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The purpose of this paper is to study the extendability of equilibrium states of rodlike nematic
polymers with the Maier-Saupe intermolecular potential. We formulate equilibrium states as
solutions of a nonlinear system and calculate the determinant of the Jacobian matrix of the
nonlinear system. It is found that the Jacobian matrix is nonsingular everywhere except at two
equilibrium states. These two special equilibrium states correspond to two points in the phase
diagram. One point is the folding point where the stable prolate branch folds into the unstable
prolate branch; the other point is the intersection point of the nematic branch and the isotropic
branch where the unstable prolate state becomes the unstable oblate state. Our result establishes
the existence and uniqueness of equilibrium states in the presence of small perturbations away
from these two special equilibrium states.
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1. Introduction

Liquid crystal polymers (LCPs) consisting of rigid rodlike macromolecules in a viscous
solvent have wide technological applications [1–4]. The most common theoretical framework
for modeling nematic polymers is to represent the nematogenic molecules as rigid rods
and to describe the ensemble with an orientational probability density function (pdf) [5].
Equilibrium orientational distribution is related to the interaction potential by the Boltzmann
relation. Recently, rigorous mathematical analysis on the equilibrium states of nematic
polymers has garnered serious attention from mathematicians led by Constantin and Titi
[6–22]. For example, various proofs for the axisymmetry of equilibrium states with only the
Maier-Saupe interaction were given in [8, 19] for the 2-D case and in [9, 18, 20] for the 3-
D case; the equilibrium states for the case where dipole-dipole interaction is coupled to the
Maier-Saupe interaction were studied in [17, 21]. Not surprisingly, many mathematical issues
of polymers are still unexplored. In particular, to our knowledge, the extendability of the
equilibrium states has never been attempted.
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In our previous study [21], it was revealed that for large values of the nematic
strength and small perturbations, there exists at least one solution near the corresponding
unperturbed pure nematic solution. In [21], we concluded the existence using complicated
free energy arguments. Moreover, in [21] only existence was established whereas the
uniqueness was not addressed at all. Our goal in the current study is to establish rigorously
the extendability, both existence and uniqueness, of the equilibrium states of nematic
polymers in the presence of small perturbations. Notice that all equilibrium states of nematic
polymers are axisymmetric [9, 18, 20]. To facilitate the discussion of extendability, we
introduce two new variables for the nonlinear system governing the equilibrium states:
one variable is proportional to the order parameter of the pdf; the other variable is
proportional to the biaxial order parameter, which measures the deviation of the pdf from
being axisymmetric. One advantage of this approach is that the Jacobian matrix is diagonal
at equilibrium states. We will show that the Jacobian determinant of the nonlinear system
is nonzero everywhere except at two equilibrium states. These two equilibrium states
correspond to two points in the phase diagram: one point is the folding point where the
stable prolate branch folds into the unstable prolate branch; the other point is the intersection
point of the nematic states and the isotropic states where the unstable prolate state becomes
the unstable oblate state. The extendability of the equilibrium states except these two states
follows immediately from the implicit function theorem.

2. Nonlinear system for equilibrium states, Jacobian matrix, and its determinant

We now briefly recall the mathematical description for equilibrium states of rigid rodlike
nematic polymers. The orientation direction of each polymer rod is denoted by a unit vector
m. In this study, by “pure nematic polymers,” we mean the case where the Maier-Saupe
interaction potential is the only potential. The Maier-Saupe potential is given by

U(m) = −b〈mm〉 : mm, (2.1)

where the tensor product mm and the tensor double contraction A : B are defined as

mm ≡

⎡
⎣
m1m1 m1m2 m1m3

m2m1 m2m2 m2m3

m3m1 m3m2 m3m3

⎤
⎦ ,

A : B ≡ trace (AB).

(2.2)

In (2.1), b = 3N/2,N is the normalized polymer concentration describing the strength of
intermolecular interactions, and 〈mm〉 is the second moment of the orientation distribution:

〈mm〉 ≡
∫

‖m‖=1
mm ρ(m)dm, (2.3)

where ρ(m) is the orientational probability density function (pdf) of the ensemble of polymer
rods. For convenience, potential (2.1) has been normalized with respect to kBT, where kB



H. Wang and H. Zhou 3

is the Boltzmann constant and T the absolute temperature. For pure nematic polymers,
equilibrium states are described by the Boltzmann distribution [5]:

ρ(m) =
1
Z

exp
[
−U(m)

]
, (2.4)

where Z =
∫
S exp[−U(m)]dm is the partition function and S is the unit sphere.

We choose the coordinate system such that the second moment 〈mm〉 is diagonal:

〈mm〉 =

⎡
⎣
〈
m2

1

〉
0 0

0
〈
m2

2

〉
0

0 0
〈
m2

3

〉

⎤
⎦ . (2.5)

As a consequence, the Maier-Saupe potential can be written as

U(m) = −b
(〈
m2

1

〉
m2

1 +
〈
m2

2
〉
m2

2 +
〈
m2

3
〉
m2

3
)
. (2.6)

The most significant conclusion for pure nematic polymers is that all equilibrium states are
axisymmetric [9, 18, 20]. Since not all equilibrium states of a perturbed nematic polymer
ensemble are necessarily axisymmetric, to study the extendability, we formulate the problem
without using the axisymmetry so that non-axisymmetric perturbations are allowed. The
axisymmetry will be useful in our analysis because the extendability is determined by the
Jacobian determinant evaluated at the unperturbed equilibrium state, which is axisymmetric.
The definition and derivation of the Jacobian matrix, however, require non-axisymmetric
formulation. For pure nematic polymers, the total potential is completely specified by the
second moment 〈mm〉. As a result of the Boltzmann relation (2.4), an equilibrium state is
completely specified by the second moment 〈mm〉. Because of the constraintm2

1+m
2
2+m

2
3 = 1,

an equilibrium state is completely specified by

s1 ≡
〈
m2

1

〉
, s2 ≡

〈
m2

2
〉
. (2.7)

At a pure nematic equilibrium state without perturbation, we have s1 = s2 or s1 = 1 − s1 − s2

(which means s1 = s3) or s2 = 1 − s1 − s2 (which means s2 = s3). At an equilibrium state, we
select the coordinate system such that the equilibrium satisfies s1 = s2. In terms of (s1, s2), the
Maier-Saupe potential can be expressed as

U(m) = −b
(
s1m

2
1 + s2m

2
2 +

(
1 − s1 − s2

)
m2

3
)

= −b
[

1
2
(
s2 − s1

)(
m2

2 −m
2
1

)
+
(

1 − 3
2
(
s1 + s2

))
m2

3

]
+ const.

(2.8)

Consequently, the equilibrium pdf is given by

ρ(m) =
1
Z

exp
{
b

[
1
2
(
s2 − s1

)(
m2

2 −m
2
1

)
+
(

1 − 3
2
(
s1 + s2

))
m2

3

]}
. (2.9)
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At an equilibrium state, (s1, s2) satisfies the nonlinear system:

s1 −
〈
m2

1

〉
= 0, s2 −

〈
m2

2
〉
= 0. (2.10)

The form of the equilibrium pdf (2.9) motivates us to introduce (η1, η2):

η1 ≡ b
[

1 − 3
2
(
s1 + s2

)]
, η2 ≡ b

(
s2 − s1

)

2
. (2.11)

Here η1 is proportional to the order parameter of the pdf while η2 is proportional to the biaxial
order parameter, which measures the deviation of the pdf from being axisymmetric. As we
will see, one advantage of using (η1, η2) is that the Jacobian matrix is diagonal at equilibrium
states. In terms of (η1, η2), the pdf has the expression

ρ
(
m, η1, η2

)
=

exp
[
η2
(
m2

2 −m
2
1

)
+ η1m

2
3

]
∫
S exp

[
η2
(
m2

2 −m
2
1

)
+ η1m

2
3

]
dm

. (2.12)

The second advantage of using (η1, η2) is that the pdf does not depend on b explicitly. Later
on, this property will enable us to write b as a function of r which is the equilibrium value of
η1. At an equilibrium state, the nonlinear system for (η1, η2) is

F1
(
η1, η2; b

)
≡
η1

b
− 1

2
(
3
〈
m2

3
〉
− 1

)
= 0,

F2
(
η1, η2; b

)
≡
η2

b
− 1

2
〈
m2

2 −m
2
1

〉
= 0.

(2.13)

In this paper, we study the extendability of equilibrium states of nematic polymers in the
presence of small perturbations. We consider a perturbed version of system (2.13):

F1
(
η1, η2; b

)
= ε1,

F2
(
η1, η2; b

)
= ε2.

(2.14)

Mathematically, we study the existence and uniqueness of solution of system (2.14)
near a solution of system (2.13) for small ε1 and ε2. According to the implicit function
theorem, the existence and uniqueness are determined by the Jacobian determinant of
(F1(η1, η2), F2(η1, η2)). To calculate the Jacobian matrix, we first calculate the derivatives of
pdf (2.12):

∂

∂η1
ρ
(
m, η1, η2

)
=
(
m2

3 −
〈
m2

3
〉)
ρ
(
m, η1, η2

)
,

∂

∂η2
ρ
(
m, η1, η2

)
=
(
m2

2 −m
2
1 −

〈
m2

2 −m
2
1

〉)
ρ
(
m, η1, η2

)
.

(2.15)
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Recall that at a pure nematic equilibrium state without perturbation, we have selected our
coordinate system such that η2 = 0. Evaluating the partial derivatives of F1 and F2 at the
equilibrium (η1 = r, η2 = 0) yields

∂

∂η1
F1

(
η1, η2; b

)∣∣∣∣
η1=r,η2=0

=
1
b
− 3

2
〈
m2

3
(
m2

3 −
〈
m2

3
〉)〉

=
1
b
− 3

2
var

(
m2

3
)
,

∂

∂η2
F1

(
η1, η2; b

)∣∣∣∣
η1=r,η2=0

= −3
2
〈
m2

3
(
m2

2 −m
2
1 −

〈
m2

2 −m
2
1

〉)〉
= 0,

∂

∂η1
F2

(
η1, η2; b

)∣∣∣∣
η1=r,η2=0

= −1
2
〈(
m2

2 −m
2
1

)(
m2

3 −
〈
m2

3
〉)〉

= 0,

∂

∂η2
F2

(
η1, η2; b

)∣∣∣∣
η1=r,η2=0

=
1
b
− 1

2
〈(
m2

2 −m
2
1

)(
m2

2 −m
2
1 −

〈
m2

2 −m
2
1

〉)〉
,

=
1
b
− 1

2

〈(
m2

2 −m
2
1

)2
〉
.

(2.16)

Here we point out that the Jacobian matrix of system (2.13) evaluated at an equilibrium state
is diagonal, which is caused by the axisymmetry of the equilibrium state.

It follows that the determinant of Jacobian matrix of system (2.13) at the equilibrium
is

det
(
∂
(
F1, F2

)

∂
(
η1, η2

)
)∣∣∣∣

η1=r,η2=0

=
(

1
b
− 3

2
var

(
m2

3
))
·
(

1
b
− 1

2

〈(
m2

2 −m
2
1

)2
〉)

. (2.17)

In (2.17), all averages are evaluated using the equilibrium pdf

ρ
(
m, η1, η2

)∣∣
η1=r,η2=0 =

1
Z

exp
(
rm2

3
)
. (2.18)

For pure nematic polymers, an equilibrium state is completely specified by r. The governing
equation for r is the first equation of (2.13): F1(r, 0; b) = 0, whereas the second equation of
(2.13) is satisfied automatically when η2 = 0. We introduce a new function:

F(η; b) ≡ F1(η, 0; b) =
η

b
− 1

2
(
3
〈
m2

3
〉
− 1

)
. (2.19)

The governing equation for r is F(r; b) = 0. It follows directly from the definition that function
F(η; b) is related to the (1, 1) element of the Jacobian matrix at equilibrium as

∂

∂η1
F1

(
η1, η2; b

)∣∣∣∣
η1=r,η2=0

=
∂

∂η
F(η; b)

∣∣∣∣
η=r
. (2.20)

As we will find later, this relation is a key tool for determining the sign of the (1, 1) element of
the Jacobian matrix at equilibrium. In the above, we have used variables η and r more or less
interchangibly. Later on when necessary, we will use η to denote the independent variable
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of functions and use r to denote the particular value of η that satisfies F(r; b) = 0. For that
purpose, we will continue using these two variables.

3. Extendability of equilibria of nematic polymers

To obtain more specific properties of equilibrium states of nematic polymers, we rewrite the
governing equation for r using spherical coordinates. We select the m3-axis as the pole of the
spherical coordinate system. The equilibrium pdf given in (2.18) becomes

ρ(φ, θ; r) =
exp

(
rcos2φ

)

2π
∫π

0 exp
(
rcos2φ

)
sinφdφ

, (3.1)

where φ is the polar angle and θ the azimuthal angle. Here we need to point out that r is
not the radius in the spherical coordinate system. It is a parameter of the equilibrium state.
Substituting equilibrium pdf (3.1) into (1/2)(3〈m2

3〉−1), using a change of variable u = cosφ,
and integrating by parts, we have

1
2
(
3
〈
m2

3
〉
− 1

)
= r ·

∫1
0

(
u2 − u4) exp

(
ru2)du

∫1
0 exp

(
ru2

)
du

. (3.2)

Thus, F(η; b) defined in (2.19) becomes F(η; b) = η[1/b − f(η)], where f(η) is defined as

f(η) ≡
∫1

0 u
2(1 − u2) exp

(
ηu2)du

∫1
0 exp

(
ηu2

)
du

. (3.3)

The equation for r, F(r; b) = 0, becomes

r

[
1
b
− f(r)

]
= 0. (3.4)

Equation (3.4) has a trivial solution r = 0 for arbitrary value of b, which corresponds to the
isotropic branch of the nematic polymer phase diagram. At r = 0, the equilibrium pdf is
uniform, ρ(φ, θ; 0) = 1/4π . It follows that

〈
m2
j

〉
=

1
3
,

〈
m4
j

〉
=
〈
m4

3
〉
=
∫1

0
u4du =

1
5
,

〈
m2
i m

2
j

〉
=
〈
m2

1m
2
3
〉
=

1
2

∫1

0
u2(1 − u2)du =

1
15
, i /= j,

var
(
m2

3
)
=
〈
m4

3
〉
−
〈
m2

3
〉2

=
1
5
− 1

9
=

4
45
,

〈(
m2

2 −m
2
1

)2
〉
=
〈
m4

2
〉
− 2

〈
m2

1m
2
2
〉
+
〈
m4

1

〉
=

2
5
− 2

15
=

4
15
.

(3.5)
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Substituting these results into (2.16), we obtain

∂

∂η1
F1

(
η1, η2; b

)∣∣∣∣
η1=0,η2=0

=
1
b
− 3

2
var

(
m2

3
)
=

1
b
− 2

15
,

∂

∂η2
F2

(
η1, η2; b

)∣∣∣∣
η1=0,η2=0

=
1
b
− 1

2

〈(
m2

2 −m
2
1

)2
〉
=

1
b
− 2

15
.

(3.6)

Therefore, when b /= 15/2, the Jacobian matrix is nonsingular and thereby the isotropic
equilibrium is extendable. At b = 15/2, the isotropic branch intersects with the nematic
branch.

The remaining solutions of (3.4), if any, satisfy

1
b
− f(r) = 0. (3.7)

In [20], it has been shown that the function f(η) has the following properties:

(1) f(0) = 2/15, limη→+∞f(η) = 0 and limη→−∞f(η) = 0;

(2) f(η) attains its maximum at η = η∗ = 2.1782879748 > 0, where the maximum is
f(η∗) = 0.14855559992254 > 0;

(3) f ′(η) > 0 for η < η∗ and f ′(η) < 0 for η > η∗.

A graph of f(η) is shown in Figure 1(a). Thus, we draw conclusions below for (3.7) as
follows.

(i) The critical value of b is b∗ = 1/f(η∗) = 6.7314863965.

(ii) For b < b∗, (3.7) has no solution.

(iii) At b = b∗, (3.7) has one solution r(b∗) = η∗ > 0.

(iv) For b∗ < b < 2/15, (3.7) has two solutions: rU(b) > η∗ > 0 and 0 < rM(b) < η∗.

(v) At b = 2/15, (3.7) has two solutions: rU(2/15) > η∗ > 0 and r(2/15) = 0.

(vi) For b > 2/15, (3.7) has two solutions: rU(b) > η∗ > 0 and rL(b) < 0.

As mentioned before, we use subscript “U” to denote to the “Upper” part of the phase
diagram where r > η∗, subscript “M” to denote to the “Middle” part of the phase diagram,
where 0 < r < η∗, and subscript “L” to denote to the “Lower” part of the phase diagram,
where r < 0. The phase diagram for nematic polymers is shown in Figure 1(b). In the
terminologies of nematic polymers, curve segment rU(b) is the stable part of the prolate
branch; rM(b) is the unstable part of the prolate branch; and rL(b) is the unstable oblate
branch.

Recall that b is the strength of the Maier-Saupe interaction, which is proportional to
the normalized polymer concentration and is inversely proportional to the temperature. r,
the solution of F(r; b) = 0, has the expression r = b · (1/2)(3〈m2

3〉− 1), where (1/2)(3〈m2
3〉− 1)

is the order parameter. Thus, from physical considerations, it is desirable to use b as the
independent variable and treat r as a function of b. However, r(b) is a multivalue function
of b and for b < b∗ function r(b) is not even defined. Mathematically, it is much more
convenient if we use r as the independent variable and treat b as a function of r. b(r) is a
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1612840−4−8

η
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0.16
f
(η
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f ′(η)>0 f ′(η)<0
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(a)

109876

b

−4

0

4

8

r

rU(b)

rM(b)

rL(b)

b∗ = 6.7314863965

(b)

Figure 1: (a) Graph of function f(η); (b) phase diagram of nematic polymers.

single-value function of r and is defined for all values of r in (−∞,+∞). Below, we will adopt
this new formulation of viewing b as a function of r. In the new formulation, function b(r)
is determined from (3.7) as b(r) = 1/f(r). In terms of this new formulation, the stable part
of the prolate branch rU(b) can be simply represented as b(r) for r > η∗; the unstable part
of the prolate branch rM(b) as b(r) for 0 < r < η∗; and the unstable oblate branch rL(b) as
b(r) for r < 0. Now we discuss the extendability of these branches. Using relation (2.20),
F(η; b) = η[1/b − f(η)], and 1/b − f(r) = 0, we arrive at

∂

∂η1
F1

(
η1, η2; b(r)

)∣∣∣∣
η1=r,η2=0

=
∂

∂η
F
(
η; b(r)

)∣∣∣∣
η=r

=
[

1
b(r)

− f(η)
]∣∣∣∣

η=r
− ηf ′(η)

∣∣∣∣
η=r

= −rf ′(r) =

⎧⎪⎪⎨
⎪⎪⎩

> 0, for r > η∗

< 0, for 0 < r < η∗

> 0, for r < 0.

(3.8)

To study the (2, 2) element of Jacobian matrix, we first rewrite (1/2)〈(m2
2 −m

2
1)

2〉 by
substituting equilibrium pdf (3.1) into (1/2)〈(m2

2 −m
2
1)

2〉 and using substitution u = cosφ,

1
2

〈(
m2

2 −m
2
1

)2
〉
=

1
4

∫1
0

(
1 − u2)2 exp

(
ru2)du

∫1
0 exp

(
ru2

)
du

. (3.9)

Using (2.16), b(1) = 1/f(r), the expression of f(r) given in (3.3), and result (3.9), we have

∂

∂η2
F2

(
η1, η2; b(r)

)∣∣∣∣
η1=r,η2=0

=
1

b(r)
− 1

2

〈(
m2

2 −m
2
1

)2
〉

=
1
4

∫1
0

(
1 − u2)(5u2 − 1

)
exp

(
ru2)du

∫1
0 exp

(
ru2

)
du

≡ g(r).
(3.10)
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It is straightforward to verify that g(0) = 0. Below, we want to show that g(r) > 0 for r > 0
and g(r) < 0 for r < 0. To facilitate the analysis below, we write g(r) as an average

g(r) =
1
4
〈(

1 − u2)(5u2 − 1
)〉
, (3.11)

where the average is with respect to the pdf ρ(u; r) = exp(ru2)/
∫1

0 exp(ru2)du.

Lemma 3.1. Function g(r) given in (3.11) has the property that g(r) = 0 implies g ′(r) > 0.

Proof of Lemma 3.1. We first calculate the derivative of the pdf: (∂/∂r)ρ(u; r) = (u2 −
〈u2〉)ρ(u; r), which leads to

g ′(r) =
1
4
〈(

1 − u2)(5u2 − 1
)(
u2 −

〈
u2〉)〉

=
1

20

〈(
1 − u2)(5u2 − 1

)2
〉
+

1
5
(
1 − 5

〈
u2〉)g(r).

(3.12)

Thus, whenever g(r) = 0, we have g ′(r) = (1/20)〈(1 − u2)(5u2 − 1)2〉 > 0.

Lemma 3.1 together with g(0) = 0 leads to g(r) > 0 for r > 0 and g(r) < 0 for r < 0.
Combining this result on g(r) with result (3.8) on −rf ′(r), we arrive at

det
(
∂
(
F1, F2

)

∂
(
η1, η2

)
)∣∣∣∣

η1=r,η2=0

=
(
− rf ′(r)

)
g(r) =

⎧⎪⎪⎨
⎪⎪⎩

> 0, for r > η∗,
< 0, for 0 < r < η∗,
< 0, for r < 0.

(3.13)

Therefore, we conclude that all nematic equilibrium states (stable or unstable) are extendable
except for the equilibrium state at (r = 0, b = 15/2) and the equilibrium state at (r = η∗, b =
b∗).

4. Conclusions

In this work, we studied the extendability of equilibrium states of nematic polymers with
the Maier-Saupe intermolecular potential. We found that the Jacobian matrix of the nonlinear
system is nonsingular except at two special equilibrium states. The significance of this result
is its implication on the existence and uniqueness of equilibrium states of a perturbed system,
in the neighborhood of the unperturbed equilibrium states.
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