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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, C, and Cp will,
respectively, denote the ring of p-adic rational integers, the field of p-adic rationalnumbers,
the complex number field, and the completion of the algebraic closure of Qp. Let vp be the
normalized exponential valuation of Cp with |p|p = p−vp(p) = 1/p. When one talks about
q-extension, q is variously considered as an indeterminate, a complex, q ∈ C, or a p-adic
number, q ∈ Cp. If q ∈ C, one normally assumes |q| < 1. If q ∈ Cp, then we assume |q − 1|p < 1.
The ordinary Genocchi polynomials are defined as the generating function:

F(t, x) =
2t

et + 1
ext =

∞∑

n=0

Gn(x)
tn

n!
, |t| < π. (1.1)

For a fixed positive integer d with (p, d) = 1, set

X = Xd = lim
←
N

Z

dPNZ
, X1 = Zp,

X∗ =
⋃

0<a<dp,
(a,p)=1

(a + dpZp),

a + dpNZp =
{
x ∈ X | x ≡ a

(
moddpN

)}

(1.2)
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(cf. [1–30]), where a ∈ Z satisfies the condition 0 ≤ a < dpN . We say that f is uniformly
differential function at a ∈ Zp and write f ∈ UD(Zp) if the difference quotients, Ff(x, y) =
(f(x)− f(y))/(x −y), have a limit f

′
(a) as (x, y)→ (a, a). Throughout this paper, we use the

following notation:

[x]−q =
1 − (−q)x
1 + q

, [x]q =
1 − qx
1 − q . (1.3)

For f ∈ UD(Zp), the fermionic p-adic invariant q-integral on Zp is defined as

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[pN]−q

pN−1∑

x=0

f(x)(−q)x; (1.4)

see [1–27]. Note that

I−1(f) = lim
q→1

I−q(f) =
∫

Zp

f(x)dμ−1(x). (1.5)

In this paper, we investigate some interesting integral equations related to I−1(f). From these
integral equations related to I−1(f), we can derive many interesting properties of Genocchi
numbers and polynomials. The main purpose of this paper is to derive the distribution
relations of the Genocchi polynomials, and to constructthe Genocchi zeta function which
interpolates the Genocchi polynomials at negative integers.

2. Genocchi numbers and polynomials

The Genocchi numbers are defined as

G0 = 0, (G + 1)n +Gn =

{
2 if n = 1,
0 if n > 1,

(2.1)

where Gn is replaced by Gn, symbolically. The Genocchi polynomials are also defined as

Gn(x) =
n∑

k=0

( n

k

)
xn−kGk. (2.2)

From (2.1), we note that G1 = 1, G2 = −1, G3 = 0, G4 = 1, . . . , G2k+1 = 0, and G2k ∈ Z (k =
1, 2, . . .). The fermionic p-adic invariant integral on Zp is defined as

I−1(f) =
∫

Zp

f(x)dμ−1(x) = lim
N→∞

1
[pN]−1

pN−1∑

x=0

f(x)(−1)x, see [1]. (2.3)

Let f1(x) be translation with f1(x) = f(x + 1). Then we have the following integral equation.
Note that I−1(f1) + I−1(f) = 2f(0). From (2.3), we can derive

t

∫

Zp

ext dμ−1(x) =
∞∑

n=0

Gn
tn

n!
= t

∞∑

n=0

Gn+1

n + 1
tn

n!
, (2.4)
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t

∫

Zp

e(x+y)t dμ−1(y) =
∞∑

n=0

Gn(x)
tn

n!
= t

∞∑

n=0

Gn+1(x)
n + 1

tn

n!
. (2.5)

Thus, we obtain
∫

Zp

xn dμ−1(x) =
Gn+1

n + 1
,

∫

Zp

(x + y)ndμ−1(y) =
Gn+1(x)
n + 1

. (2.6)

For n ∈ N, we have
∫

Zp

f(x + n)dμ−1(x) = (−1)n
∫

Zp

f(x)dμ−1(x) + 2
n−1∑

�=0

(−1)n−1+�f(�), see [1–27]. (2.7)

By (2.6) and (2.7), if we take f(x) = xk(k ∈ Z
+), we easily see that

∫

Zp

(x + n)kdμ−1(x) −
∫

Zp

xk dμ−1(x) = 2
n−1∑

�=0

(−1)�−1�k if n ≡ 0(mod2). (2.8)

Thus, we have

Gk+1(n)
k + 1

− Gk+1

k + 1
= 2

n−1∑

�=0

(−1)�−1�k if n ≡ 0(mod2). (2.9)

If n ≡ 1(mod2), then we know that
∫

Zp

(x + n)kdμ−1(x) +
∫

Zp

xk dμ−1(x) = 2
n−1∑

�=0

(−1)��k if n ≡ 1(mod2). (2.10)

Thus, we get

Gk+1(n)
k + 1

+
Gk+1

k + 1
= 2

n−1∑

�=0

(−1)��k, see [1–30]. (2.11)

Let χ be the Dirichlet character with conductor d ∈ N, with d ≡ 1(mod2). Then, we consider
the generalized Genocchi numbers attached to χ as follows:

Gn+1,χ

n + 1
=
∫

X

χ(x)xn dμ−1(x), G0,χ = 0, (2.12)

where n ∈ Z+. From (2.7) and (2.12), we note that

t

∫

X

extχ(x)dμ−1(x) =
2
∑d−1

�=0(−1)�χ(�)e�t
edt + 1

t =
∞∑

n=0

Gn,χ

n!
tn. (2.13)

By (2.12) and (2.13), it is not difficult to show that

Gn+1,χ

n + 1
=
∫

X

χ(x)xn dμ−1(x)

= dn
d−1∑

a=0

χ(a)(−1)a
∫

Zp

(
a

d
+ x

)n

dμ−1(x)

= dn
d−1∑

a=0

χ(a)(−1)aGn+1(a/d)
n + 1

,

(2.14)

∫

X

(x + y)ndμ−1(y) = dn
d−1∑

n=0

(−1)a
∫

Zp

(
x + a

d
+ y

)n

dμ−1(y). (2.15)
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By (2.6) and (2.15), we obtain the following theorem.

Theorem 2.1. Let d ∈ N with d ≡ 1(mod2), and let χ be the Dirichlet characterwith conductor d.
Then, one has

Gn+1(x)
n + 1

= dn
d−1∑

a=0

(−1)aGn+1((x + a)/d)
n + 1

(distribution relation for Genocchi polynomials),

(2.16)

Gn+1,χ

n + 1
= dn

d−1∑

a=0

χ(a)(−1)aGn+1(a/d)
n + 1

. (2.17)

3. Genocchi zeta function

Let F(t, x) be the generating function of Gk(x) in complex plane as follows:

F(t, x) =
2text

et + 1
=
∞∑

n=0

Gn(x)
tn

n!

= t
∞∑

n=0

Gn+1(x)
n + 1

tn

n!
, |t| < π.

(3.1)

Then, we show that

F(t, x) = 2t
∞∑

n=0

(−1)ne(n+x)t. (3.2)

By (3.1) and (3.2), we easily see that

Gk(x) =
dkF(t, x)

dtk

∣∣∣∣
t=0

= 2k
∞∑

n=0

(−1)n(n + x)k−1. (3.3)

Therefore, we obtain the following proposition.

Proposition 3.1. For k ∈ N, one has

Gk(x)
k

= 2
∞∑

n=0

(−1)n(n + x)k−1. (3.4)

From Proposition 3.1, we can derive the Genocchi zeta function which interpolates
Genocchi polynomials at negative integers.

For s ∈ C, we define the Hurwitz-type Genocchi zeta function as follows.

Definition 3.2. For s ∈ C,

ζG(s, x) = 2
∞∑

n=0

(−1)n
(n + x)s

, ζG(s) = 2
∞∑

n=1

(−1)n
ns

. (3.5)
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By Proposition 3.1 and Definition 3.2, we obtain the following theorem.

Theorem 3.3. For k ∈ N, one has

ζG(1 − k, x) = Gk(x)
k

, ζG(1 − k) = Gk

k
. (3.6)

Let χ be the Dirichlet character with conductor d ∈ N, with d ≡ 1(mod2), and let Fχ(t)
be the generating function in C of Gn,χ. Then, we have

Fχ(t) = 2
∑d−1

�=0(−1)�χ(�)e�t
edt + 1

t =
∞∑

n=0

Gn,χ
tn

n!
, |t| < π

d
. (3.7)

From (3.7), we derive

Fχ(t) =
∞∑

n=0

Gn,χ
tn

n!
=
∞∑

n=1

Gn,χ
tn

n!

= t
∞∑

n=0

Gn+1,χ

n + 1
tn

n!

= t
∞∑

n=0

(
dn

d−1∑

a=0

χ(a)(−1)aGn+1(a/d)
n + 1

)
tn

n!

=
d−1∑

a=0

χ(a)(−1)a
(
dt
∞∑

n=0

Gn+1(a/d)
n + 1

dntn

n!

)
.

(3.8)

By (3.1), (3.2), and (3.8), we easily see that

Fχ(t) =
d−1∑

a=0

χ(a)(−1)a
(
2t
∞∑

k=0

(−1)ke(k+a/d)dt
)

= 2t
∞∑

k=0

d−1∑

a=0

χ(a + dk)(−1)a+dke(dk+a)t

= 2t
∞∑

n=0

χ(n)(−1)nent

= 2t
∞∑

n=1

χ(n)(−1)nent.

(3.9)

From (3.9), we can derive

Gk,χ =
dk

dtk
Fχ(t)

∣∣∣∣
t=0

= k

(
2
∞∑

n=1

χ(n)(−1)nnk−1
)
. (3.10)

Thus, we have

Gk, χ

k
= 2

∞∑

k=0

χ(n)(−1)nnk−1. (3.11)
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Now, we consider the Dirichlet-type Genocchi �-function in complex plane as follows. For
s ∈ C, define

�G,χ(s) = 2
∞∑

n=1

(−1)nχ(n)
ns

. (3.12)

By (3.11) and (3.12), we obtain the following theorem.

Theorem 3.4. Let χ be the Dirichlet character with conductor d ∈ N, with d ≡ 1(mod2), and let
k ∈ Z

+. Then, one has

�G,χ(1 − k) =
Gk,χ

k
. (3.13)

Remark 3.5. In [1], we can observe the value of Genocchi zeta function at positive integers as
follows:

ζG(2n) =
(−1)n−1π2n(2 − 4n)

2(2n)!(1 − 4n) G2n, cf. [1]. (3.14)
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