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Copyright q 2008 Adriana Cătaş et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction and definitions

Let H be the class of analytic functions in the open unit disc

U =
{
z ∈ C : |z| < 1

}
(1.1)

and let H[a, n] be the subclass of H consisting of functions of the form f(z) = a + anz
n +

an+1z
n+1 + · · · . LetA(p, n) denote the class of functions f(z) normalized by

f(z) = zp +
∞∑

k=p+n

akz
k (

p, n ∈ N := {1, 2, 3, . . .}) (1.2)

which are analytic in the open unit disc. In particular, we set

A(p, 1) := Ap, A(1, n) := A(n), A(1, 1) := A = A1. (1.3)

If a function f(z) belongs to the classA(n), it has the form

f(z) = z +
∞∑

k=n+1

akz
k (

n ∈ N := {1, 2, 3, . . .}). (1.4)
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For two functions f(z) given by (1.4) and for g(z) given by

g(z) = z +
∞∑

k=n+1

bkz
k (n ∈ N), (1.5)

the Hadamard product (or convolution) (f∗g)(z) is defined, as usual, by

(f∗g)(z) := z +
∞∑

k=n+1

akbkz
k := (g∗f)(z). (1.6)

If f and g are analytic inU, we say that f is subordinate to g, written symbolically as

f ≺ g or f(z) ≺ g(z) (z ∈ U) (1.7)

if there exists a Schwarz functionw(z) inUwhich is analytic inUwithw(0) = 0 and |w(z)| < 1
such that f(z) = g(w(z)), z ∈ U.

We consider the following multiplier transformations.

Definition 1.1 (see [1]). Let f ∈ A(p, n). For δ, λ ∈ R, λ ≥ 0, δ ≥ 0, l ≥ 0, define the multiplier
transformations Ip(δ, λ, l) onA(p, n) by the following infinite series:

Ip(δ, λ, l)f(z) := zp +
∞∑

k=p+n

[
p + λ(k − p) + l

p + l

]δ
akz

k. (1.8)

It follows from (1.8) that

Ip(0, λ, l)f(z) = f(z),

(p + l)Ip(2, λ, l)f(z) =
[
p(1 − λ) + l]Ip(1, λ, l)f(z) + λz

(
Ip(1, λ, l)f(z)

)′
,

Ip
(
δ1, λ, l

)(
Ip
(
δ2, λ, l

)
f(z)

)
= Ip

(
δ2, λ, l

)(
Ip
(
δ1, λ, l

)
f(z)

)
.

(1.9)

Remark 1.2 (see [1]). For p = 1, l = 0, λ ≥ 0, δ = m, m ∈ N0, N0 = N ∪ {0}, the operator Dm
λ

:=
I1(m,λ, 0) was introduced and studied by Al-Oboudi [2] which is reduced to the Sălăgean
differential operator [3] for λ = 1. The operator Im

l
:= I1(m, 1, l) was studied recently by Cho

and Srivastava [4] and by Cho and Kim [5]. The operator Im := I1(m, 1, 1) was studied by
Uralegaddi and Somanatha [6], the operatorDδ

λ
:= I1(δ, λ, 0)was introduced by Acu and Owa

[7] and the operator Ip(m, l) := Ip(m, 1, l)was investigated recently by Sivaprasad Kumar et al.
[8].

If f is given by (1.2), then we have

Ip(δ, λ, l)f(z) =
(
f∗ϕδp,λ,l

)
(z), (1.10)

where

ϕδp,λ,l(z) = z
p +

∞∑

k=p+n

[
p + λ(k − p) + l

p + l

]δ
zk. (1.11)

In particular, we set

I1(δ, λ, l)f(z) := I(δ, λ, l)f(z). (1.12)

In order to prove our main results, we will make use of the following lemmas.
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Lemma 1.3 (see [9]). For real or complex numbers a, b, and c (c/∈Z
−
0 := {0,−1,−2, . . .}), the following

hold:

∫1

0
tb−1(1 − t)c−b−1(1 − tz)−adt = Γ(b)Γ(c − b)

Γ(c)
· 2F1(a, b; c; z) (Re c > Re b > 0), (1.13)

2F1(a, b; c; z) = (1 − z)−a·2F1

(
a, c − b; c; z

z − 1

)
, (1.14)

2F1(a, b; c; z) = 2F1(b, a; c; z), (1.15)

(b + 1)· 2F1(1, b; b + 1; z) = (b + 1) + bz·2F1(1, b + 1; b + 2; z), (1.16)

2F1

(
a, b;

a + b + 1
2

;
1
2

)
=

√
π ·Γ((a + b + 1)/2

)

Γ
(
(a + 1)/2

)
Γ
(
(b + 1)/2

) . (1.17)

Lemma 1.4 (see [10]). Let β, γ ∈ C, β /= 0 and let h be convex inU, with

Re
[
βh(z) + γ

]
> 0 (z ∈ U). (1.18)

If the function p ∈ H[h(0), n], then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) =⇒ p(z) ≺ h(z). (1.19)

Lemma 1.5 (see [11]). Let μ be a positive measure on the unit interval I = [0, 1]. Let g(t, z) be a
function analytic in [0, 1]×U, for each t ∈ I and integrable in t, for each z ∈ U and for almost all t ∈ I.
Suppose also that

Re
{
g(t, z)

}
> 0 (z ∈ U; t ∈ I), (1.20)

g(t,−r) is real for real r and

Re
1

g(t, z)
≥ 1
g(t,−r)

(|z| ≤ r < 1, t ∈ I). (1.21)

If

g(z) =
∫

I

g(t, z)dμ(t), (1.22)

then

Re
(

1
g(z)

)
≥ 1
g(−r)

(|z| ≤ r < 1
)
. (1.23)

Lemma 1.6 (see [12]). Let ψ(z) be univalent in the unit discU and let v and ϕ be analytic in a domain
D ⊃ ψ(U) with ϕ(w)/= 0, when w ∈ ψ(U). Set

Q(z) := zψ ′(z)ϕ
(
ψ(z)

)
, h(z) := v

(
ψ(z)

)
+Q(z). (1.24)
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Suppose that

(1) Q(z) is starlike inU and

(2) Re (zh′(z)/Q(z)) > 0 for z ∈ U.

If q(z) is analytic inU, with q(0) = ψ(0), q(U) ⊂ D, and

v
(
q(z)

)
+ zq′(z)ϕ

(
q(z)

) ≺ v(ψ(z)) + zψ ′(z)ϕ
(
ψ(z)

)
, (1.25)

then q(z) ≺ ψ(z) and ψ(z) is the best dominant.

Lemma 1.7 (see [12, Theorem 3.3d]). Let β, γ,A ∈ C, with Re [β+γ] > 0 and let B ∈ [−1, 0] satisfy
either

Re
[
β(1 +AB) + γ(1 + B2)

] ≥ ∣∣βA + βB + B(γ + γ)
∣∣, (1.26)

when B ∈ (−1, 0], or

β(1 +A) > 0, Re
[
β(1 −A) + 2γ

] ≥ 0, (1.27)

when B = −1. If p ∈ H[1, n] satisfies

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Az

1 + Bz
, (1.28)

then

p(z) ≺ q(z) = qn(z) ≺ 1 +Az
1 + Bz

, (1.29)

where qn is the univalent solution of the differential equation

q(z) +
nzq′(z)
βq(z) + γ

=
1 +Az
1 + Bz

. (1.30)

In addition, the function qn, is the best (1, n)-dominant and the function qn is given by

q(z) =
β + γ
β

[
k(z)
K(z)

]β/n
− γ

β
=
zK′(z)
K(z)

=
1

βg(z)
− γ

β
, (1.31)

where

k(z) = z exp
∫z

0
(h(t) − 1)t−1dt,

K(z) =
[
β + γ
nzγ/n

∫z

0
kβ/n(t)t(γ/n)−1dt

]n/β
,

(1.32)

and the univalent function g is given by

g(z) =
1
n

∫1

0

[
k(tz)
k(z)

]β/n
t(γ/n)−1dt. (1.33)

Nowwe define new classes of analytic functions by using the multiplier transformations
I(m,λ, l) defined by (1.8) as follows.
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2. Main results

Definition 2.1. Let −1 ≤ B < A ≤ 1, λ > 0, l ≥ 0,m ∈ N ∪ {0}. A function f ∈ A(n) is said to be in
the class S(m,λ, l;A,B) if it satisfies the following subordination:

l + 1
λ

·I(m + 1, λ, l)f(z)
I(m,λ, l)f(z)

− 1 − λ + l
l + 1

≺ 1 +Az
1 + Bz

(z ∈ U). (2.1)

Remark 2.2. We note that

S(0, 1, 0; 1 − 2α,−1) ≡ S∗(α),

S(1, 1, 0; 1 − 2α,−1) ≡ K(α),
(2.2)

where S∗(α) and K(α) (0 ≤ α < 1) denote the subclasses of functions in A which are,
respectively, starlike of order α and convex of order α inU. Also we have the class

S(m,λ, 0;A,B) ≡ Smλ (A,B) (2.3)

studied by Patel [13].

Let φ(z) be analytic inU and φ(0) = 1. We introduce the following definition.

Definition 2.3. A function f ∈ A(n) is said to be in the class A(m,λ, l, n;φ) if it satisfies the
following subordination:

I(m + 1, λ, l)f(z)
I(m,λ, l)f(z)

≺ φ(z), (z ∈ U). (2.4)

Remark 2.4. We note that the classes A(m, 1, l, n;φ) were investigated recently by Sivaprasad
Kumar et al. [8].

Theorem 2.5. Let −1 ≤ B < A ≤ 1, l ≥ 0, λ > 0, and

(1 − B)(1 − λ + l) + λ(1 −A) > 0. (2.5)

(i) Then

S(m + 1, λ, l;A,B) ⊂ S(m,λ, l;A,B). (2.6)

Further, for f ∈ S(m + 1, λ, l;A,B), the following hold:

l + 1
λ

·I(m + 1, λ, l)f(z)
I(m,λ, l)f(z)

− 1 − λ + l
l + 1

≺ q(z) ≺ 1 +Az
1 + Bz

, (2.7)
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where

q(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

(1/n)
∫1
0 s

(l+1)/λn−1((1 + Bzs)/(1 + Bz)
)(1/n)(A/B−1)

ds
− 1 − λ + l

λ
if B /= 0,

1

(1/n)
∫1
0 s

(l+1)/λn−1· exp (
Az(s − 1)/n

)
ds

− 1 − λ + l
λ

if B = 0,
(2.8)

and q is the best dominant of (2.7).
(ii) Furthermore, in addition to (2.5), one consider the inequality

A ≤ −B
[
l + 1 + λ(n − 1)

]

λ
, (2.9)

where −1 ≤ B < 0, then

S(m + 1, λ, l;A,B) ⊂ S(m,λ, l; 1 − 2η,−1), (2.10)

where

η =
{[

2F1

(
1,

1
n

(
1 − A

B

)
,
l + 1
λn

+ 1,
B

B − 1

)]−1
− (1 − λ + l)

}
/λ. (2.11)

The result is the best possible.

Proof. Setting

χ(z) :=
z
(
I(m,λ, l)f(z)

)′

I(m,λ, l)f(z)
(z ∈ U), (2.12)

we note that χ(z) is analytic inU and

χ(z) = 1 + anzn + an+1zn+1 + · · · . (2.13)

Using the identity

(l + 1)I(m + 1, λ, l)f(z) = (1 − λ + l)I(m,λ, l)f(z) + λz
(
I(m,λ, l)f(z)

)′ (2.14)

in definition of χ(z) and carrying out logarithmic differentiation in the resulting equation, one
obtains

z
(
I(m + 1, λ, l)f(z)

)′

I(m + 1, λ, l)f(z)
= χ(z) +

zχ′(z)
χ(z) + (1 − λ + l)/λ

. (2.15)

Since f ∈ S(m + 1, λ, l;A,B), we get

χ(z) +
zχ′(z)

χ(z) + (1 − λ + l)/λ
≺ 1 +Az

1 + Bz
. (2.16)
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By applying Lemma 1.4, we obtain that

χ(z) ≺ 1 +Az
1 + Bz

. (2.17)

Hence we have shown the inclusion (2.6). Also, making use of Lemma 1.7 with β = 1
and γ = (1 − λ + l)/λ, q is the best dominant of (2.7) and q is defined by (2.8). This proves part
(i) of Theorem 2.5.

To establish (2.10), we need to show that

inf
|z|<1

Re
{
q(z)

}
= q(−1). (2.18)

The proof of the assertion (2.18) will be deduced on the same lines as in [14] making use of
Lemma 1.5. If we set a = (1/n)(1 − A/B), b = (l + 1)/λn, c = (l + 1)/λn + 1, B < 0, then by
using (1.13), (1.14), and (1.15), we find from (2.8) that

q(z) =
1

(1/n)Q(z)
− 1 − λ + l

λ
, (2.19)

where

Q(z) = (1 + Bz)a
∫1

0
sb−1(1 + Bsz)−ads

=
Γ(b)
Γ(c)

·2F1

(
1, a; c;

Bz

Bz + 1

)
.

(2.20)

By using (1.13), the above equality yields

Q(z) =
∫1

0
g(s, z)dμ(s), (2.21)

where

g(s, z) =
1 + Bz

1 + (1 − s)Bz,

dμ(s) =
Γ(c)

Γ(a)Γ(c − a)s
a−1(1 − s)c−a−1ds

(2.22)

is a positive measure on the closed interval [0, 1].
For −1 ≤ B < 1, we note that Re g(s, z) > 0, g(s,−r) is real for 0 ≤ r < 1 and s ∈ [0, 1] and

Re
{

1
g(s, z)

}
≥ 1 − (1 − s)Br

1 − Br =
1

g(s,−r) , |z| ≤ r < 1. (2.23)

Therefore, by using Lemma 1.5, one obtains

Re
{

1
Q(z)

}
≥ 1
Q(−r) , |z| ≤ r < 1 (2.24)

which, upon letting r→1−1, yields

Re
{

1
Q(z)

}
≥ 1
Q(−1) . (2.25)

Now, the assertion (2.18) follows by using Lemma 1.5. The result is the best possible and q is
the best dominant of (2.7). This completes the proof of Theorem 2.5.
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Takingm = 0, n = 1, λ = 1, l = 0, A = 1 − 2α, B = −1 in Theorem 2.5, we get the following
result due to MacGregor [15].

Corollary 2.6. For 0 ≤ α < 1, one obtains

K(α) ⊂ S∗(η1
)
, (2.26)

where

η1 =
[

2F1

(
1, 2(1 − α), 2, 1

2

)]−1
=

⎧
⎪⎪⎨

⎪⎪⎩

1 − 2α
22(1−α)

(
1 − 22α−1

) , α /=
1
2
,

1
2 ln 2

, α =
1
2
.

(2.27)

The result is the best possible.

Theorem 2.7. Let ψ(z) be univalent inU with ψ(0) = 1, Reψ(z) > 0, and let zψ ′(z)/ψ(z) be starlike
inU. Let φ(z) be defined by

φ(z) :=
λ

l + 1

(
l + 1
λ

ψ(z) +
zψ ′(z)
ψ(z)

)
. (2.28)

Then

A(m + 1, λ, l, n;φ) ⊂ A(m,λ, l, n;ψ). (2.29)

Proof. Setting

q(z) =
I(m + 1, λ, l)f(z)
I(m,λ, l)f(z)

, (2.30)

we note that q(z) is analytic inU.
By a simple computation, we observe from (2.30) that

zq′(z)
q(z)

=
z
(
I(m + 1, λ, l)f(z)

)′

I(m + 1, λ, l)f(z)
− z

(
I(m,λ, l)f(z)

)′

I(m,λ, l)f(z)
. (2.31)

Making use of the identity (2.14), one obtains from (2.31)

I(m + 2, λ, l)f(z)
I(m + 1, λ, l)f(z)

=
λ

l + 1

(
l + 1
λ

q(z) +
zq′(z)
q(z)

)
. (2.32)

By the hypothesis of Theorem 2.7 that f belongs to the class A(m + 1, λ, l, n;φ) and in
view of (2.32), we have

λ

l + 1

(
l + 1
λ

q(z) +
zq′(z)
q(z)

)
≺ λ

l + 1

(
l + 1
λ

ψ(z) +
zψ ′(z)
ψ(z)

)
. (2.33)

If we let

Q(z) := zψ ′(z)ϕ
(
ψ(z)

)
, (2.34)
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where

ϕ
(
ψ(z)

)
=

λ

l + 1
· 1
ψ(z)

,

h(z) := ψ(z) +Q(z)

(2.35)

and since Q(z) is starlike, our theorem is an immediate consequence of Lemma 1.6.

Theorem 2.8. Let ψ be univalent inU, ψ(0) = 1 and let γ be a complex number. Suppose that

(1) Re [λ(γ + 1) − (l + 1) + (l + 1)ψ(z)] > 0 and

(2) zψ ′(z)/(λ(γ + 1) − (l + 1) + (l + 1)ψ(z)) is starlike in U.

Let the function F(z) be defined by

F(z) :=
γ + 1
zγ

∫z

0
tγ−1f(t)dt (2.36)

and the function

h(z) := ψ(z) +
λzψ ′(z)

λ(γ + 1) − (l + 1) + (l + 1)ψ(z)
, (2.37)

then f ∈ A(m,λ, l, n;h) implies F ∈ A(m,λ, l, n;ψ).

Proof. From the definition of F(z) and

(γ + 1)I(m,λ, l)f(z) =
l + 1
λ

I(m + 1, λ, l)F(z) +
(
γ − 1 − λ + l

λ

)
I(m,λ, l)F(z), (2.38)

if we let

q(z) :=
I(m + 1, λ, l)F(z)
I(m,λ, l)F(z)

, (2.39)

then we note that q(z) is analytic inU. Using (2.38) and (2.39), one obtains

(γ + 1)
I(m,λ, l)f(z)
I(m,λ, l)F(z)

= γ − 1 − λ + l
λ

+
l + 1
λ

q(z). (2.40)

Differentiating this equality, we obtain

I(m + 1, λ, l)f(z)
I(m,λ, l)f(z)

= q(z) +
λzq′(z)

λ(γ + 1) − (l + 1) + (l + 1)q(z)
. (2.41)

For f ∈ A(m,λ, l, n;h), we have from (2.41)

q(z) +
λzq′(z)

λ(γ + 1) − (l + 1) + (l + 1)q(z)
≺ ψ(z) + λzψ ′(z)

λ(γ + 1) − (l + 1) + (l + 1)ψ(z)
. (2.42)
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If we let

Q(z) := zψ ′(z)ϕ
(
ψ(z)

)
, (2.43)

where

ϕ
(
ψ(z)

)
=

λ

λ(γ + 1) − (l + 1) + (l + 1)ψ(z)
,

h(z) := v
(
ψ(z)

)
+Q(z),

v
(
ψ(z)

)
:= ψ(z)

(2.44)

and since Q(z) is starlike inU, our theorem is an immediate consequence of Lemma 1.6.

Theorem 2.9. Let f(z) ∈ A(n). Then f belongs to the classA(m,λ, l, n;χ) if and only if F(z) defined
by

F(z) :=
l + 1

z(1−λ+l)/λ

∫z

0
t(1−λ+l)/λ−1f(t)dt (2.45)

belongs to the classA(m + 1, λ, l, n;χ).

Proof. From the definition of F(z), we have

1 − λ + l
λ

F(z) + zF ′(z) = (l + 1)f(z). (2.46)

By convoluting (2.46) with the function

u(m,λ, l, n; z) := z +
∞∑

k=n+1

[
1 + λ(k − 1) + l

l + 1

]m
zk (2.47)

and using a convolution property

z(f∗g)′(z) = f(z)∗zg ′(z), (2.48)

one obtains

(l + 1)I(m,λ, l)f(z) =
1 − λ + l

λ
I(m,λ, l)F(z) + z

(
u(m,λ, l, n; z)∗F(z))′, (2.49)

that is,

(l + 1)I(m,λ, l)f(z) =
1 − λ + l

λ
I(m,λ, l)F(z) + z

(
I(m,λ, l)F(z)

)′
. (2.50)

By using identity (2.14), we get

I(m,λ, l)f(z) =
1
λ
I(m + 1, λ, l)F(z). (2.51)
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Also, we obtain

(l + 1)I(m + 1, λ, l)f(z) = (1 − λ + l)I(m,λ, l)f(z) + λz
(
I(m,λ, l)f(z)

)′

=
1 − λ + l

λ
I(m + 1, λ, l)F(z) + z

(
I(m + 1, λ, l)F(z)

)′

=
l + 1
λ

I(m + 2, λ, l)F(z).

(2.52)

From (2.51) and (2.52), we get

I(m + 2, λ, l)F(z)
I(m + 1, λ, l)F(z)

=
I(m + 1, λ, l)f(z)
I(m,λ, l)f(z)

. (2.53)

By the hypothesis of Theorem 2.9 that

I(m + 1, λ, l)f(z)
I(m,λ, l)f(z)

≺ χ(z) (2.54)

and using (2.53), the desired result follows at once.
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