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1. Introduction, definitions, and notations

The constants En in the Taylor series expansion

2
et + 1

=
∞∑

n=0

En
tn

n!
(1.1)

are known as the first kind Euler numbers (cf. [1]). From the generating function of the first
kind Euler numbers, we note that E0 = 1 and En = −∑n

k=0(
n
k )Ek for n ∈ N. The first few

are 1,−1/2, 0, 1/4,−1/2, . . . and E2k = 0 for k ∈ N. Those numbers play an important role in
number theory. For example, the Euler zeta-function essentially equals an Euler numbers at
nonpositive integer:

ζE(−m) = Em for m ≥ 0, (1.2)

where

ζE(s) =
∞∑

n=1

(−1)n
ns

, s ∈ C (1.3)

(see [1–10]).
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2 Abstract and Applied Analysis

Throughout this paper Z, Zp, Qp, and Cp will denote the ring of integers, the ring
of p-adic rational integers, the field of p-adic rational numbers, and the completion of the
algebraic closure of Qp, respectively. Let vp be the normalized exponential valuation of Cp

with |p|p = 1/p.When one talks of q-extension, q is variously considered as an indeterminate,
a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ Cp, then we normally assume
|1 − q|p < 1, so that qx = exp(x log q) for x ∈ Zp. If q ∈ C, then we assume that |q| < 1. Also we
use the following notations:

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

, (1.4)

cf. [2–4]. For

f ∈ UD
(
Zp,Cp

)
=
{
f | f : Zp → Cp is uniformly differentiable function

}
, (1.5)

the p-adic q-integral on Zp was defined by Kim (cf. [2–4]) as follows:

Iq(f) =
∫

Zp

f(a)dμq(a) = lim
N→∞

1
[dpN]q

dpN−1∑

a=0

f(a)qa for |1 − q|p < 1. (1.6)

Furthermore, we can consider the fermionic integral in contrast to the conventional bosonic
integral. That is, I−1(f) =

∫
Zp
f(a)dμ−1(a) (cf. [5]). From this, we derive

I−1(f1) + I−1(f) = 2f(0), (1.7)

where f1(a) = f(a + 1). Substitute f(a) = ξaqαaeat into (1.7). The twisted (α, q)-extension of
Euler numbers is defined by [8]

I−1(ξaqαaeat) =
2

ξqαet + 1
=

∞∑

n=0

E
(α)
n,ξ

(q)
tn

n!
. (1.8)

For |1 − q|p < 1, we consider fermionic p-adic q-integral on Zp which is the q-extension of
I−1(f) as follows:

I−q(f) =
∫

Zp

f(a)dμ−q(a) = lim
N→∞

1
[dpN]−q

dp N−1∑

a=0

f(a)(−q)a (1.9)

(cf. [5]). From (1.9), we can derive the following formula [5]:

qI−q(f1) + I−q(f) = [2]qf(0), (1.10)

where f1(a) is translation with f1(a) = f(a + 1). If we take f(a) = ξaeat, then we have f1(a) =
ξa+1e(a+1)t = ξaeatξet. From (1.10), we derive (ξqet + 1)I−q(ξaeat) = [2]q.Hence, we obtain

I−q
(
ξaeat

)
=
∫

Zp

ξaeatdμ−q(a) =
[2]q

ξqet + 1
. (1.11)
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By (1.11), we define the twisted q-Euler numbers, En,q,ξ by means of the following generating
function (cf. [5]):

[2]q
ξqet + 1

=
∞∑

n=0

En,q,ξ
tn

n!
. (1.12)

These numbers are interpolated by the twisted Euler q-zeta function which is defined as
follows:

ζq,ξ,E(s) = [2]q
∞∑

n=1

(−1)nξnqn
ns

, s ∈ C. (1.13)

Note that ζq,ξ,E(s) is analytic function in the whole complex plane C.
In view of the functional equation for the twisted Euler q-zeta function at nonpositive

integers, we have

ζq,ξ,E(−m) = Em,q,ξ form ≥ 0 (1.14)

(cf. [5]).
Twisted q-Bernoulli and Euler numbers and polynomials are very important not

only in practically every field of mathematics, in particular in combinatorial theory, finite
difference calculus, numerical analysis, numbers theory, but also probability theory. Recently
the q-extensions of those Euler numbers (polynomials) and the multiple of q-extensions of
those Euler numbers (polynomials) have been studied by many authors, (cf. [1–15]). In [8],
Ozden and Simsek have studied (h, q)-extensions of twisted Euler numbers and polynomials
by using p-adic q-integral on the ring of p-adic integers Zp. From their (h, q)-extensions
of twisted Euler numbers and polynomials, they have derived p-adic (h, q)-extensions of
Euler zeta function and p-adic (h, q)-extensions of Euler l-functions. They also gave some
interesting relations between their (h, q)-Euler numbers and (h, q)-Euler zeta functions,
and found the p-adic twisted interpolation function of the generalized twisted (h, q)-Euler
numbers. In [11], Jang defined twisted q-Euler numbers and polynomials of higher order, and
studied multiple twisted q-Euler zeta functions. He also derived sums of products of q-Euler
numbers and polynomials by using fermionic p-adic q-integral. In [7, 9], Ozden et al. defined
multivariate Barnes-type Hurwitz q-Euler zeta functions and l-functions. They also gave
relation betweenmultivariate Barnes-type Hurwitz q-Euler zeta functions andmultivariate q-
Euler l-functions. In [16], Kim constructed multiple p-adic L-functions, which interpolate the
Bernoulli numbers of higher order. He also derived that the values of the partial derivative
of this multiple p-adic L-function at s = 0 are given.

In this paper, we consider twisted q-Euler numbers and polynomials of higher
order, and study multiple twisted p-adic, q-Euler, ζ-functions, and l-functions, which are
generalization of the twisted p-adic (h, q)-zeta functions and twisted p-adic (h, q)-Euler l-
functions in [8].

2. Preliminaries

We assume that q ∈ C with |q| < 1. Let ξ be a primitive r th root of unity.
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For an integer h, the twisted q-Euler polynomials of higher order (the index h may be
negative), E(h)

n,q,ξ(x), are defined by means of the following generating function (cf. [11, 14]):

F
(h)
q,ξ

(t, x) =
[2]q

1 + ξqet
· · ·

[2]q
1 + ξqet

︸ ︷︷ ︸
h-times

ext

= [2]hqe
tx

∞∑

l1=0

(−ξ)l1ql1el1t · · ·
∞∑

lh=0

(−ξ)lhq lhe lht

= [2]hq
∞∑

l1,...,lh=0

(−ξq)l1+···+lhe(l1+···+lh+x)t

=
∞∑

n=0

E
(h)
n,q,ξ(x)

t n

n!
,

(2.1)

where |t + log(ξq)| < π. Note that [2]q = 1 + q, so [2]q/(1 + ξqet) ≡ (1 + q)/(1 + ξq) (mod t).
Of course the explicit formulas in (2.1) depend on h which is a positive integer. If h = 1, q =
qα in the above, we obtain the generating function of the twisted (α, q)-extension of Euler
polynomials in [8, cf. Section 1, (1.3)]. In fact, if h > 0 then −h < 0. Therefore, the generating
function F

(−h)
q,ξ

(t, x) is the form

F
(−h)
q,ξ (t, x) =

( [2]q
1 + ξqet

)−h
etx =

(
1 + ξqet

[2]q

)h

etx =
∞∑

n=0

E
(−h)
n,q,ξ(x)

tn

n!
. (2.2)

The twisted q-Euler numbers of higher order are E(h)
n,q,ξ

= E
(h)
n,q,ξ

(0). Then, it is immediate that

E
(h)
n,q,ξ(x) =

n∑

k=0

(
n
k

)
E
(h)
k,q,ξx

n−k. (2.3)

From now on, we assume h > 0 and in general whenever h is actually an index then
h > 0. Jang [11] defined the two-variable multiple twisted q-Euler zeta functions as follows.

Definition 2.1. For s ∈ C and x ∈ R
+ = {x ∈ R | x > 0}, one defines

ζ
(h)
q,ξ,E(s, x) = [2]hq

∞∑

l1,...,lh=0

(−ξ)l1+···+lhql1+···+lh
(
l1 + · · · + lh + x

)s . (2.4)

ζ
(h)
q,ξ,E

(s, x) is an analytical function in the whole complex plane.

The value of ζ(h)q,ξ,E(s, x) at nonpositive integers, Z+ = N ∪ {0}, is given explicitly as
follows.

Theorem 2.2 (see [11]). Let m ∈ Z+. Then, ζ
(h)
q,ξ,E

(−m,x) = E
(h)
m,q,ξ

(x).



Min-Soo Kim et al. 5

Let χ be a Dirichlet character with odd conductor d. We define a twisted Dirichlet’s
type q-Euler polynomials of higher order by means of the following generating function (cf.
[11, 14]):

F
(h)
q,ξ,χ

(t, x)

=
1

[d]h−q

d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahe(a1+···+ah)t 1 + qd

1 + ξdqdedt
· · · 1 + qd

1 + ξdqdedt
︸ ︷︷ ︸

h-times

ext

= [2]hq
d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahe(a1+···+ah)t

∞∑

x1=0

( − ξdqdedt
)x1 · · ·

∞∑

xh=0

( − ξdqdedt
)xh

︸ ︷︷ ︸
h-times

ext

= [2]hq
∞∑

x1,...,xh=0

d−1∑

a1,...,ah=0

χ
(
a1 + dx1 + · · · + ah + dxh

)
(−ξq)a1+dx1+···+ah+dxhe(a1+dx1+···+ah+dxh)text

= [2]hq
∞∑

l1,...,lh=0

χ
(
l1 + · · · + lh

)
(−ξq)l1+···+lhe(x+l1+···+lh)t

=
∞∑

n=0

E
(h)
n,q,ξ,χ

(x)
tn

n!
.

(2.5)

We now see that the twisted Dirichlet’s type q-Euler polynomials of higher order are
easily expressed by the twisted q-Euler polynomials of higher order as follows.

Proposition 2.3. Let F be an odd multiple of the conductor d. Then,

E
(h)
n,q,ξ,χ(x) = Fn 1

[F]h−q

F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahE(h)

n,qF ,ξF

(
a1 + · · · + ah + x

F

)
. (2.6)

Proof. Let d(= odd) ∈ N. By (2.1) and (2.5), we note that

F
(h)
q,ξ,χ(t, x) =

1

[d]h−q

d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahF(h)

qd,ξd

(
dt,

a1 + · · · + ah + x

d

)
. (2.7)

Then, we have

E
(h)
n,q,ξ,χ(x) = dn 1

[d]h−q

d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahE(h)

n,qd,ξd

(
a1 + · · · + ah + x

d

)
. (2.8)
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On the other hand, if F = dp, then we get

1

[F]h−q

F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahF(h)

qF ,ξF

(
Ft,

a1 + · · · + ah + x

F

)

=
F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ah

( [2]q
ξFqFeFt + 1

)h

e(a1+···+ah+x)t

=
d−1∑

b1,...,bh=0

p−1∑

c1,...,ch=0

χ
(
b1 + c1d + · · · + bh + chd

)
(−ξq)b1+c1d+···+bh+chd

×
( [2]q
ξFqFeFt + 1

)h

e(b1+c1d+···+bh+chd+x)t

=
1

[d]h−q

d−1∑

b1,...,bh=0

χ
(
b1 + · · · + bh

)
(−ξq)b1+···+bhF(h)

qd,ξd

(
dt,

b1 + · · · + bh + x

d

)
.

(2.9)

This completes the proof.

The two-variable multiple twisted q-Euler l-functions are defined by the following
definition.

Definition 2.4 (see [14]). Let χ be a Dirichlet character. For s ∈ C and x ∈ R
+, one has

l
(h)
q,ξ,E(s, x, χ) = [2]hq

∞∑

l1,...,lh=0

χ
(
l1 + · · · + lh

)∏h
i=1(−1)li ξliqli(

l1 + · · · + lh + x
)s . (2.10)

The value of l(h)q,ξ,E(s, x, χ) at nonpositive integers is given explicitly by the following
theorem.

Theorem 2.5 (see [14]). Let m ∈ Z+. Then l
(h)
q,ξ,E

(−m,x, χ) = E
(h)
m,q,ξ,χ

(x).

Proof (cf. [17, 18]). Let χ be a Dirichlet character with odd conductor d and let F be an odd
number of multiple d. Set s ∈ C and x ∈ R

+. Beside the multiple twisted q-Euler l-
function l

(h)
q,ξ,E(s, x, χ), we consider the multiple twisted q-Euler zeta function ζ

(h)
q,ξ,E(s, x) in

Definition 2.1. Then

l
(h)
q,ξ,E

(s, x, χ) = F−s 1

[F]h−q

F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahζ(h)

qF ,ξF ,E

(
s,

a1 + · · · + ah + x

F

)

(2.11)

(cf. [14]).
In the integral for Γ(s), we make the change of variable y = (x + l1 + · · · + lh)t, where

l1, . . . , lh ≥ 0, to obtain

Γ(s) =
∫∞

0
e−yysdy

y

=
(
x + l1 + · · · + lh

)s
∫∞

0
e−(x+l1+···+lh)tts

dt
t
,

(2.12)
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or

(
x + l1 + · · · + lh

)−sΓ(s) =
∫∞

0
e−(x+l1+···+lh)tts

dt
t
. (2.13)

Summing over all l1, . . . , lh ≥ 0, we find

[2]hq
∞∑

l1,...,lh=0

(−ξq)l1+···+lh(x + l1 + · · · + lh
)−sΓ(s) = [2]hq

∞∑

l1,...,lh=0

(−ξq)l1+···+lh
∫∞

0
e−(x+l1+···+lh)tts

dt
t
.

(2.14)

This gives us

ζ
(h)
q,ξ,E(s, x)Γ(s) = [2]hq

∞∑

l1,...,lh=0

(−ξq)l1+···+lh
∫∞

0
e−(x+l1+···+lh)tts

dt
t

=
∫∞

0
ts

[2]q
1 + ξqe−t

· · ·
[2]q

1 + ξqe−t
︸ ︷︷ ︸

h-times

e−xt
dt
t

=
∫∞

0
tsF

(h)
q,ξ

(−t, x)dt
t
.

(2.15)

If we divide the infinite integral into two parts:
∫∞

0
tsF

(h)
q,ξ

(−t, x)dt
t

=
∫1

0
tsF

(h)
q,ξ

(−t, x)dt
t
+
∫∞

1
tsF

(h)
q,ξ

(−t, x)dt
t
, (2.16)

it is easily seen that the second term is an entire function on t.

Consider
∫1
0 t

sF
(h)
q,ξ (−t, x)(dt/t). By the definition of E(h)

n,q,ξ(x),we have

F
(h)
q,ξ

(−t, x) =
∞∑

n=0

E
(h)
n,q,ξ

(x)(−1)n t
n

n!
=
( [2]q
1 + ξqe−t

)h

e−xt. (2.17)

Therefore,

∫1

0
tsF

(h)
q,ξ (−t, x)

dt
t

=
∞∑

n=0

E
(h)
n,q,ξ(x)

n!
(−1)n

∫1

0
ts+n−1dt

=
∞∑

n=0

E
(h)
n,q,ξ

(x)

n!
(−1)n
s + n

.

(2.18)

This has an analytic continuation to a meromorphic function s in the entire complex plane.
It is holomorphic except at s = 0,−1,−2, . . . , where it has a pole of order 1. Note that Γ(s)
is holomorphic except at s = 0,−1,−2, . . . , where it has a pole of order 1. Γ(s) does not have
a zero. Therefore, ζ(h)

q,ξ,E
(s, x) has an analytic continuation to the whole complex plane. For an

integer m ∈ Z+, we have

lim
s→−m

(s +m)
(
ζ
(h)
q,ξ,E

(s, x)Γ(s)
)
=

E
(h)
m,q,ξ

(x)

m!
(−1)m. (2.19)
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Ifm ∈ Z+,we have lims→−m(s +m)Γ(s) = (−1)m(1/m!), and thus we obtain

ζ
(h)
q,ξ,E(−m,x) = E

(h)
m,q,ξ(x). (2.20)

Consequently, by using Propositions 2.3 and (2.6) and the above equation, we have

l
(h)
q,ξ,E

(−m,x, χ)

= Fm 1

[F]h−q

F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
(−ξq)a1+···+ahE(h)

m,qF ,ξF

(
a1 + · · · + ah + x

F

)
= E

(h)
m,q,ξ,χ(x).

(2.21)

Therefore, we obtain another proof of Theorem 2.5.

Remark 2.6 (see [11, 14]). We put

D =
(

d
dt

)
. (2.22)

Let m ∈ Z+, and let x ∈ R
+. From (2.1) and (2.4), we obtain the following:

E
(h)
m,q,ξ

(x) = DmF
(h)
q,ξ

(t, x)|t=0

= [2]hq
∞∑

l1,...,lk=0

(−ξq)l1+···+lh(x + l1 + · · · + lh
)m

= ζ
(h)
q,ξ,E

(−m,x).

(2.23)

Similarly, by (2.5) and (2.11), we have

E
(h)
m,q,ξ,χ(x) = DmF

(h)
q,ξ,χ(t, x)|t=0

= [2]hq
∞∑

l1,...,lh=0

χ
(
l1 + · · · + lh

) h∏

i=1

(−1)li ξliqli(x + l1 + · · · + lh
)m

= l
(h)
q,ξ,E

(−m,x, χ).

(2.24)

3. Partial multiple twisted q-Euler ζ-functions

Let s ∈ C and ai, F ∈ Z with F as an odd integer and 0 < ai < F, where i = 1, . . . , h. Then,
partial multiple twisted q-Euler ζ-functions are as follows (cf. [14, 16, 18–20]):

H
(h)
q,ξ,E

(
s, a1, . . . , ah, x | F) = [2]hq

∞∑

l1,...,lh=0

li≡ai (modF),i=1,...,h

(−ξq)l1+···+lh
(
l1 + · · · + lh + x

)s . (3.1)
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We give a relationship between H
(h)
q,ξ,E(s, a1, . . . , ah, x | F) and ζ

(h)
qF ,ξF ,E

(s, x) as follows. For i =
1, . . . , h, substituting li = ai + niF with F as an odd into (3.1), we have

H
(h)
q,ξ,E

(
s, a1, . . . , ah, x | F)

= [2]hq
∞∑

n1,...,nh=0

(−ξq)a1+n1F+···+ah+nhF

(
a1 + n1F + · · · + ah + nhF + x

)s

=
1

[F]h−q

(−ξq)a1+···+ah
Fs

[2]hqF
∞∑

n1,...,nh=0

(−ξFqF)n1+···+nh

(
n1 + · · · + nh +

(
a1 + · · · + ah + x

)
/F

)s

=
1

[F]h−q

(−ξq)a1+···+ah
Fs

ζ
(h)
qF ,ξF ,E

(
s,

a1 + · · · + ah + x

F

)
.

(3.2)

By using (2.3) and Theorem 2.2 and substituting s = −m, m ∈ Z+ in the above, we
arrive at the following theorem.

Theorem 3.1. Let F be an odd integer, s ∈ C and let x ∈ R
+. Then

H
(h)
q,ξ,E

(
s, a1, . . . , ah, x | F) =

1

[F]h−q

(−ξq)a1+···+ah
Fs

ζ
(h)
qF ,ξF ,E

(
s,

a1 + · · · + ah + x

F

)
. (3.3)

In particular, ifm ∈ Z+, then

H
(h)
q,ξ,E

( −m,a1, . . . , ah, x | F)

=
1

[F]h−q
(−ξq)a1+···+ah(a1 + · · · + ah + x

)m m∑

k=0

(
m
k

)(
F

a1 + · · · + ah + x

)k

E
(h)
k,qF ,ξF

.
(3.4)

By using Theorem 3.1 and (2.11), we arrive at the following theorem.

Theorem 3.2. Let χ be a Dirichlet character with conductor d and F as an odd multiple of d. Then,

l
(h)
q,ξ,E

(s, x, χ) =
F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
H

(h)
q,ξ,E

(
s, x, a1, . . . , ah, x | F), (3.5)

where s ∈ C and x ∈ R
+.

4. Multiple twisted p-adic q-Euler l-functions

Let p be an odd prime. Zp,Qp and Cp will always denote, respectively, the ring of p-adic
integers, the field of p-adic numbers, and the completion of the algebraic closure ofQp. Let vp :
Cp → Q∪{∞} (Q the field of rational numbers) denote the p-adic valuation of Cp normalized
so that vp(p) = 1. The absolute value on Cp will be denoted as |·|p, and |x|p = p−vp(x) for x ∈ Cp.

We let Z
×
p = {x ∈ Zp | 1/x ∈ Zp}. A p-adic integer in Z

×
p is sometimes called a p-adic unit. For

each integer N ≥ 0, CpN will denote the multiplicative group of the primitive pN-th roots of
unity in C

×
p = Cp \ {0}. Set

Tp =
{
ξ ∈ Cp | ξpN = 1, for someN ≥ 0

}
=

⋃

N≥0
CpN . (4.1)
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The dual of Zp, in the sense of p-adic Pontrjagin duality, is Tp = Cp∞ , the direct limit (under
inclusion) of cyclic groups CpN of order pN (N ≥ 0), with the discrete topology.

When one talks of q-extension, q is variously considered as an indeterminate, a
complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ Cp, then we normally assume
|1 − q|p < 1.

Wewill consider the p-adic analogue of the l(h)q,ξ,E-functions which are introduced in the

previous section. In order to consider p-adic and complex l
(h)
q,ξ,E-functions simultaneously, we

will use an isomorphism, σ, between the algebraic closure of the rational numbers in Cp and
the algebraic closure of the rational numbers within the complex numbers C. Our purpose is
to discuss the values of l(h)

q,ξ,E
-functions, so we will consider σ as fixed throughout this section

and use σ to identify p-adic algebraic numbers with complex algebraic numbers. We will
write x = y, when x ∈ Cp, y ∈ C and y = σ(x).

Let ω be denoted as the Teichmüller character having conductor p. For an arbitrary
character χ, let χn = χω−n, where n ∈ Z, in sense of the product of characters. We put

〈a〉 = ω−1(a)a =
a

ω(a)
, (4.2)

whenever (a, p) = 1. We then have 〈a〉 ≡ 1 (mod pZp) for these values of a. Note that we
extend this notation by defining

〈a + pt〉 = ω−1(a)(a + pt) (4.3)

for all a ∈ Z with (a, p) = 1, and t ∈ Cp such that |t|p ≤ 1. Thus, 〈a + pt〉 = 〈a〉 + pω−1(a)t, so
that 〈a + pt〉 ≡ 1 (mod pZp[t]) (cf. [21, 22]).

The significance of Theorem 3.1 lies in the fact that the right-hand side is essentially a
liner combination of terms of the form

m∑

k=0

(
m
k

)(
F

a1 + · · · + ah + pt

)k

E
(h)
k,qF ,ξF

, (4.4)

which makes sense when m is replaced by a p-adic variable and p|F. Set

D =
{
s ∈ Cp | |s|p ≤ p(p−2)/(p−1)

}
, (4.5)

(cf. [8, 16, 18–22]). Let F be an odd integer, and let (a1 + · · · + ah, p) = 1, ai ∈ Z with 0 < ai < F
for i = 1, . . . , h. Suppose that s ∈ D and t ∈ Cp with |t|p ≤ 1. We apply [18, Proposition 5.8,
page 53] to the series

∞∑

k=0

(
s
k

)(
F

a1 + · · · + ah + pt

)k

E
(h)
k,qF ,ξF

. (4.6)

Let q ∈ 1 +Mp where Mp = {z ∈ Cp | |z| < 1}. In [13], we see that

∣∣E(h)
k,qF ,ξF

∣∣
p
≤ 1, (4.7)
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since ξ ∈ Tp. Observe that we have for odd p|F,

∣∣∣∣
(

F

a1 + · · · + ah + pt

)k

E
(h)
k,qF ,ξF

∣∣∣∣
p

≤ p−k =
(
1
p

)k

, (4.8)

so that we can take r = 1/p andM = 1 in [18, Proposition 5.8]. This prove that (4.6) is analytic
in D. Note that 〈a1 + · · · + ah + pt〉−s is analytic in D for (a1 + · · · + ah, p) = 1 and t ∈ Cp such
that |t|p ≤ 1.

Definition 4.1. Let F be an odd integer, and let (a1 + · · · + ah, p) = 1, ai ∈ Z with 0 < ai < F
for i = 1, . . . , h. Suppose that s ∈ D and t ∈ Cp with |t|p ≤ 1. One defines the partial multiple
twisted p-adic q-Euler ζ-functions for p | F:

H
(h)
p,q,ξ,E

(
s, a1, . . . , ah, pt | F

)

=
(−ξq)a1+···+ah

[F]h−q

〈
a1 + · · · + ah + pt

〉−s ∞∑

k=0

(−s
k

)(
F

a1 + · · · + ah + pt

)k

E
(h)
k,qF ,ξF

.
(4.9)

Theorem 4.2. Let F be an odd integer with p | F, and let (a1+· · ·+ah, p) = 1, ai ∈ Z with 0 < ai < F

for i = 1, . . . , h. Suppose that s ∈ D and t ∈ Cp with |t|p ≤ 1. Then H
(h)
p,q,ξ,E(s, a1, . . . , ah, pt | F) is a

p-adic analytic function on D such that

H
(h)
p,q,ξ,E

( −m,a1, . . . , ah, pt | F
)
= ω−m(a1 + · · · + ah

)
H

(h)
q,ξ,E

( −m,a1, . . . , ah, pt | F
)

(4.10)

form ∈ Z+. In particular, ifm ≡ 0 (mod p − 1), then

H
(h)
p,q,ξ,E

( −m,a1, . . . , ah, pt | F
)
= H

(h)
q,ξ,E

( −m,a1, . . . , ah, pt | F
)
. (4.11)

Proof. Wehave already remarked that 〈a1 + · · · + ah + pt〉−s is analytic inD for (a1+· · ·+ah, p) =
1 and t ∈ Cp such that |t|p ≤ 1. Also we see that (4.6) is analytic in D. It is clear that H(h)

p,q,ξ,E
is

a p-adic analytic function on D. For s = −m, m ∈ Z+ one has

H
(h)
p,q,ξ,E

( −m,a1, . . . , ah, pt | F
)

=
(−ξq)a1+···+ah

[F]h−q

(
a1 + · · · + ah + pt

ω(a1 + · · · + ah)

)m m∑

k=0

(
m
k

)(
F

a1 + · · · + ah + pt

)k

E
(h)
k,qF ,ξF

(whereweuse Theorem3.1)

= ω−m(a1 + · · · + ah

)
H

(h)
q,ξ,E

( −m,a1, . . . , ah, pt | F
)
.

(4.12)

This completes the proof.
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Definition 4.3. Let χ be a Dirichlet character with odd conductor d, and let F be a positive
multiple of p and d.We can define the multiple twisted p-adic q-Euler l-function:

l
(h)
p,q,ξ,E

(s, t, χ) =
F−1∑

a1,...,ah=0
(a1+···+ah,p)=1

χ
(
a1 + · · · + ah

)
H

(h)
p,q,ξ,E

(
s, a1, . . . , ah, pt | F

)
. (4.13)

Theorem 4.4. Let χ be a Dirichlet’s character with an odd conductor d, and let F be a positive multiple

of p and d. Then l
(h)
q,ξ,E

(s, t, χ) is a p-adic analytic function on D with

l
(h)
p,q,ξ,E

(−m, t, χ) = E
(h)
m,q,ξ,χm

(pt) − Fm

[F]h−q
χm(p)

∑

β∈I0
χm(β)

( − ξpqp
)β
E
(h)
m,qF ,ξF

(
β + t

F/p

)
, (4.14)

wherem ∈ Z+ and

I0 =

{
1
p
x

∣∣∣∣∣
x = a1 + · · · + ah ≡ 0 (mod p)

for some a1, . . . , ah with 0 ≤ a1, . . . , ah ≤ F − 1

}
, (4.15)

and in
∑

β∈I0 one sums over β = (1/p)x as many times as x is expressed in the form x = a1 + · · · + ah

by various aj ’s, and χm = χω−m with ω the Teichmüller in the sense of the product of characters.

Remark 4.5. Theorem 4.4 can be extended to obtain similar results for the multiple p-adic L-
function in [16]. In the case h = 1, we note that

∑

β∈I0
=

F/p−1∑

a=0

. (4.16)

Observe that if h = 1, then

lim
h→1

l
(h)
p,q,ξ,E(−m, t, χ)

= Em,q,ξ,χm(pt) −
Fm

[F]−q
χm(p)

F/p−1∑

a=0

χm(a)
( − ξpqp

)a
Em,qF ,ξF

(
a + t

F/p

)

= Em,q,ξ,χm(pt) − pmχm(p)
[F/p]−qp

[F]−q

(
F

p

)m 1
[F/p]−qp

F/p−1∑

a=0

χm(a)
( − ξpqp

)a
Em,(qp)F/p,(ξp)F/p

(
a+t
F/p

)

(where we use Proposition 2.3)

= Em,q,ξ,χm(pt) − pm
1

[p]−q
χm(p)Em,qp,ξp,χm(t).

(4.17)

This function interpolates the twisted generalized q-Euler polynomials at negative integers.
For l(1)

p,q,ξ,E
(−m, t, χ), the twisted p-adic q-Euler l-functions similar results were obtained (cf.

see for detail [8, Theorem 9]). If q → 1 in the above, then

lim
q→1

l
(1)
p,q,ξ,E

(s, t, χ) = lp,ξ,E(s, t, χ) = 2
∞∑

l=0
(l,p)=1

χ(l)(−1)lξl
(t + l)s

, |t|p ≤ 1, (4.18)

which is called the twisted p-adic lE-function of two variables.
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Proof. The formula for l(h)q,ξ,E(s, x, χ) is p-adic analytic function inD by the Theorem 4.2. On the
other hand, by substituting s = −m,m ∈ Z+, into Definition 4.3, we have

l
(h)
p,q,ξ,E

(−m, t, χ) =
F−1∑

a1,...,ah=0
(a1+···+ah,p)=1

χ
(
a1 + · · · + ah

)
H

(h)
p,q,ξ,E

( −m,a1, . . . , ah, pt | F
)

=
F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
H

(h)
p,q,ξ,E

( −m,a1, . . . , ah, pt | F
)

−
F−1∑

a1,...,ah=0
(a1+···+ah,p)/= 1

χ
(
a1 + · · · + ah

)
H

(h)
p,q,ξ,E

( −m,a1, . . . , ah, pt | F
)
.

(4.19)

From Theorems 2.2, 3.1, and 4.2, we obtain

F−1∑

a1,...,ah=0
(a1+···+ah,p)/= 1

χ
(
a1 + · · · + ah

)
H

(h)
p,q,ξ,E

( −m,a1, . . . , ah, pt | F
)

=
F−1∑

a1,...,ah=0
(a1+···+ah,p)/= 1

χm

(
a1 + · · · + ah

)
(−ξq)a1+···+ah Fm

[F]h−q
E
(h)
m,qF ,ξF

(
a1 + · · · + ah + pt

F

)

=
Fm

[F]h−q
χm(p)

∑

β∈I0
χm(β)

( − ξpqp
)β
E
(h)
m,qF ,ξF

(
β + t

F/p

)
.

(4.20)

Therefore,

l
(h)
p,q,ξ,E

(−m, t, χ) = E
(h)
m,q,ξ,χm

(pt) − Fm

[F]h−q
χm(p)

∑

β∈I0
χm(β)

( − ξpqp
)β
E
(h)
m,qF ,ξF

(
β + t

F/p

)
. (4.21)

This completes the proof.
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