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1. Introduction

Throughout this paper, we denote by BX and SX the unit ball and the unit sphere of a Banach
space X, respectively. Let C be a nonempty bounded subset of X. The numbers diam(C) =
sup{‖x − y‖ : x, y ∈ C} and r(C) = inf{sup{‖x − y‖ : y ∈ C} : x ∈ C} are, respectively,
called the diameter and the Chebyshev radius of C. A Banach space X is said to have normal
structure (resp., weak normal structure) if

diam(C)
r(C)

> 1 (1.1)

for every closed bounded (resp., weakly compact) convex subset C of X with diam(C) > 0.
A Banach space X is said to have uniform normal structure (resp., weak uniform normal
structure) if

inf
{
diam(C)
r(C)

}
> 1, (1.2)

where the infimum is taken over all bounded closed (resp., weakly compact) convex subsets
C ofX with diam(C) > 0. It is clear that normal structure and weak normal structure coincide
when X is reflexive.
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Throughout this paper, we assume that X does not have the Schur property. The
weakly convergent sequence coefficient WCS(X), introduced by Bynum [1], is reformulated
by Sims and Smyth [2] as the following equivalent form:

WCS(X) = inf
{

lim
n,m,n/=m

∥∥xn − xm

∥∥ : xn
w−→ 0,

∥∥xn

∥∥ = 1, lim
n,m,n/=m

∥∥xn − xm

∥∥ exists
}
. (1.3)

Obviously 1 ≤ WCS(X) ≤ 2 and it is known that WCS(X) > 1 implies thatX has weak normal
structure.

There are many geometric conditions implying a Banach space to have normal
structure (see, e.g., [2–8]), among them

CNJ(X) < 1 +
1(

μ(X)
)2 or J(X) < 1 +

1
μ(X)

. (1.4)

Here, the coefficient μ(X) [9] is defined as the infimum of the set of real numbers r > 0 such
that

lim sup
n→∞

∥∥x + xn

∥∥ ≤ rlim sup
n→∞

∥∥x − xn

∥∥ (1.5)

for all x ∈ X and all weakly null sequence (xn) in X. The aim of this paper is to state
some estimates concerning the weakly convergent sequence coefficient. By these estimates,
we get sufficient conditions for normal structure in terms of the generalized James and von
Neumann-Jordan constants and thus generalize the above results.

2. Generalized James constant

The James constant, or the nonsquare constant

J(X) = sup
{‖x + y‖ ∧ ‖x − y‖ : x, y ∈ SX

}
(2.1)

is introduced by Casini [10] and Gao and Lau [11] and generalized by Dhompongsa et al. [4]
in the following sense:

J(a,X) = sup
{‖x + y‖ ∧ ‖x − z‖ : x, y, z ∈ BX, ‖y − z‖ ≤ a‖x‖}, (2.2)

where a is a nonnegative parameter. Obviously, J(0, X) = J(X), since it is known that in the
definition of J(X), SX can be replaced by BX .

Theorem 2.1. Let 0 ≤ a ≤ 1 and let X be a Banach space without the Schur Property. Then

WCS(X) ≥ 1 + (1 + a)/min
(
2, μ(X) + a

)
J(a,X)

. (2.3)
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Proof. If J(a,X) = 2, our estimate is trivial since WCS(X) ≥ 1 and μ(X) ≥ 1.
Suppose that J(a,X) < 2. Then X is uniformly nonsquare and therefore reflexive (see

[4]). Let {xn} be aweakly null sequence in SX . Assume that d = limn,m,n/=m‖xn−xm‖ exists and
consider a normalized functional sequence {x∗

n} such that x∗
n(xn) = 1. Note that the reflexivity

of X guarantees, by passing to a subsequence, if necessary, that there exists x∗ ∈ X∗ such that
x∗
n

w−−→ x∗. Let 0 < ε < 1 and choose N large enough so that |x∗(xN)| < ε/2 and

d − ε <
∥∥xN − xm

∥∥ < d + ε (2.4)

for all m > N. By the definition of μ(X),

lim sup
m→∞

∥∥∥∥xm + xN

d + ε

∥∥∥∥ ≤ μ(X)lim sup
m→∞

∥∥∥∥xN − xm

d + ε

∥∥∥∥ ≤ μ(X). (2.5)

Then we can choose M > N large enough such that

(1) |x∗
N(xM)| < ε;

(2) |(x∗
M − x∗)(xN)| < ε/2;

(3) ‖(xN + xM)/(d + ε)‖ ≤ μ(X) + ε.

Hence

∣∣x∗
M

(
xN

)∣∣ ≤ ∣∣(x∗
M − x∗)(xN

)∣∣ + ∣∣x∗(xN

)∣∣ < ε. (2.6)

Let us put x = (xN − xM)/(d + ε),

y =
(1 + a)xN + xM

(d + ε)(μ + a + ε)
, z =

xN + (1 + a)xM

(d + ε)(μ + a + ε)
(2.7)

(for short μ = μ(X)). It follows that x, y, z ∈ BX, ‖y − z‖ ≤ a‖x‖ and

(d + ε)‖x + y‖ =
∥∥∥∥
(
1 +

1 + a

μ + a + ε

)
xN −

(
1 − 1

μ + a + ε

)
xM

∥∥∥∥
≥
(
1 +

1 + a

μ + a + ε

)
x∗
N

(
xN

) −
(
1 − 1

μ + a + ε

)
x∗
N

(
xM

)

≥ 1 +
1 + a

μ + a + ε
− ε.

(2.8)

Also

(d + ε)‖x − z‖ =
∥∥∥∥
(
1 +

1 + a

μ + a + ε

)
xM −

(
1 − 1

μ + a + ε

)
xN

∥∥∥∥
≥
(
1 +

1 + a

μ + a + ε

)
x∗
M

(
xM

) −
(
1 − 1

μ + a + ε

)
x∗
M

(
xN

)

≥ 1 +
1 + a

μ + a + ε
− ε.

(2.9)
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This together with the definition of J(a,X) gives that

(d + ε)J(a,X) ≥ 1 +
1 + a

μ + a + ε
− ε. (2.10)

Since the sequence {xn} and ε are arbitrary, we get

WCS(X) ≥ μ + 1 + 2a
J(a,X)(μ + a)

. (2.11)

Moreover, if we put x = (xN − xM)/(d + ε),

y =
(1 + a)xN + (1 − a)xM

2(d + ε)
, z =

(1 − a)xN + (1 + a)xM

2(d + ε)
. (2.12)

It follows that x, y, z ∈ BX, ‖y − z‖ = a‖x‖ and

(d + ε)‖x + y‖ =
∥∥∥∥
(
1 +

1 + a

2

)
xN −

(
1 − 1 − a

2

)
xM

∥∥∥∥
≥
(
1 +

1 + a

2

)
x∗
N

(
xN

) −
(
1 − 1 − a

2

)
x∗
N

(
xM

)

≥ 1 +
1 + a

2
− ε.

(2.13)

Also

(d + ε)‖x − z‖ =
∥∥∥∥
(
1 +

1 + a

2

)
xM −

(
1 − 1 − a

2

)
xN

∥∥∥∥
≥
(
1 +

1 + a

2

)
x∗
M

(
xM

) −
(
1 − 1 − a

2

)
x∗
M

(
xN

)

≥ 1 +
1 + a

2
− ε.

(2.14)

This together with the definition of J(a,X) gives that

(d + ε)J(a,X) ≥ 1 +
1 + a

2
− ε. (2.15)

Since the sequence {xn} and ε are arbitrary, we get

WCS(X) ≥ 3 + a

2J(a,X)
. (2.16)

Adding up (2.11) and (2.16) yields (2.3) as desired.
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Corollary 2.2. Let X be a Banach space with

J(a,X) < 1 +
1 + a

min
(
2, μ(X) + a

) , (2.17)

for some 0 ≤ a ≤ 1. Then X has normal structure.

Corollary 2.3. Let X be a Banach space with

J(X) < 1 +
1

min
(
2, μ(X)

) . (2.18)

Then X has normal structure.

Remark 2.4. Corollary 2.3 includes [5, Theorem 2].

3. Generalized von Neumann-Jordan constant

The von Neumann-Jordan constant is introduced by Clarkson [12] and reformulated by Kato
et al. [6] in the following way:

CNJ(X) = sup
{‖x + y‖2 + ‖x − y‖2

2
(‖x‖2 + ‖y‖2) : x, y ∈ X, ‖x‖ + ‖y‖/= 0

}
. (3.1)

The generalized version of this constant is given by Dhompongsa et al. [3] as

CNJ(a,X) = sup
{ ‖x + y‖2 + ‖x − z‖2
2‖x‖2 + ‖y‖2 + ‖z‖2 : ‖x‖ + ‖y‖ + ‖z‖/= 0, ‖y − z‖ ≤ a‖x‖

}
, (3.2)

where a is a nonnegative parameter. Obviously, CNJ(X) = CNJ(0, X).

Theorem 3.1. Let 0 ≤ a ≤ 1 and let X be a Banach space without the Schur Property. Then

[
WCS(X)

]2 ≥ 1 + (1 + a)2/min
(
μ(X) + a, 2

)2
CNJ(a,X)

. (3.3)

Proof. If CNJ(a,X) = 2, then (3.3) is trivial.
Suppose that CNJ(a,X) < 2. Then X is uniformly nonsquare and therefore reflexive

(see [3]). Let {xn} be a weakly null sequence in SX and assume that d = limn,m,n/=m‖xn − xm‖
exists and let xN, xM, x∗

N, x∗
M be chosen as in Theorem 2.1.

Now let us put x = (xN − xM)/(d + ε),

y =
(1 + a)

(
(1 + a)xN + xM

)
(d + ε)(μ + a + ε)2

, z =
(1 + a)

(
xN + (1 + a)xM

)
(d + ε)(μ + a + ε)2

(3.4)
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(for short μ = μ(X)). It is easy to check that ‖y − z‖ ≤ a‖x‖, x ∈ BX :

‖y‖ ≤ (1 + a)
(μ + a + ε)

, ‖z‖ ≤ (1 + a)
(μ + a + ε)

, (3.5)

and also that

(d + ε)‖x + y‖ =

∥∥∥∥∥
(
1 +

(1 + a)2

(μ + a + ε)2

)
xN −

(
1 − 1 + a

(μ + a + ε)2

)
xM

∥∥∥∥∥

≥
(
1 +

(1 + a)2

(μ + a + ε)2

)
x∗
N

(
xN

) −
(
1 − 1 + a

(μ + a + ε)2

)
x∗
N

(
xM

)

≥
(
1 +

(1 + a)2

(μ + a + ε)2

)
(1 − ε),

(d + ε)‖x − z‖ =

∥∥∥∥∥
(
1 +

(1 + a)2

(μ + a + ε)2

)
xM −

(
1 − 1 + a

(μ + a + ε)2

)
xN

∥∥∥∥∥

≥
(
1 +

(1 + a)2

(μ + a + ε)2

)
x∗
M

(
xM

) −
(
1 − 1 + a

(μ + a + ε)2

)
x∗
M

(
xN

)

≥
(
1 +

(1 + a)2

(μ + a + ε)2

)
(1 − ε).

(3.6)

By the definition of CNJ(a,X),

CNJ(a,X) ≥
(
1 − ε

d + ε

)2
(
1 +

(1 + a)2

(μ + a + ε)2

)
. (3.7)

Since the sequence {xn} and ε are arbitrary, we get

[WCS(X)]2CNJ(a,X) ≥ 1 +
(
1 + a

μ + a

)2

. (3.8)

Moreover, if we put x = (xN − xM)/(d + ε),

y =
(1 + a)

(
(1 + a)xN + (1 − a)xM

)
4(d + ε)

, z =
(1 + a)

(
(1 − a)xN + (1 + a)xM

)
4(d + ε)

, (3.9)

it follows that x ∈ BX, ‖y − z‖ ≤ a‖x‖ and

‖y‖ ≤ 1 + a

2(d + ε)
≤ 1 + a

2
, ‖z‖ ≤ 1 + a

2(d + ε)
≤ 1 + a

2
, (3.10)
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and also that

(d + ε)‖x + y‖ =
∥∥∥∥
(
1 +

(1 + a)2

4

)
xN −

(
1 − 1 − a2

4

)
xM

∥∥∥∥

≥
(
1 +

(1 + a)2

4

)
x∗
N

(
xN

) −
(
1 − 1 − a2

4

)
x∗
N

(
xM

)

≥
(
1 +

(1 + a)2

4

)
(1 − ε),

(d + ε)‖x − z‖ =
∥∥∥∥
(
1 +

(1 + a)2

4

)
xM −

(
1 − 1 − a2

4

)
xN

∥∥∥∥

≥
(
1 +

(1 + a)2

4

)
x∗
M

(
xM

) −
(
1 − 1 − a2

4

)
x∗
M

(
xN

)

≥
(
1 +

(1 + a)2

4

)
(1 − ε).

(3.11)

This together with the definition of CNJ(a,X) gives that

CNJ(a,X) ≥
(
1 +

(1 + a)2

4

)(
1 − ε

d + ε

)2

. (3.12)

Since the sequence {xn} and ε are arbitrary, we get

[
WCS(X)

]2
CNJ(a,X) ≥ 1 +

(
1 + a

2

)2

. (3.13)

Adding up (3.8) and (3.13) yields the inequality (3.3) as desired.

Corollary 3.2. Let X be a Banach space with

CNJ(a,X) < 1 +
(1 + a)2

min
(
μ(X) + a, 2)

)2 (3.14)

for some a ∈ [0, 1]. Then X has normal structure.

Corollary 3.3. Let X be a Banach space with

CNJ(X) < 1 +
1

min
(
2, μ(X)

)2 . (3.15)

Then X has normal structure.

Remark 3.4. Corollary 3.3 includes [5, Theorem 1].
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