same spirit we define

Γqk(x) :=

(
qk, qk

)
∞(

qkx, qk
)
∞

(
1 − qk

)1−x
, 0 < q < 1, x /= 0, − 1,−2, . . . ,

:=
∫1/1−qk

0
tx−1E−qkt

qk
dqk t, 0 < q < 1, R(x) > 0.

(2.12)

It is obvious from (2.10) that Γq(z) has simple poles at z = 0,−1,−2, . . . . The residue at z = −n
is [3]

lim
z→−n

(z + n)Γq(z) =
(−1)n+1qn(n+1)/2(1 − q)n+1

(q, q)n log q
. (2.13)

A q-analogue of Legendre’s duplication formula can be easily derived by

Γq(2z)Γq2
(
1
2

)
= (1 + q)2z−1Γq2(z)Γq2

(
z +

1
2

)
. (2.14)
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Similarly, it can be shown that Gauss multiplication formula has a q-analogue of the form

Γq(kz)Γqk
(
1
k

)
Γqk
(
2
k

)
· · · Γqk

(
k − 1
k

)

=
(
1 + q + q2 + · · · + qk−1

)kz−1Γqk(z)Γqk
(
z +

1
k

)
Γqk
(
z +

2
k

)
· · · Γqk

(
z +

k − 1
k

)
.

(2.15)

Lemma 2.1. Let k be a positive integer and n a nonnegative integer, then one has

Γqk
(

l

k
+ n

)
=

(
ql, qk

)
n(

1 − qk
)nΓqk

(
l

k

)
l = 1, 2, . . . ,

Γqk
(

l

k
− n

)
=

(
1 − qk

)n
q(n/2)(kn+k−2l)Γqk(l/k)

(−1)n(qk−l, qk)n
, l = 1, 2, . . . , k /= l,

Γq(kn + l) =

(
1 + q + q2 + · · · + qk−1

)kn+l−1(
ql, qk

)
n

(
ql+1, qk

)
n · · ·

(
qk+l−1, qk

)
n

Γqk(l/k)Γqk(2/k) · · ·Γqk((k − l)/k)
(
1 − qk

)nk

× Γqk
(

l

k

)
Γqk
(
l + 1
k

)
· · · Γqk

(
k + l

k

)
, l = 1, 2, . . . .

(2.16)

The proof of this lemma follows from the definition of q-analogue of gamma function.

2.6. Jackson’s q-Bessel function

Jackson introduced in 1905 the following q-analogues of the Bessel functions [3]:

J
(1)
ν (z; q) :=

(qν+1, q)∞
(q, q)∞

(
z

2

)ν

2φ1

(
0, 0; qν+1; q,−z

2

4

)
, |z| < 2,

J
(2)
ν (z; q) :=

(qν+1, q)∞
(q, q)∞

(
z

2

)ν

0φ1

(
−; qν+1; q,−qν+1z

2

4

)
,

J
(3)
ν (z; q) :=

(qν+1, q)∞
(q, q)∞

(
z

2

)ν

1φ1

(
0; qν+1; q,

qz2

4

)
.

(2.17)

3. The q-analogue of error functions

Definition 3.1. One defines the q-analogues of error function and complementary error
function, respectively, as

Erfq(x) =
1 + q

Γq2(1/2)

∫x

0
E
−q2t2
q2

dqt, (3.1)

Erfcq(x) =
1 + q

Γq2(1/2)

∫1/
√

1−q2

x

E
−q2t2
q2

dqt. (3.2)
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Remark 3.2. If x→1/
√
1 − q2 or 0 in the above definitions, respectively, then we have

Erfq

⎛
⎜⎝

1
√
1 − q2

⎞
⎟⎠ = Erfcq(0) = 1, (3.3)

and we can deduce that

Erfq(x) = 1 − Erfcq(x). (3.4)

Proof.

Erfq

⎛
⎜⎝

1
√
1 − q2

⎞
⎟⎠ =

1 + q

Γq2(1/2)

∫1/
√

1−q2

0
E
−q2t2
q2

dqt

=
1 + q

Γq2(1/2)
1 − q
√
1 − q2

∞∑

n=0

qn
(
q2n+2, q2

)
∞

=

√
1 − q2

Γq2(1/2)
(
q2, q2

)
∞

∞∑

n=0

qn
(
q2, q2

)
n

=

√
1 − q2

Γq2(1/2)

(
q2, q2

)
∞(

q, q2
)
∞

= 1.

(3.5)

The series representations of the q-error function are as follows:

erfq(x) =
1 + q

Γq2(1/2)

∞∑

n=0

(−1)nqn(n+1)x2n+1

[n]q2 ![2n + 1]q

=
1 + q

Γq2(1/2)

∞∑

n=0

(−1)nqn(n+1)(q, q2)n
(
1 − q2

)n
x2n+1

(
q2, q2

)
n

(
q3, q2

)
n

=
(1 + q)x
Γq2(1/2)

1φ1
(
q; q3; q2, q2

(
1 − q2

)
x2).

(3.6)

4. q-analogue of Wright function

In this section, we introduce a definition of a q-analogue of Wright function (Wα,β(z, qk)) as a
Barnes integral representations.

Definition 4.1. According to standard notation, one defines a q-analogue of Wright function as

Wα,β

(
z, qk

)
=

log q
2πi(q − 1)

∫

C

Γq(−s)
Γqk(β + αs)

(−z)sds, (4.1)
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where k = 1, 2, . . ., 0 < q < 1, z is not equal to zero and

(−z)s = exp
[
s
(
log |z| + i arg(−z))], (4.2)

where C is a suitable path in the complex s-plane that runs from s = −i∞ to s = i∞, so the
points s = n, n = 0, 1, 2, . . ., lie to the right of the contour C.

4.1. Existence and representation of q-Wright function

Firstly, we rewrite the definition of q-Wright function as

Wα,β

(
z, qk

)
=

(q, q)∞(1 − q)
(
qk, qk

)
∞
(
1 − qk

)1−β
log q

2πi(q − 1)

∫

C

(
qkβ+ksα, qk

)
∞(

q−s, q
)
∞

(
1 − qk

)sα

(1 − q)−s
(−z)sds. (4.3)

Next, we consider a q-analogue of Wright function in the case that 0 < q < 1. Let q = e−ω (ω >
0); using the triangle inequality, we get

∣∣1 − |a|e−ωR(s)∣∣ ≤ ∣∣1 − aqs
∣∣ ≤ 1 + |a|e−ωR(s),

∣∣∣∣

(
qkβ+ksα, qk

)
∞(

q−s, q
)
∞

∣∣∣∣ ≤
∞∏

r=0

1 + e−π[r+k(R(β)+αR(s))]ω

1 − e−π[r−R(s)]ω
,

(4.4)

which is bounded on the contour C.

Theorem 4.2. Let k be a positive integer, and let β be a complex number, then the q-Wright function is
absolutely convergent for all complex variables z; if α > − log(1 − q)/ log(1 − qk) and if α = − log(1 −
q)/ log(1 − qk), then |z| < 1.

Proof. Consider the integral in (4.1) with the contour C replaced by the contour CR consisting
of a large clockwise-oriented semicircle of radius R and the center of the origin which lies to
the right of the contour C is bounded away from the poles.

Let s = Reiθ, then we have

∣∣∣∣
Γq(−s)

Γqk(β + αs)
(−z)s

∣∣∣∣ = ABeR cos θ(log(1−q)+α log(1−qk))|z|R cos θe−R sin θ arg(−z), (4.5)

where

A =
(q, q)∞(1 − q)

(
qk, qk

)
∞
(
1 − qk

)1−R(β)
, B =

∣∣∣∣

(
qkβ+ksα, qk

)
∞(

q−s, q
)
∞

∣∣∣∣, (4.6)

as R→∞ on CR, it follows that from (4.5) the integral (4.1) with C replaced by CR tends to
zero as R→∞ if and only if α > − log(1 − q)/ log(1 − qk) for all complex variable z and if
α = − log(1 − q)/ log(1 − qk), then |z| < 1.

Theorem 4.3 (explicit power series expansion). Let k be a positive integer, let β be a complex
number, and let either α > − log(1 − q)/ log(1 − qk) and z/= 0 or α = − log(1 − q)/ log(1 − qk)
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and |z| < 1. Then the q-Wright function (4.1) has the power series expansion

Wα,β

(
z, qk

)
=

∞∑

n=0

qn(n+1)/2zn

[n]q!Γqk(αn + β)
. (4.7)

Proof. From the existence theorem after replacing s by −s, we can apply Cauchy’s theorem
(residues theorem) to the closed contour which is consisting of the contour CR and that part
of C terminated above and below by CR as R→∞, we obtain that the q-analogue of Wright
function (4.1) equals the sum of the residues of the integrand at s = −n, n = 0, 1, 2, . . . . This
completes the proof.

Remark 4.4. If q→1, then α = − log(1−q)/ log(1−qk)→−1, and the q-Wright function (4.7) tends
to the classical case (1.1).

Definition 4.5 (the auxiliary functions of q-Wright function). We introduce two (q-Wright-type)
auxiliary functions Mα(z, qk) = W−α,1−α(−z, qk) and Fα(z, qk) = W−α,0(−z, qk) with 0 < α <
log(1− q)/ log(1− qk). The two functions can be define for any order α ∈ (0, log(1− q)/ log(1−
qk)) and for all complex variable z/= 0 by

Mα

(
z, qk

)
= W−α,1−α

( − z, qk
)
=

∞∑

n=0

(−1)nqn(n+1)/2zn
[n]q!Γqk

(
1 − α(n + 1)

) , (4.8)

Fα

(
z, qk

)
= W−α,0

( − z, qk
)
=

∞∑

n=1

(−1)nqn(n+1)/2zn
[n]q!Γqk(−αn)

. (4.9)

Remark 4.6. An important relationship between auxiliary functions of q-Wright function as

Fα

(
z, qk

)
=
z(1 − q)q1−αk

1 − qk

∞∑

n=0

(−1)nqn(n+1)/2(q1−αkz)n
[n]q!Γqk(1 − α(n + 1))

1 − qαk(n+1)

1 − qn+1
; (4.10)

when αk = 1, we get

F1/k
(
z, qk

)
=

z

1 + q + · · · + qk−1
M1/k

(
z, qk

)
. (4.11)

5. Relation with some known special functions

It follows from the definition of the q-analogue of Wright function as a series expansion (4.7)
that

W0,1
(
z, qk

)
= E

qz
q . (5.1)

The Jackson’s third q-Bessel function and modified third q-Bessel function can be expressed in
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terms of q-Wright function as
(
z

2

)ν

W1,ν+1

(
− z2

4
, q

)
= J

(3)
ν

(
z(1 − q), q

)
,

(
z

2

)ν

W1,ν+1

(
z2

4
, q

)
= I

(3)
ν

(
z(1 − q), q

)
(5.2)

The q-error function complement can also be expressed a particular case of q-Wright function
as

W−1/2,1
(
z, q2

)
= Erfcq

(
− qz

1 + q

)
, (5.3)

where Erfcq(z) denotes the q-error function complement which is defined as in (3.2). To prove
this formula, we use the definition of q-Wright function (4.7) and the identities of the q-gamma
function:

W−1/2,1
(
z, q2

)
=

∞∑

n=0

qn(n+1)/2zn

[n]q!Γq2(1 − n/2)

= 1 +
∞∑

n=0

q(2n+1)(n+1)z2n+1

[2n + 1]q!Γq2(1/2 − n)

= 1 − 1 + q

Γq2(1/2)

∞∑

n=0

(−1)nqn(n+1)
[n]q2 ![2n + 1]q

(
− qz

1 + q

)2n+1

= 1 − Erfq
(
− qz

1 + q

)
= Erfcq

(
− qz

1 + q

)
.

(5.4)

Taking α = −1 and k = 1 in the definition of q-Wright function, then we obtain

W−1,β(z, q) =
∞∑

n=0

qn(n+1)/2zn

[n]q!Γq(β − n)

=
1

Γq(β)

∞∑

n=0

(−1)nzn(q1−β, q)n
(q, q)n

=
1

Γq(β)

( − zq1−β, q
)
∞

(−z, q)∞
, |z| < 1.

(5.5)

Explicit expressions of F1/k(z, qk) and M1/k(z, qk) in terms of known functions are expected
for some particular values of k ≥ 2. In the particular case k = 2, we find

M1/2
(
z, q2

)
=

1
Γq2(1/2)

E
−q2z2/(1+q)2
q2

,

F1/2
(
z, q2

)
=

z

(1 + q)Γq2(1/2)
E
−q2z2/(1+q)2
q2

.

(5.6)

To prove the first formula and the second formula, we use the relationship between them (4.11).
Using the definition of q-auxiliary Wright function (4.8) and the identities of the q-gamma
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function (2.16), we obtain the following:

M1/2
(
z, q2

)
=

∞∑

n=0

(−1)nqn(n+1)/2zn
[n]q!Γq2((1 − n)/2)

=
∞∑

n=0

qn(2n+1)/2zn

Γq(2n + 1)Γq2(1/2 − n)

=
1

Γq2(1/2)

∞∑

n=0

(−1)nqn(n−1)
[n]q2 !

(
q2z2

(1 + q)2

)n

=
1

Γq2(1/2)
E
−q2z2/(1+q)2
q2

.

(5.7)

In the case of k = 3, we can deduce that

M1/3
(
z, q3

)
=
(
1 + q + q2

)2/3
Aq

(
z

(1 + q + q2)1/3

)
, (5.8)

where Aq(z) is the q-analogue of the Airy function which is defined as

Aq(z) =
√
qz

1 + q + q2

[
I
(2)
−1/3

(
2

1 + q + q2
(
1 − q3

)
(qz)3/2

)
− I

(2)
1/3

(
2

1 + q + q2
(
1 − q3

)
(qz)3/2

)]
,

(5.9)

where I
(2)
ν (z) is Jackson’s modified second q-Bessel. To prove this formula, we use the

definition of q-Wright function and the identities of the gamma function (2.16):

M1/3
(
z, q3

)
=

∞∑

n=0

(−1)nqn(n+1)/2zn
[n]q!Γq3((2 − n)/3)

=
∞∑

n=0

(−1)nq3n(3n+1)/2z3n
[3n]q!Γq3(2/3 − n)

−
∞∑

n=0

(−1)nq(3n+1)(3n+2)/2z3n
[3n + 1]q!Γq3(1/3 − n)

=
1

Γq3(2/3)

∞∑

n=0

q3n(n−1)+5nz3n(1 − q)3n
(
q2, q3

)
n

(
q3, q3

)
n

(
1 − q3

)n

− qz
(
1 + q + q2

)
Γq3(4/3)

∞∑

n=0

q3n(n−1)+7nz3n(1 − q)3n
(
q4, q3

)
n

(
q3, q3

)
n

(
1 − q3

)n

=
1

Γq3(2/3)
0φ1

(
q2; q3,

q5z3(1 − q)3

1 − q3

)
− qz0φ1

(
q4; q3, q7z3(1 − q)3/

(
1 − q3

))
(
1 + q + q2

)
Γq3(4/3)

=
√
qz

(
1 + q + q2

)1/2

[
I
(2)
−1/3

(
2(1 − q)(qz)3/2
(
1 + q + q2

)1/2 , q
3

)
− I

(2)
1/3

(
2(1 − q)(qz)3/2
(
1 + q + q2

)1/2 , q
3

)]

=
(
1 + q + q2

)2/3
Aq

(
z

(
1 + q + q2

)1/3

)
;

(5.10)

when q→1, we cover the classical results about the Wright function and its auxiliary functions.
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