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1. Introduction

Let A be an algebra over the real or complex field F. An additive mapping d : A → A is
said to be a left derivation (resp., derivation) if the functional equation d(xy) = xd(y) + yd(x)
(resp., d(xy) = xd(y) + d(x)y) holds for all x, y ∈ A. Furthermore, if the functional equation
d(λx) = λd(x) is valid for all λ ∈ F and all x ∈ A, then d is a linear left derivation (resp.,
linear derivation). An additive mapping G : A → A is called a generalized left derivation (resp.,
generalized derivation) if there exists a left derivation (resp., derivation) δ : A → A such that
the functional equation G(xy) = xG(y) + yδ(x) (resp., G(xy) = xG(y) + δ(x)y) is fulfilled
for all x ∈ A. In addition, if the functional equations G(λx) = λG(x) and δ(λx) = λδ(x) hold
for all λ ∈ F and all x ∈ A, then G is a linear generalized left derivation (resp., linear generalized
derivation).

It is of interest to consider the concept of stability for a functional equation arising
when we replace the functional equation by an inequality which acts as a perturbation of the
equation. The study of stability problems had been formulated by Ulam [1] during a talk in
1940: “Under what condition does there exists a homomorphism near an approximate homomorphism?”
In the following year 1941, Hyers [2] was answered affirmatively the question of Ulam for
Banach spaces, which states that if ε > 0 and f : X → Y is a map with X, a normed space, Y, a
Banach space, such that

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ ε, (1.1)
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for all x, y ∈ X, then there exists a unique additive map T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ ε, (1.2)

for all x ∈ X. Moreover, if f(tx) is continuous in t ∈ R for each fixed x in X, where R denotes
the set of real numbers, then T is linear. This stability phenomenon is called the Hyers-Ulam
stability of the additive functional equation f(x + y) = f(x) + f(y). A generalized version
of the theorem of Hyers for approximately additive mappings was given by Aoki [3] and
for approximate linear mappings was presented by Rassias [4] in 1978 by considering the
case when the inequality (1.1) is unbounded. Due to the fact that the additive functional
equation f(x + y) = f(x) + f(y) is said to have the Hyers-Ulam-Rassias stability property.
The stability result concerning derivations between operator algebras was first obtained
by Šemrl [5]. Recently, Badora [6] gave a generalization of the Bourgin’s result [7]. He
also dealt with the Hyers-Ulam stability and the Bourgin-type superstability of derivations
in [8].

In 1955, Singer and Wermer [9] obtained a fundamental result which started investi-
gation into the ranges of linear derivations on Banach algebras. The result, which is called
the Singer-Wermer theorem, states that any continuous linear derivation on a commutative
Banach algebra maps into the Jacobson radical. They also made a very insightful conjecture,
namely, that the assumption of continuity is unnecessary. This was known as the Singer-
Wermer conjecture and was proved in 1988 by Thomas [10]. The Singer-Wermer conjecture
implies that any linear derivation on a commutative semisimple Banach algebra is identically
zero which is the result of Johnson [11]. After then, Hatori and Wada [12] showed that a zero
operator is the only derivation on a commutative semisimple Banach algebra with the maximal
ideal space without isolated points. Note that this differs from the above result of B.E. Johnson.
Based on these facts and a private communication with Watanabe [13], Miura et al. proved
the Hyers-Ulam-Rassias stability and Bourgin-type superstability of derivations on Banach
algebras in [13]. Various stability results are given by Moslehian and Park, see, for example,
[14–18].

The main purpose of the present paper is to consider the superstability of generalized
left derivations (resp., generalized derivations) on Banach algebras associated to the following
Jensen type functional equation:

f

(
x + y

k

)

=
f(x)
k

+
f(y)
k

, (1.3)

where k > 1 is an integer. This functional equation is introduced in [19]. Moreover, we will
investigate the problems for the Jacobson radical ranges of left derivations (resp., derivations)
on Banach algebras. We use the direct method and some ideas of Amyari et al. [19].

2. Main results

Throughout this paper, the element e of an algebra will denote a unit. We now establish
the superstability of a generalized left derivation associated with the Jensen type functional
equation as follows.
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Theorem 2.1. Let A be a Banach algebra with unit. Suppose that f : A → A is a mapping with
f(0) = 0 for which there exists a mapping g : A → A such that the functional inequality:

∥
∥
∥
∥
f

(
x + y

k
+ zw

)

− f(x)
k

− f(y)
k

− zf(w) −wg(z)
∥
∥
∥
∥
≤ ε, (2.1)

for all x, y, z,w ∈ A. Then, f is a generalized left derivation, and g is a left derivation.

Proof. Substituting w = 0 in (2.1), we get

∥
∥
∥
∥
f

(
x + y

k

)

− f(x)
k

− f(y)
k

∥
∥
∥
∥
≤ ε, (2.2)

for all x, y ∈ A. Let us take y = 0 and replace x by kx in the above relation. Then, it becomes

∥
∥
∥
∥
f(x) − f(kx)

k

∥
∥
∥
∥
≤ ε, (2.3)

for all x ∈ A. An induction implies that

∥
∥
∥
∥

f
(

knx
)

kn
− f(x)

∥
∥
∥
∥
≤ k

k − 1

(

1 − 1
kn

)

ε, (2.4)

for all x ∈ A. By virtue of (2.4), one can easily check that for n > m,

∥
∥
∥
∥

f
(

knx
)

kn
− f

(

kmx
)

km

∥
∥
∥
∥
=

1
km

∥
∥
∥
∥

f
(

kn−m·kmx
)

kn−m − f
(

kmx
)
∥
∥
∥
∥

≤ 1
km−1(k − 1)

(

1 − 1
kn−m

)

ε,

(2.5)

for all x ∈ A. So, the sequence {f(knx)/kn} is Cauchy. Since A is complete, {f(knx)/kn}
converges. Let d : A → A be the mapping defined by (x ∈ A)

d(x) := lim
n→∞

f
(

knx
)

kn
. (2.6)

By letting n → ∞ in (2.4), we get

∥
∥f(x) − d(x)

∥
∥ ≤ k

k − 1
ε, (2.7)

for all x ∈ A.
Now, we assert that d is additive. Replacing x and y by knx and kny in (2.2), respectively,

we have

∥
∥
∥
∥

1
kn

f

(
knx + kny

k

)

− 1
k

f
(

knx
)

kn
− 1
k

f
(

kny
)

kn

∥
∥
∥
∥
≤ 1
kn

ε, (2.8)
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for all x, y ∈ A, taking the limit as n → ∞, we obtain

d

(
x + y

k

)

=
d(x)
k

+
d(y)
k

, (2.9)

for all x, y ∈ A. Letting y = 0 in the previous identity yields d(x/k) = d(x)/k for all x ∈ A. So,
(2.9) becomes d(x + y) = d(x) + d(y), for all x, y ∈ A, namely, d is additive.

To demonstrate the uniqueness of the additive mapping d subject to (2.7), we assume
that there exists another additive mapping D : A → A satisfying the inequality (2.7), for all
x ∈ A. Since D(knx) = knD(x) and d(knx) = knd(x), we see that

∥
∥D(x) − d(x)

∥
∥ =

1
kn

∥
∥D

(

knx
) − d

(

knx
)∥
∥

≤ 1
kn

[∥
∥D

(

knx
) − f

(

knx
)∥
∥ +

∥
∥f

(

knx
) − d

(

knx
)∥
∥
]

≤ 2
kn−1(k − 1)

ε,

(2.10)

for all x ∈ A. By letting n → ∞ in this inequality, we conclude that D = d, that is, d is unique.
Next, we are going to prove that f is a generalized left derivation. If we take x = y = 0

in (2.1), we also have

∥
∥f(zw) − zf(w) −wg(z)

∥
∥ ≤ ε, (2.11)

for all z,w ∈ A.Moreover, if we replace z and w with knz and knw in (2.11), respectively, and
then divide both sides by k2n, we get

∥
∥
∥
∥

f
(

k2nzw
)

k2n
− z

f
(

knw
)

kn
−w

g
(

knz
)

kn

∥
∥
∥
∥
≤ 1
k2n

ε, (2.12)

for all z,w ∈ A. Letting n → ∞,we obtain

lim
n→∞

w
g
(

knz
)

kn
= d(zw) − zd(w), (2.13)

for all z,w ∈ A. Suppose that w = e in the above equation. Then, it follows

lim
n→∞

g
(

knz
)

kn
= d(z) − zd(e), (2.14)

for all z ∈ A. Thus, if δ(z) := d(z) − zd(e), then by the additivity of d, we get

δ(x + y) = d(x) + d(y) − xd(e) − yd(e)

=
(

d(x) − xd(e)
)

+
(

d(y) − yd(e)
)

= δ(x) + δ(y),
(2.15)

for all x ∈ A.Hence, δ is additive.
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LetΔ(z,w) = f(zw)−zf(w)−wg(z), for all z,w ∈ A. Since, f and g satisfy the inequality
given in (2.11), then

lim
n→∞

Δ
(

knz,w
)

kn
= 0, (2.16)

for all z,w ∈ A. We note that

d(zw) = lim
n→∞

f
(

knzw
)

kn
= lim

n→∞
f
(

knz ·w)

kn

= lim
n→∞

knzf(w) +wg
(

knz
)

+ Δ
(

knz,w
)

kn

= lim
n→∞

{

zf(w) +w
g
(

knz
)

kn
+
Δ
(

knz,w
)

kn

}

= zf(w) +wδ(z),

(2.17)

for all z,w ∈ A. Since δ is additive, we can rewrite (2.17) as

knzf(w) + knwδ(z) = d
(

knz ·w)

= d
(

z · knw
)

= zf
(

knw
)

+ knwδ(z), (2.18)

for all z,w ∈ A. Based on the above relation, one has zf(w) = z(f(knw)/kn), for all z,w ∈ A.
Moreover, we can obtain zf(w) = zd(w), for all z,w ∈ A as n → ∞. If z = e, we also have that
f = d. Therefore, we get

f(zw) = zf(w) +wδ(z), (2.19)

for all z,w ∈ A.
We now want to verify that δ is a left derivation using the equations developed in the

previous part. Indeed, using the facts that f satisfies (2.19), we have

δ(xy) = f(xy) − xyf(e) = xf(y) + yδ(x) − xyf(e)

= x
(

f(y) − yf(e)
)

+ yδ(x) = xδ(y) + yδ(x),
(2.20)

for all x, y ∈ A,which means that f is a generalized left derivation.
We finally need to show that g is a left derivation. Let us replace w by knw in (2.11).

Then,
∥
∥
∥
∥

f
(

knzw
)

kn
− z

f
(

knw
)

kn
−wg(z)

∥
∥
∥
∥
≤ 1
kn

ε, (2.21)

for all z,w ∈ A. Passing the limit as n → ∞,we get

d(zw) − zd(w) −wg(z) = 0, (2.22)

for all z,w ∈ A. This implies that d(zw) = zd(w) +wg(z), for all z,w ∈ A, and thus if w = e,
we deduce that g(z)+zd(e) = d(z), for all z ∈ A.Hence, we get g(z) = d(z)−zd(e) = δ(z), for
all z ∈ A. Since, δ is a left derivation, we can conclude that g is a left derivation as well. This
completes the proof of the theorem.
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Employing the similar way as in the proof of Theorem 2.1, we get the following result
for a generalized derivation.

Theorem 2.2. Let A be a Banach algebra with unit. Suppose that f : A → A is a mapping with
f(0) = 0 for which there exists a mapping g : A → A such that

∥
∥
∥
∥
f

(
x + y

k
+ zw

)

− f(x)
k

− f(y)
k

− zf(w) − g(z)w
∥
∥
∥
∥
≤ ε, (2.23)

for all x, y, z,w ∈ A. Then, f is a generalized derivation, and g is a derivation.

In view of the Thomas’ result [10], derivations on Banach algebras now belong to
the noncommutative setting. Among various noncommutative version of the Singer-Wermer
theorem, Brešar and Vukman [20] proved the following. Any continuous linear left derivation on
a Banach algebra maps into its Jacobson radical and also any left derivation on a semiprime ring is a
derivation which maps into its center.

The following is the functional inequality with the problem as in the above Brešar and
Vukman’s result.

Theorem 2.3. LetA be a semiprime Banach algebra with unit. Suppose that f : A → A is a mapping
with f(0) = 0 for which there exists a mapping g : A → A such that the functional inequality:

∥
∥
∥
∥
f

(
αx + βy

k
+ zw

)

− α
f(x)
k

− β
f(y)
k

− zf(w) −wg(z)
∥
∥
∥
∥
≤ ε, (2.24)

for all x, y, z,w ∈ A and all α, β ∈ U = {z ∈ C : |z| = 1}. Then, f is a linear generalized left
derivation. In this case, g is a linear derivation which maps A into the intersection of its center Z(A)
and its Jacobson radical rad(A).

Proof. We consider α = β = 1 ∈ U in (2.24) and then f satisfies the inequality (2.1). It follows
from Theorem 2.1 that f is a generalized left derivation, and g is a left derivation, where

f(x) := lim
n→∞

f
(

knx
)

kn
, g(x) := f(x) − xf(e), (2.25)

for all x ∈ A. Letting w = 0 in (2.24), we have

∥
∥
∥
∥
f

(
αx + βy

k

)

− α
f(x)
k

− β
f(y)
k

∥
∥
∥
∥
≤ ε, (2.26)

for all x, y ∈ A and all α, β ∈ U. If we also replace x and y with knx and kny in (2.26),
respectively, and then divide both sides by kn, we see that

∥
∥
∥
∥

1
kn

f

(
αknx + βkny

k

)

− α
1
k

f
(

knx
)

kn
− β

1
k

f(kny)
kn

∥
∥
∥
∥
≤ 1
kn

ε −→ 0, (2.27)

for all x, y ∈ A and all α, β ∈ U, as n → ∞. So, we get

f

(
αx + βy

k

)

= α
f(x)
k

+ β
f(y)
k

, (2.28)
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for all x, y ∈ A and all α, β ∈ U. From the additivity of f,we find that

f(αx + βy) = αf(x) + βf(y), (2.29)

for all x, y ∈ A and all α, β ∈ U. Let us now assume that λ is a nonzero complex number
and that L a positive integer greater than |λ|. Then by applying a geometric argument, there
exist λ1, λ2 ∈ U such that 2(λ/L) = λ1 + λ2. In particular, due to the additivity of f, we obtain
f((1/2)x) = (1/2)f(x) for all x ∈ A. Thus, we have

f(λx) = f

(
L

2
· 2 · λ

L
x

)

= Lf

(
1
2
· 2 · λ

L
x

)

=
L

2
f
((

λ1 + λ2
)

x
)

=
L

2
(

λ1 + λ2
)

f(x) =
L

2
· 2 · λ

L
f(x) = λf(x),

(2.30)

for all x ∈ A. Also, it is obvious that f(0x) = 0 = 0f(x), for all x ∈ A, that is, f is C-linear.
Therefore, f is a linear generalized left derivation, and so g is also a linear left derivation.
According to the Brešar and Vukman’s result which tells us that g is a linear derivation which
mapsA into its center Z(A). Since Z(A) is a commutative Banach algebra, the Singer-Wermer
conjecture tells us that g|Z(A) maps Z(A) into rad(Z(A)) = Z(A) ∩ rad(A) and thus g2(A) ⊆
rad(A). Using the semiprimeness of rad(A) as well as the identity, we have

2g(x)yg(x) = g2(xyx) − xg2(yx) − g2(xy)x + xg2(y)x, (2.31)

for all x, y ∈ A, we have g(A) ⊆ rad(A), that is, g is a linear derivation which maps A into
the intersection of its center Z(A) and its Jacobson radical rad(A). The proof of the theorem is
ended.

The next corollary is the Brešar and Vukman’s result.

Corollary 2.4. LetA be a Banach algebra with unit. Suppose that f : A → A is a continuous mapping
with f(0) = 0 for which there exists a mapping g : A → A such that the functional inequality (2.26).
Then, f : A → A is a linear generalized left derivation. In this case, g mapsA into its Jacobson radical
rad(A).

Proof. On account of Theorem 2.3, g is a linear left derivation on A. Hence, g maps A into its
Jacobson radical rad(A) by the Brešar and Vukman’s result, which completes the proof.

With the help of Theorem 2.2, the following property can be derived along the same
argument in the proof of Theorem 2.3.

Theorem 2.5. Let A be a commutative Banach algebra with unit. Suppose that f : A → A is a
mapping with f(0) = 0 for which there exists a mapping g : A → A such that the functional inequality:

∥
∥
∥
∥
f

(
αx + βy

k
+ zw

)

− α
f(x)
k

− β
f(y)
k

− zf(w) − g(z)w
∥
∥
∥
∥
≤ ε, (2.32)

for all x, y, z,w ∈ A and all α, β ∈ U = {z ∈ C : |z| = 1}. Then, f is a linear generalized derivation.
In this case, g mapsA into its Jacobson radical rad(A).
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Remark 2.6. We can generalize our results by substituting another functions or another forms
satisfying suitable conditions (see, e.g., [19, 21]) for the bound ε of the functional inequalities
connected to the Jensen type functional equation.
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