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Kupershmidt and Tuenter have introduced reflection symmetries for the q-Bernoulli numbers
and the Bernoulli polynomials in (2005), (2001), respectively. However, they have not dealt
with congruence properties for these numbers entirely. Kupershmidt gave a quantization of
the reflection symmetry for the classical Bernoulli polynomials. Tuenter derived a symmetry of
power sum polynomials and the classical Bernoulli numbers. In this paper, we study the new
symmetries of the q-Bernoulli numbers and polynomials, which are different from Kupershmidt’s
and Tuenter’s results. By using our symmetries for the q-Bernoulli polynomials, we can obtain
some interesting relationships between q-Bernoulli numbers and polynomials.
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1. Introduction

Let p be a fixed prime. Throughout this paper, Zp, Qp, C, and Cp will, respectively, denote the
ring of p-adic rational integer, the field of p-adic rational numbers, the complex number field,
and the completion of algebraic closure of Qp. The p-adic absolute value in Cp is normalized
so that |p|p < p−1. Let q be variously considered as an indeterminate, a complex number q ∈ C,
or a p-adic number q ∈ Cp. If q ∈ Cp, we assume that |1 − q|p < 1. We say that f is uniformly
differentiable function at a point a ∈ Zp, and we denote this property by f ∈ UD(Zp) if the
difference quotients,

Ff : Zp × Zp −→ Zp by Ff(x, y) =
f(x) − f(y)

x − y
, (1.1)

have a limit l = f ′(a) as (x, y) → (a, a). The p-adic invariant integral on Zp is defined as

I(f) =
∫

Zp

f(x)dx = lim
N→∞

1
pN

pN−1∑
x=0

f(x) (1.2)
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[1–22]. From this integral, we derive several further interesting properties of symmetry
for the q-Bernoulli numbers and polynomials in this paper. Kupershmidt [14] and Tuenter
[20] have introduced reflection symmetries for the q-Bernoulli numbers and the Bernoulli
polynomials. However, they have not dealt with congruence properties for these numbers
entirely. Kupershmidt gave a quantization of the reflection symmetry for the classical
Bernoulli polynomials. Tuenter derived a symmetry of power sum polynomials and the
classical Bernoulli numbers. In this paper, we study the new symmetries of the q-Bernoulli
numbers and polynomials, which are different from Kupershmidt’s and Tuenter’s results.
By using our symmetries for the q-Bernoulli polynomials, we can obtain some interesting
relationships between q-Bernoulli numbers and polynomials.

2. On the symmetries of the q-Bernoulli polynomials

For f ∈ UD(Zp), the p-adic invariant integral on Zp is defined as

I(f) =
∫

Zp

f(x)dx = lim
N→∞

1
pN

pN−1∑
x=0

f(x). (2.1)

Let f1(x) be a translation with f1(x) = f(x + 1). Then, we have

I
(
f1
)
= I(f) + f ′(0). (2.2)

From (2.2), we can also derive

I
(
fn
)
= I(f) +

n−1∑
i=0

f ′(i), f ′(i) =
df(i)
dx

. (2.3)

Let f(x) = qxetx, then we have

∫
Zp

qxetx dx =
t + log q
qet − 1

. (2.4)

It is known that the q-Bernoulli polynomials are defined as

t + log q
qet − 1

ext =
∞∑
n=0

Bn,q(x)
tn

n!
(2.5)

[17, 19]. Now we define an integral representation for the q-extension of Bernoulli numbers
as follows:

∫
Zp

qxetx dx =
log q + t

qet − 1
=

∞∑
n=0

Bn,q
tn

n!
. (2.6)
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From (2.3), (2.4), and (2.6), we can derive

∫
Zp

qy(x + y)ndy = Bn,q(x),
∫

Zp

qxxn dx = Bn,q. (2.7)

By (2.3), we easily see that

1
log q + t

(∫
Zp

qn+xe(n+x)t dx −
∫

Zp

qxext dx

)
=

qnent − 1
t + log q

∫
Zp

qxext dx =
qnent − 1
qet − 1

=
n−1∑
i=0

qieit =
∞∑
k=0

(
n−1∑
i=0

ikqi
)

tk

k!
.

(2.8)

In (2.2), it is not difficult to show that

1
log q + t

(∫
Zp

qn+xe(n+x)t dx −
∫

Zp

qxext dx

)
=

n
∫

Zp
extqx dx∫

Zp
enxtqnx dx

. (2.9)

For each integer k ≥ 0, let

Sk,q(n) = 0k + 1kq + 2kq2 + · · · + qnnk. (2.10)

From (2.8) and (2.9), we derive

1
log q + t

(∫
Zp

qn+xe(n+x)t dx −
∫

Zp

qxext dx

)
=

n
∫

Zp
extqx dx∫

Zp
enxtqnx dx

=
∞∑
k=0

Sk,q(n − 1)
tk

k!
. (2.11)

From (2.11), we note that

Bk,q(n) − Bk,q = kSk−1,q(n − 1) + log qSk,q(n − 1), where k, n ∈ N. (2.12)

Let w1, w2 ∈ N, then we have

∫∫
Zp
e(w1x1+w2x2)tqw1x1+w2x2 dx1 dx2∫

Zp
ew1w2xtqw1w2x dx

= (t + log q)
qw1w2ew1w2t − 1(

qw1ew1t − 1
)(
qw2ew2t − 1

) . (2.13)

By (2.11), we see that

w1
∫

Zp
extqx dx∫

Zp
qw1xew1xt dx

=
∞∑
l=0

(
w1−1∑
k=0

klqk
)

tl

l!
=

∞∑
l=0

Sl,q

(
w1 − 1

) tl
l!
. (2.14)
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Let

T
(
w1, w2;x, t

)
=

∫∫
Zp
qw1x1+w2x2e(w1x1+w2x2+w1w2x)t dx1 dx2∫

Zp
ew1w2x3tqw1w2x3 dx3

, (2.15)

then we have

T
(
w1, w2;x, t

)
=

(t + log q)ew1w2xt
(
qw1w2ew1w2t − 1

)
(
qw1ew1t − 1

)(
qw2ew2t − 1

) . (2.16)

From (2.15)we derive

T
(
w1, w2;x, t

)
=
(

1
w1

∫
Zp

ew1(x1+w2x)tqw1x1 dx1

)(
w1

∫
Zp
ew2x2tqw2x2 dx2∫

Zp
ew1w2xtqw1w2x dx

)
. (2.17)

By (2.5), (2.14), and (2.17), we see that

T
(
w1, w2;x, t

)
=

1
w1

( ∞∑
i=0

Bi,qw1

(
w2x

)wi
1t

i

i!

)( ∞∑
l=0

Sl,qw2

(
w1 − 1

)wl
2t

l

l!

)

=
∞∑
n=0

(
n∑
i=0

(
n
i

)
Bi,qw1

(
w2x

)
Sn−i,qw2

(
w1 − 1

)
wi−1

1 wn−i
2

)
tn

n!
.

(2.18)

By the symmetry of p-adic invariant integral on Zp, we also see that

T
(
w1, w2;x, t

)
=

(
1
w2

∫
Zp

ew2(x2+w1x)tqw2x2 dx2

)(
w2

∫
Zp
ew1x1tqw1x1 dx1∫

Zp
ew1w2xtqw1w2x dx

)

=
∞∑
n=0

(
n∑
i=0

(
n
i

)
Bi,qw2 (w1x)Sn−i,qw1 (w2 − 1)wi−1

2 wn−i
1

)
tn

n!
.

(2.19)

By comparing the coefficients tn/n! on the both sides of (2.18) and (2.19), we obtain the
following theorem.

Theorem 2.1. For all w1, w2(∈ N), we have

n∑
i=0

(
n
i

)
Bi,qw1

(
w2x

)
Sn−i,qw2

(
w1 − 1

)
wi−1

1 wn−i
2 =

n∑
i=0

(
n
i

)
Bi,qw2

(
w1x

)
Sn−i,qw1

(
w2 − 1

)
wi−1

2 wn−i
1 ,

(2.20)

where
( n

i

)
is the binomial coefficient.
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If we take w2 = 1 in Theorem 2.1, then we have

Bn,q

(
w1x

)
=

n∑
i=0

(
n
i

)
Bi,qw1 (x)Sn−i,q

(
w1 − 1

)
wi−1

1 . (2.21)

Therefore, we obtain the following corollary.

Corollary 2.2. For n ≥ 0, we have

Bn,q

(
w1x

)
=

n∑
i=0

(
n
i

)
Bi,qw1 (x)Sn−i,q

(
w1 − 1

)
wi−1

1 . (2.22)

By (2.17), (2.18), and (2.19), we also see that

T
(
w1, w2;x, t

)
=

(
ew1w2xt

w1

∫
Zp

ew1x1tqw1x1 dx1

)(
w1

∫
Zp
ew2x2tqw2x2 dx2∫

Zp
ew1w2xtqw1w2x dx

)

=

(
ew1w2xt

w1

∫
Zp

ew1x1tqw1x1 dx1

)(
w1−1∑
i=0

qw2iew2it

)

=
1
w1

w1−1∑
i=0

qw2i

∫
Zp

e(x1+w2x+(w2/w1)i)tw1qxw1 dx1

=
∞∑
n=0

(
w1−1∑
i=0

Bn,qw1

(
w2x +

w2

w1
i

)
wn−1

1 qw2i

)
tn

n!
.

(2.23)

From the symmetry of T(w1, w2;x, t), we can also derive

T
(
w1, w2;x, t

)
=

∞∑
n=0

(
w2−1∑
i=0

Bn,qw2

(
w1x +

w1

w2
i

)
wn−1

2 qw1i

)
tn

n!
. (2.24)

By comparing the coefficients tn/n! on the both sides of (2.23) and (2.24), we obtain
the following theorem.

Theorem 2.3. For n ∈ Z+, w1, w2 ∈ N, we have

w1−1∑
i=0

Bn,qw1

(
w2x +

w2

w1
i

)
wn−1

1 qw2i =
w2−1∑
i=0

Bn,qw2

(
w1x +

w1

w2
i

)
wn−1

2 qw1i. (2.25)

Remark 2.4. Setting w2 = 1 in Theorem 2.3, we get the multiplication theorem for the q-
Bernoulli polynomials as follows:

Bn,q

(
w1x

)
= wn−1

1

w1−1∑
i=0

Bn,qw1

(
x +

i

w1

)
qi. (2.26)
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I cannot obtain the extended formulae of Theorems 2.1 and 2.3 related to the Carlitz’s
q-Bernoulli numbers and polynomials. So, we suggest the following two questions.

Question 1. Find the extended formulae of Theorems 2.1 and 2.3, which are related to the
Carlitz’s q-Bernoulli numbers and polynomials.

Question 2. Find the twisted formulae of Theorems 2.1 and 2.3, which are related to the
twisted Carlitz’s q-Bernoulli polynomials.

Remark 2.5. In [12], q-Volkenborn integral is defined by

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1[
pN

]
q

pN−1∑
x=0

f(x)qx. (2.27)

Thus, we note that Carlitz’s q-Bernoulli numbers can be written by

βn,q =
∫

Zp

[x]nq dμq(x), Witt’s type formula. (2.28)
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