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1. Introduction

This paper is devoted to study the initial value problem for the nonlinear Schrödinger equation

iut + (−Δ)mu = λ|u|pu, x ∈ Rn, t ∈ R+,

u(x, 0) = f(x), x ∈ Rn,
(1.1)

where λ ∈ R, p > 0 are constants, m ≥ 1 is a positive integer, u(t, x) is a complex-valued
function defined in R+ × Rn, the initial value f(x) is a complex-valued function defined in Rn.

Whenm = 1, (1.1) is a classical nonlinear Schrödinger equation of the second order:

iut −Δu = λ|u|pu. (1.2)

For the Cauchy problem of (1.2), the existence and the scattering theorem of solutions
have been studied extensively by many authors with various methods and techniques [1–5],
Cazenave and Weissler [6] (also Ribaud and Youssfi [7]) established existence of global self-
similar solutions by introducing new function space. When m ≥ 1, Pecher and von Wahl [8]
established the existence of classical solution of the Cauchy problem (1.1) employing the re-
lated Lp estimate of the elliptic equation and the compact method. Sjölin and Sjögren in [9, 10]
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recently discussed the local smooth effect of solutions of the Cauchy problem (1.1) applying
the Strichartz estimate in the nonhomogeneous Sobolev space. In [11], by constructing a time-
weighted space and using the contractive mappingmethod, the author established global solu-
tions of the problem (1.1) in the possible range of p, and further got the continuous dependence
of the solution on the initial value together with its strong decay estimate. In addition, there are
also muchmore efforts working for studying the scattering theorem and the existence of global
strong solutions of the problem (1.1) [12, 13]. In this paper, we mainly investigate the existence
of global self-similar solutions basing on the existence and uniqueness of global solution for
the Cauchy problem (1.1).

In the following discussion, we suppose that p satisfies

p0 < p <
4m

n − 2m
, n > 2m, p0 < p < +∞, n ≤ 2m, (1.3)

where p0 is a positive solution of the equation nx2 + (n − 2m)x − 4m = 0, which also can be
interpreted as a positive integer satisfying (p + 2)/(p + 1) = np/2m. In fact, condition (1.3) is
equivalent to

p + 2
p + 1

<
np

2m
< p + 2. (1.4)

For p which satisfies (1.3) or (1.4), let

θ =
4m − (n − 2m)p
2mp(p + 2)

, (1.5)

then we may introduce our work spaceX as follows. Let X be a space consisting of all Bochner
measurable functions:

u(t) : (0,+∞) −→ Lp+2
(
Rn), (1.6)

such that

‖u‖X = sup
t>0

tθ‖u(t)‖p+2 < +∞. (1.7)

In order to prove our main result, we should transform the Cauchy problem (1.1) into
the following equivalent integral equation:

u(t) = S(t)f(x) − iλ
∫ t

0
S(t − s)

(∣∣u(s)
∣∣pu(s)

)
ds, (1.8)

where S(t) = ei(−Δ)mt = F−1(ei|ξ|
2mtF·) is a free group produced by the free Schrödinger equation

ivt + (−Δ)mv = 0. Besides, we denote, respectively, by F and F−1 the Fourier transformation
and the inverse Fourier transformation with respect to the space variables.

For convenience, we provide some useful symbols. Lr(Rn) denotes the usual Lebesgue
space on Rn with the norm ‖ · ‖r , 1 ≤ r ≤ +∞. For any q > 0, q′ stands for the dual to q, that is,
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(1/q)+(1/q′) = 1.Cwhichmay be different when appeared every time is a constant depending
on the dimension or any other constant.

In the end, we will review the definition of the homogeneous Besov space, the details on
the properties, and the embedding theorems reference [1, 14].

Let ϕ̂(ξ) ∈ S be a symmetric Bump function with real values satisfying the conditions
ϕ̂(ξ) = 1, |ξ| ≤ 1, ϕ̂(ξ) = 0, |ξ| > 2, then

ϕ̂j(ξ) = ϕ̂
(
2−jξ

)
, ψ̂j(ξ) = ψ̂

(
2−jξ

)
= ϕ̂

(
2−jξ

) − ϕ̂(2−j+1ξ), j ∈ Z (1.9)

are also symmetric Bump functions. Denote byΔj and Sj the convolution operator of ψ̂j(ξ) and
ϕ̂j(ξ), respectively, that is,

Δjf = F−1ψ̂jFf = ψj∗f, Sjf = F−1ϕ̂jFf = ϕj∗f ∀j ∈ Z. (1.10)

If s ∈ R, 1 ≤ p ≤ +∞, 1 ≤ q < +∞, then

Ḃ
s,q
p =

{

f ∈ S′ : ‖f‖Ḃs,qp =

[
∑

j∈Z
2sjq‖Δjf‖qp

]1/q

< +∞
}

(1.11)

is called a homogeneous Besov space and

Ḃs,∞p =
{
f ∈ S′ : ‖f‖Ḃs,∞p = sup

j∈Z
2js

∥∥Δjf
∥∥
p < +∞

}
. (1.12)

2. Lemmas and main results

The linear Schrödinger group S(t) = ei(−Δ)mt satisfies the following Lq
′ − Lq estimate [14, 15]:

∥∥S(t)f(x)
∥∥
q =

∥∥∥F−1
(
ei|ξ|

2mtFf
)∥∥∥

q
≤ C|t|−(n/m)(1/2−1/q)‖ϕ‖q′ , 2 ≤ q ≤ +∞ ∀t > 0. (2.1)

We first provide two lemmas that may be useful in in the following.

Lemma 2.1. Let f(x) = Ω(x/|x|)|x|−2m/p, θ = (4m − (n − 2m)p)/2mp(p + 2), then ‖u0‖X =
‖S(t)f‖X = ‖S(1)f‖p+2.

Proof. According to the property of the Fourier transformation and f(x) = λ2m/pf(λx), we get

S(t)f = λ2m/p
[
S
(
λ2mt

)]
f(λx) ∀λ > 0. (2.2)

Let λ = 1/ 2m
√
t, then

S(t)f = t−1/p
[
S(1)

]
f

(
x
2m
√
t

)
. (2.3)

Thus

tθ
∥∥S(t)f

∥∥
p+2 = t

θ−1/p
∥∥∥∥
[
S(1)f

]
(

x
2m
√
t

)∥∥∥∥
p+2

= tθ−1/p+n/2m(p+2)∥∥S(1)f
∥∥
p+2. (2.4)
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Since

θ − 1
p
+

n

2m(p + 2)
= 0, (2.5)

It is easy to see that from (2.4) and (2.5),

sup
t>0

tθ
∥
∥S(t)f

∥
∥
p+2 =

∥
∥S(1)f

∥
∥
p+2, (2.6)

namely,

∥
∥u0

∥
∥
X =

∥
∥S(t)f

∥
∥
X =

∥
∥S(1)f

∥
∥
p+2. (2.7)

Lemma 2.2. Let Ω ∈ Ck(Sn−1), k ≥ 0, f(x) = Ω(x/|x|)|x|−d, 0 < d < n, then
∣∣Δ0(f)(x)

∣∣ ≤ C‖Ω‖Ck

(
1 + |x|)−k−d. (2.8)

The detailed proof can be referred to [16].

In order to prove the main results, we need the following known theorems [11].

Theorem 2.3 (existence of global solutions). Suppose that p satisfies (1.3) or (1.4), θ = (4m − (n −
2m)p)/(2mp(p + 2)), u0(t, x) = [S(t)f](x) if there is ε > 0, such that

∥∥u0
∥∥
X =

∥∥S(t)f
∥∥
X ≤ ε, (2.9)

then the Cauchy problem (1.1) has a unique solution u(x, t) ∈ X which satisfies ‖u‖X ≤ 2ε.

Theorem 2.4 (the continuous dependence of the solution on the initial value). Suppose that
f(x) and g(x) both satisfy the condition (2.9), u, v are two solutions of the Cauchy problem (1.1)
corresponding to the initial value f(x) and g(x), then

‖u − v‖X ≤ C∥∥S(t)(f − g)∥∥X. (2.10)

In addition, if

sup
t>0

tθ(1 + t)δ
∥∥S(t)(f − g)∥∥p+2 < +∞, (2.11)

then

‖u − v‖p+2 ≤ Ct−θ(1 + t)−δ, (2.12)

where (p + 1)θ + δ < 1, δ > 0.

In this paper, our object is to study the global self-similar solutions of the Cauchy prob-
lem (1.1). At first, we introduce the definition of the self-similar solution.
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Definition 2.5. Suppose that u(t, x) is a solution of the Cauchy problem (1.1), if

u(t, x) = uλ(t, x) = λ2m/pu
(
λ2mt, λx

) ∀λ > 0, (2.13)

then u(t, x) is called the self-similar solution of the problem (1.1).
One easily knows from the above definition that uλ(t, x) = λ2m/pu(λ2mt, λx) ∀λ > 0 is a

solution of the problem (1.1)which satisfies the initial value λ2m/pf(λx), provide that u(t, x) is
just a solution of the Cauchy problem (1.1).

Now, we give our main result.

Theorem 2.6. Let p satisfy (1.3) or (1.4), θ = (4m − (n − 2m)p)/2mp(p + 2), Ω ∈ Cn(Sn−1), and

f(x) =
Ω
(
x/|x|)

|x|2m/p , (2.14)

u0(t, x) = S(t)f(x), then

∥∥u0
∥∥
X ≤ C‖Ω‖Cn. (2.15)

In particular, if existing ε′ = ε/C > 0 such that ‖Ω‖Cn ≤ ε′, then there exists a unique self-similar
solution of (1.1) with the initial value (2.14).

3. The proof of main result

To prove Theorem 2.6, we should provide the following two propositions.

Proposition 3.1. Let

f(x) = Ω
(
x

|x|
)
|x|−2m/p, θ =

4m − (n − 2m)p
2mp(p + 2)

, (3.1)

then

∥∥u0
∥∥
X =

∥∥S(t)f
∥∥
X ≤ C∥∥Δ0(f)

∥∥
(p+2)′ . (3.2)

Proof. By Lemma 2.1, we only illustrate that the following inequality is valid:

∥∥S(1)f
∥∥
p+2 ≤ C

∥∥Δ0(f)
∥∥
(p+2)′ . (3.3)

It follows that from the embedding Ḃ0,1
p+2 ↪→ Ḣ0

p+2 = L
p+2, it is necessary to prove

∥∥S(1)f
∥∥
Ḃ0,1
p+2

≤ C∥∥Δ0(f)
∥∥
(p+2)′ . (3.4)

Denote F = S(1)f , and then F can be decomposed as follows:

F = F1 + F2, F1 = S(1)(ϕ∗f), F2 = S(1)
(F−1(1 − ϕ̂)∗f), (3.5)

where ϕ is referred in the introduction.
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Making use of the estimate (2.1) and noting that ΔjF−1(1 − ϕ̂) = 0 for all j ≤ −1, then we
have

∥∥F2
∥∥
Ḃ0,1
p+2

=
∑

j∈Z

∥∥ΔjF2
∥∥
p+2 =

∑

j∈Z

∥∥S(1)Δj

(F−1((1 − ϕ̂)∗f))∥∥p+2

≤
∑

j∈Z

∥∥Δj

(F−1((1 − ϕ̂)∗f))∥∥(p+2)′

=
∑

j≥0

∥∥Δj

(F−1((1 − ϕ̂)∗f))∥∥(p+2)′

=
∑

j≥0

∥∥Δ̃jΔj

(F−1((1 − ϕ̂)∗f))∥∥(p+2)′ ,

(3.6)

where Δ̃j =
∑l=1

l=−1Δj+l.
For l = ±1, 0, we have

∥∥Δj+lF−1(1 − ϕ̂)∥∥1 =
∥∥F−1(ψ̂j+l

(
1 − ϕ̂))∥∥1 ≤

∥∥ψj+l
∥∥
1 +

∥∥ψj+l∗ϕ
∥∥
1. (3.7)

Since ψj+l(x) = 2(j+l)nψ0(2
j+lx), then ‖ψj+l‖1 = ‖ψ0‖1. Thus, it follows that from the Young in-

equality

∥∥Δj+lF−1(1 − ϕ̂)∥∥1 ≤ C
∥∥ψj+l

∥∥
1

(
1 + ‖ϕ‖1

) ≤ C. (3.8)

Besides, as f(λx) = λ−2m/pf(x), so that

Δjf(x) = ψj∗f(x) =
∫

Rn
ψj(x − y)f(y)dy

= 2jn
∫

Rn
ψ0

(
2jx − 2jy

)
f(y)dy

=
∫

Rn
ψ0

(
2jx − z)f(2−jz)dz

= 2j(2m/p)
(
ψ0∗f

)(
2jx

)
= 2j(2m/p)Δ0f

(
2jx

)
.

(3.9)

Therefore,

∥∥Δjf
∥∥
(p+2)′= 2j(2m/p)

∥∥Δ0f
(
2j · )∥∥(p+2)′= 2j(2m/p−n/(p+2)

′)∥∥Δ0f
∥∥
(p+2)′ . (3.10)

By (3.6) together with the Young inequality, we obtain

∥∥F2
∥∥
Ḃ0,1
p+2

≤
∑

j≥0

∥∥Δ̃j

(F−1(1 − ϕ̂))∥∥1‖Δjf‖(p+2)′ ≤ C‖Δ0f‖(p+2)′
∑

j≥0
2j(2m/p−n/(p+2)

′). (3.11)

We know that from the left side of the inequality (1.4),

2m
p

− n

(p + 2)′
< 0. (3.12)
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It yields from (3.11) that
∥∥F2

∥∥
Ḃ0,1
p+2

≤ C∥∥Δ0f
∥∥
(p+2)′ . (3.13)

On the other hand, Δjϕ = 0 for j ≥ 2, thus
∥∥F1

∥∥
Ḃ0,1
p+2

=
∑

j∈Z

∥∥ΔjF1
∥∥
p+2 =

∑

j≤1

∥∥S(1)Δj(ϕ∗f)
∥∥
p+2. (3.14)

It follows that by the Young inequality,
∥∥S(1)Δj(ϕ∗f)

∥∥
p+2 ≤

∥∥S(1)ϕ
∥∥
1

∥∥Δjf
∥∥
p+2. (3.15)

We get that from (3.15) and ‖Δjf‖p+2= 2j(2m/p−n/(p+2))‖Δ0f‖p+2,
∥∥S(1)Δj(ϕ∗f)

∥∥
p+2 ≤ C2j(2m/p−n/(p+2))

∥∥Δ0f
∥∥
p+2. (3.16)

Correspondingly,
∥∥F1

∥∥
Ḃ0,1
p+2

≤ C∥∥Δ0f
∥∥
p+2

∑

j≤1
2j(2m/p−n/(p+2)). (3.17)

The right side of (1.4) shows that 2m/p − n/(p + 2) > 0, consequently
∥∥F1

∥∥
Ḃ0,1
p+2

≤ C∥∥Δ0f
∥∥
p+2. (3.18)

From (p + 2)′ ≤ p + 2 and the Bernstein inequality, we get
∥∥F1

∥∥
Ḃ0,1
p+2

≤ C∥∥Δ0f
∥∥
p+2 ≤ C

∥∥Δ0f
∥∥
(p+2)′ , (3.19)

Combining (3.13) with (3.19), we have
∥∥F

∥∥
Ḃ0,1
p+2

≤ C∥∥Δ0f
∥∥
(p+2)′ . (3.20)

The proof of Proposition 3.1 is finished.

Proposition 3.2. Let Ω ∈ Cn(Sn−1), f(x) = Ω(x/|x|)|x|−2m/p, then
∥∥Δ0f

∥∥
(p+2)′ ≤ C‖Ω‖Cn. (3.21)

Proof. Since (p + 2)′ ≥ 1, then (n+ 2m/p)(p + 2)′ > n. Accordingly, we obtain by Lemma 2.2 that

∥∥Δ0f
∥∥(p+2)′

(p+2)′
=
∫

Rn
|Δ0f(x)|(p+2)

′
dx

≤ C
∫

Rn
‖Ω‖(p+2)

′

Cn

(
1 + |x|)−(n+2m/p)(p+2)

′
dx

≤ C‖Ω‖(p+2)
′

Cn

∫+∞

0
(1 + r)−(n+2m/p)(p+2)

′+n−1dr

≤ C‖Ω‖(p+2)
′

Cn ,

(3.22)
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which implies that

∥∥Δ0f
∥∥
(p+2)′ ≤ C‖Ω‖Cn. (3.23)

The proof is concluded.

Now, we are ready to prove Theorem 2.6.

Proof. For

f(x) = Ω
(
x

|x|
)
|x|−2m/p, (3.24)

we have from Proposition 3.1

∥∥S(t)f
∥∥
X ≤ C∥∥Δ0(f)

∥∥
(p+2)′ . (3.25)

However, noting that Ω ∈ Cn(Sn−1) as well as Proposition 3.2, we get

∥∥Δ0(f)
∥∥
(p+2)′ ≤ C‖Ω‖Cn. (3.26)

Then, it follows from (3.25) and (3.26) that

∥
∥u0

∥
∥
X =

∥
∥S(t)f

∥
∥
X ≤ C‖Ω‖Cn. (3.27)

Choosing ε′ = ε/C > 0, then we have ‖u0‖X ≤ ε for any ‖Ω‖Cn ≤ ε′. From Theorem 2.3, we
conclude that there is a unique global solution u(x, t) of the equation in (1.1) with the initial
value (2.14). Besides,

λ2m/pf(λx) = Ω
(
x

|x|
)
|x|−2m/p = f(x), (3.28)

which gives that by uniqueness

u(x, t) = λ2m/pu
(
λx, λ2mt

)
. (3.29)

Thus, u(x, t) is just a self-similar solution of the problem (1.1).
This completes the proof of Theorem 2.6.
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