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1. Introduction and preliminaries

A classical question in the theory of functional equations is the following: “when is it true
that a function, which approximately satisfies a functional equation E, must be close to
an exact solution of E?” If the problem accepts a solution, we say that the equation E is
stable. Such a problem was formulated by Ulam [1] in 1940 and solved in the next year
for the Cauchy functional equation by Hyers [2]. It gave rise to the stability theory for
functional equations. The result of Hyers was extended by Aoki [3] in 1950 by considering
the unbounded Cauchy differences. In 1978, Rassias [4] proved that the additive mapping
T , obtained by Hyers or Aoki, is linear if, in addition, for each x ∈ E, the mapping f(tx) is
continuous in t ∈ R. Găvruţa [5] generalized the Rassias’ result. Following the techniques
of the proof of the corollary of Hyers [2], we observed that Hyers introduced (in 1941)
the following Hyers continuity condition about the continuity of the mapping for each
fixed point and then he proved homogeneity of degree one and, therefore, the famous
linearity. This condition has been assumed further till now, through the complete Hyers
direct method, in order to prove linearity for generalizedHyers-Ulam stability problem forms
(see [6]). Beginning around 1980, the stability problems of several functional equations and
approximate homomorphisms have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [7–21]).
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Rassias [22], following the spirit of the innovative approach of Hyers [2], Aoki [3],
and Rassias [4] for the unbounded Cauchy difference, proved a similar stability theorem in
which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p·‖y‖q for p, q ∈ R with p + q /= 1 (see also
[23, 24] for a number of other new results).

In 2003, Cădariu and Radu applied the fixed-point method to the investigation of the
Jensen functional equation [25] (see also [8, 26–30]). They could present a short and a simple
proof (different of the “direct method,” initiated by Hyers in 1941) for the generalized Hyers-
Ulam stability of Jensen functional equation [25], for Cauchy functional equation [8], and for
quadratic functional equation [26].

The following functional equation:

Q(x + y) +Q(x − y) = 2Q(x) + 2Q(y) (1.1)

is called a quadratic functional equation, and every solution of (1.1) is said to be a quadratic
mapping. Skof [31] proved the Hyers-Ulam stability of the quadratic functional equation (1.1)
for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. In [32],
Czerwik proved the Hyers-Ulam stability of the quadratic functional equation (1.1). Borelli
and Forti [33] generalized the stability result of the quadratic functional equation (1.1). Jun
and Lee [34] proved the Hyers-Ulam stability of the Pexiderized quadratic equation

f(x + y) + g(x − y) = 2h(x) + 2k(y) (1.2)

for mappings f, g, h, and k. The stability problem of the quadratic equation has been
extensively investigated by some mathematicians [35].

In an inner product space, the equality

‖z − x‖2 + ‖z − y‖2 = 1
2
‖x − y‖2 + 2

∥
∥
∥
∥z − x + y

2

∥
∥
∥
∥

2

(1.3)

holds, then it is called the Apollonius’ identity. The following functional equation, which was
motivated by this equation,

Q(z − x) +Q(z − y) =
1
2
Q(x − y) + 2Q

(

z − x + y

2

)

, (1.4)

holds, then it is called quadratic (see [36]). For this reason, the functional equation (1.4) is
called a quadratic functional equation of Apollonius type, and each solution of the functional
equation (1.4) is said to be a quadratic mapping of Apollonius type. The quadratic functional
equation and several other functional equations are useful to characterize inner product
spaces [37].

In [36], Park and Rassias introduced and investigated a functional equation, which
is called a generalized Apollonius type quadratic functional equation. In [38], Najati introduced
and investigated a functional equation, which is called a quadratic functional equation of n-
Apollonius type. Recently in [39], Park and Rassias introduced and investigated the following
functional equation:

f(z − x) + f(z − y) = −1
2
f(x + y) + 2f

(

z − x + y

4

)

(1.5)
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which is called an Apollonius type additive functional equation, and whose solution is called
an Apollonius type additive mapping. In [40], Park introduced and investigated a functional
equation, which is called a generalized Apollonius-Jensen type additive functional equation and
whose solution is said to be a generalized Apollonius-Jensen type additive mapping.

In this paper, employing the above equality (1.5), for a fixed positive integer n ≥ 2,
we introduce a new functional equation, which is called an additive functional equation of n-
Apollonius type and whose solution is said to be an additive mapping of n-Apollonius type;

n∑

i=1

f(z − xi) = − 1
n

∑

1≤i<j≤n
f(xi + xj) + nf

(

z − 1
n2

n∑

i=1

xi

)

. (1.6)

Wewill adopt the idea of Cădariu and Radu [8, 25, 28] to prove the generalized Hyers-
Ulam stability results of C∗-algebra homomorphisms as well as to prove the generalized
Ulam-Hyers stability of generalized derivations on C∗-algebra for additive functional
equation of n-Apollonius type.

We recall two fundamental results in fixed-point theory.

Theorem 1.1 (see [25]). Let (X, d) be a complete metric space and let J : X → X be strictly
contractive, that is,

d(Jx, Jy) ≤ Lf(x, y), ∀x, y ∈ X (1.7)

for some Lipschitz constant L < 1. Then, the following hold:

(1) the mapping J has a unique fixed point x∗ = Jx∗;

(2) the fixed point x∗ is globally attractive, that is,

lim
n→∞

Jnx = x∗ (1.8)

for any starting point x ∈ X;

(3) one has the following estimation inequalities:

d(Jnx, x∗) ≤ Lnd(x, x∗),

d(Jnx, x∗) ≤ 1
1 − L

d(Jnx, Jn+1x),

d(x, x∗) ≤ 1
1 − L

d(x, Jx)

(1.9)

for all nonnegative integers n and all x ∈ X.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies the following:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Theorem 1.2 (see [41]). Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞ (1.10)

for all nonnegative integers n or there exists a positive integer n0 such that the following hold:

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

Throughout this paper, assume that A is a C∗-algebra with norm ‖·‖A and that B is a
C∗-algebra with norm ‖·‖B.

2. Stability of C∗-algebra homomorphisms

Lemma 2.1. Let X and Y be real-vector spaces. A mapping f : X → Y satisfies (1.6) for all
x1, . . . , xn, z if and only if the mapping f is additive.

Proof. Letting x1 = · · · = xn = z = 0 in (1.6), we get that f(0) = 0. Let j and k be fixed integers
with 1 ≤ j < k ≤ n. Setting xi = 0 for all 1 ≤ i ≤ n, i /= j, k in (1.6), we have

f(z − xj) + f(z − xk) + (n − 2)f(z)=− 1
n
f(xj+xk)−n − 2

n
(f(xj)+f(xk))+nf

(

z − 1
n2

(xj + xk)
)

(2.1)

for all xj , xk, z ∈ X. Replacing xj by −xj and xk by xj in (2.1), respectively, we get

f(z + xj) + f(z − xj) = −n − 2
n

(f(−xj) + f(xj)) + 2f(z) (2.2)

for all xj , z ∈ X. Putting z = 0 in (2.2), we conclude that f(−xj) = −f(xj) for all xj ∈ X. This
means that f is an odd function. Letting xk = z = 0 in (2.1) and using the oddness of f , we
obtain that

f

(
1
n2

xj

)

=
1
n2

f(xj), f(n2xj) = n2f(xj) (2.3)

for all xj ∈ X. Letting z = 0 in (2.1), using the oddness of f and (2.3), we have

f(xj + xk) = f(xj) + f(xk) (2.4)

for all xj , xk ∈ X. Therefore, f : X → Y is an additive mapping.
The converse is obviously true.

For a given mapping f : A → B and for a fixed positive integer n ≥ 2, we define

Cμf(z, x1, . . . , xn) :=
n∑

i=1

μf(z − xi) +
1
n

∑

1≤i<j≤n
f(μxi + μxj) − nf

(

μz − 1
n2

n∑

i=1

μxi

)

(2.5)

for all μ ∈ T
1 := {ν ∈ C : |ν| = 1} and all z, x1, . . . , xn ∈ A.

We prove the generalized Hyers-Ulam stability of C∗-algebra homomorphisms for the
functional equation Cμf(z, x1, . . . , xn) = 0.
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Theorem 2.2. Let f : A → B be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : An+1 → [0,∞) such that

∞∑

j=0

(
n2

n2 − 1

)2j

ϕ

((
n2 − 1
n2

)j

z,

(
n2 − 1
n2

)j

x1, . . . ,

(
n2 − 1
n2

)j

xn

)

< ∞, (2.6)

‖Cμf(z, x1, . . . , xn)‖B ≤ ϕ(z, x1, . . . , xn), (2.7)

‖f(xy) − f(x)f(y)‖B ≤ ϕ(x, y, 0, . . . , 0
︸ ︷︷ ︸
n−1 times

), (2.8)

‖f(x∗) − f(x)∗‖B ≤ ϕ(x, . . . , x
︸ ︷︷ ︸
n+1 times

) (2.9)

for all μ ∈ T
1 and all x, y, z, x1, . . . , xn ∈ A. If for some 1 ≤ j ≤ n there exists a Lipschitz constant

L < 1 such that

ϕ(x, 0, . . . , 0, x︸︷︷︸
jth

, 0, . . . , 0) ≤ n2 − 1
n2

Lϕ

(
n2

n2 − 1
x, 0, . . . , 0,

n2

n2 − 1
x

︸ ︷︷ ︸
jth

, 0, . . . , 0
)

(2.10)

for all x ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

‖f(x) −H(x)‖B ≤ n

(n2 − 1) × (1 − L)
ϕ(x, 0, . . . , 0, x︸︷︷︸

jth

, 0, . . . , 0) (2.11)

for all x ∈ A.

Proof. Consider the set

X := {g : A −→ B, g(0) = 0} (2.12)

and introduce the generalized metric on X:

d(g, h) = inf
{

C ∈ R+ : ‖g(x) − h(x)‖B ≤ Cϕ(x, 0, . . . , 0, x︸︷︷︸
jth

, 0, . . . , 0) ∀x ∈ A

}

. (2.13)

It is easy to show that (X, d) is complete.
For convenience, set

ϕj(x, y) := ϕ(x, 0, . . . , 0, y
︸︷︷︸

jth

, 0, . . . , 0) (2.14)

for all x, y ∈ A and all 1 ≤ j ≤ n.
Now we consider the linear mapping J : X → X such that

Jg(x) :=
n

α
g

(
α

n
x

)

(2.15)

for all x ∈ A, where α = (n2 − 1)/n.
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For any g, h ∈ X, we have

d(g, h) < C =⇒ ‖g(x) − h(x)‖B ≤ Cϕj(x, x) ∀x ∈ A

=⇒
∥
∥
∥
∥
n

α
g

(
α

n
x

)

− n

α
h

(
α

n
x

)∥
∥
∥
∥
B

≤ n

α
Cϕj

(
α

n
x,

α

n
x

)

=⇒
∥
∥
∥
∥
n

α
g

(
α

n
x

)

− n

α
h

(
α

n
x

)∥
∥
∥
∥
B

≤ LCϕj(x, x)

=⇒ d(Jg, Jh) ≤ LC.

(2.16)

Therefore, we see that

d(Jg, Jh) ≤ Ld(g, h), ∀g, h ∈ A. (2.17)

This means J is a strictly contractive self-mapping of X, with the Lipschitz constant L.
Letting μ = 1, z = xj = x, and for each 1 ≤ k ≤ n with k /= j, xk = 0 in (2.7), we get

∥
∥
∥
∥αf(x) − nf

(
α

n
x

)∥
∥
∥
∥
B

≤ ϕj(x, x) (2.18)

for all x ∈ A. So
∥
∥
∥
∥f(x) −

n

α
f

(
α

n
x

)∥
∥
∥
∥
B

≤ 1
α
ϕj(x, x) (2.19)

for all x ∈ A. Hence d(f, Jf) ≤ 1/α.
By Theorem 1.2, there exists a mapping H : A → B such that the following hold:
(1)H is a fixed point of J , that is,

H

(
α

n
x

)

=
α

n
H(x) (2.20)

for all x ∈ A; the mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}; (2.21)

and this implies thatH is a unique mapping satisfying (2.20) such that there exists C ∈ (0,∞)
satisfying

‖H(x) − f(x)‖B ≤ Cϕj(x, x) (2.22)

for all x ∈ A.
(2) d(Jmf,H) → 0 as m → ∞; and this implies the equality

lim
m→∞

(
n

α

)m

f

((
α

n

)m

x

)

= H(x) (2.23)

for all x ∈ A;
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(3) d(f,H) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,H) ≤ 1
α − αL

; (2.24)

and this implies that the inequality (2.11) holds.
It follows from (2.6), (2.7), and (2.23) that

∥
∥
∥
∥
∥

n∑

i=1

H(z − xi) +
1
n

∑

1≤i<j≤n
H(xi + xj) − nH

(

z − 1
n2

n∑

i=1

xi

)∥
∥
∥
∥
∥
B

= lim
m→∞

(
n

α

)m
∥
∥
∥
∥
∥

n∑

i=1

f

((
α

n

)m

(z − xi)
)

+
1
n

∑

1≤i<j≤n
f

((
α

n

)m

(xi + xj)
)

− nf

((
α

n

)m

z −
(
α

n

)m

× 1
n2

n∑

i=1

xi

)∥
∥
∥
∥
∥
B

≤ lim
m→∞

(
n

α

)m

ϕ

((
α

n

)m

z,

(
α

n

)m

x1, . . . ,

(
α

n

)m

xn

)

≤ lim
m→∞

(
n

α

)2m

ϕ

((
α

n

)m

z,

(
α

n

)m

x1, . . . ,

(
α

n

)m

xn

)

= 0

(2.25)

for all x1, . . . , xn, z ∈ A. So

n∑

i=1

H(z − xi) = − 1
n

∑

1≤i<j≤n
H(xi + xj) + nH

(

z − 1
n2

n∑

i=1

xi

)

(2.26)

for all x1, . . . , xn, z ∈ A. By Lemma 2.1, the mapping H : A → B is Cauchy additive, that is,
H(x + y) = H(x) +H(y) for all x, y ∈ A.

By a similar method to the proof of [14], one can show that the mappingH : A → B is
C-linear.

It follows from (2.8) that

‖H(xy) −H(x)H(y)‖B = lim
m→∞

(
n

α

)2m∥∥
∥
∥f

((
α

n

)2m

xy

)

− f

((
α

n

)m

x

)

f

((
α

n

)m

y

)∥
∥
∥
∥
B

≤ lim
m→∞

(
n

α

)2m

ϕ

((
α

n

)m

x,

(
α

n

)m

y, 0, . . . , 0
︸ ︷︷ ︸
n−1 times

)

= 0

(2.27)

for all x, y ∈ A. So

H(xy) = H(x)H(y) (2.28)

for all x, y ∈ A.
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It follows from (2.9) that

‖H(x∗) −H(x)∗‖B = lim
m→∞

(
n

α

)m∥∥
∥
∥f

((
α

n

)m

x∗
)

− f

((
α

n

)m

x

)∗∥∥
∥
∥
B

≤ lim
m→∞

(
n

α

)m

ϕ

((
α

n

)m

x, . . . ,

(
α

n

)m

x

︸ ︷︷ ︸
n+1 times

)

≤ lim
m→∞

(
n

α

)2m

ϕ

((
α

n

)m

x, . . . ,

(
α

n

)m

x

︸ ︷︷ ︸
n+1 times

)

= 0

(2.29)

for all x ∈ A. So

H(x∗) = H(x)∗ (2.30)

for all x ∈ A.
Thus H : A → B is a C∗-algebra homomorphism satisfying (2.11) as desired.

Corollary 2.3. Let r > 2 and θ be nonnegative real numbers, and let f : A → B be a mapping such
that

‖Cμf(z, x1, . . . , xn)‖B ≤ θ

(

‖z‖rA +
n∑

i=1

‖xi‖rA
)

, (2.31)

‖f(xy) − f(x)f(y)‖B ≤ θ(‖x‖rA + ‖y‖rA), (2.32)

‖f(x∗) − f(x)∗‖B ≤ (n + 1)θ‖x‖rA (2.33)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-algebra homomorphism H : A → B

such that

‖f(x) −H(x)‖B ≤ 2n(n2 − 1)−rθ

(n2 − 1)1−r − n2(1−r)
‖x‖rA (2.34)

for all x ∈ A.

Proof. The proof follows from Theorem 2.2 by taking

ϕ(z, x1, . . . , xn) := θ

(

‖z‖rA +
n∑

i=1

‖xi‖rA
)

(2.35)

for all x, y, z ∈ A. It follows from (2.31) that f(0) = 0. We can choose L = (n2/(n2 − 1))1−r to
get the desired result.

Theorem 2.4. Let f : A → B be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : An+1 → [0,∞) satisfying (2.7), (2.8), and (2.9) such that

∞∑

j=0

(
n2 − 1
n2

)j

ϕ

((
n2

n2 − 1

)j

z,

(
n2

n2 − 1

)j

x1, . . . ,

(
n2

n2 − 1

)j

xn

)

< ∞ (2.36)
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for all z, x1, . . . , xn ∈ A. If for some 1 ≤ j ≤ n there exists a Lipschitz constant L < 1 such that

ϕ(x, 0, . . . , 0, x︸︷︷︸
jth

, 0, . . . , 0) ≤ n2

n2 − 1
Lϕ

(
n2 − 1
n2

x, 0, . . . , 0,
n2 − 1
n2

x
︸ ︷︷ ︸

jth

, 0, . . . , 0
)

(2.37)

for all x ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

‖f(x) −H(x)‖B ≤ nL

(n2 − 1) × (1 − L)
ϕ(x, 0, . . . , 0, x︸︷︷︸

jth

, 0, . . . , 0) (2.38)

for all x ∈ A.

Proof. Similar to proof of Theorem (2.2), we consider the linear mapping J : X → X such that

Jg(x) :=
α

n
g

(
n

α
x

)

(2.39)

for all x ∈ A, where α = (n2 − 1)/n. We can conclude that J is a strictly contractive self
mapping of X with the Lipschitz constant L.

It follows from (2.18) that
∥
∥
∥
∥f(x) −

α

n
f

(
n

α
x

)∥
∥
∥
∥
B

≤ 1
n
ϕj

(
n

α
x,

n

α
x

)

≤ L

α
ϕj(x, x) (2.40)

for all x ∈ A. Hence, d(f, Jf) ≤ (L/α).
By Theorem 1.2, there exists a mapping H : A → B such that the following hold:
(1)H is a fixed point of J , that is,

H

(
n

α
x

)

=
n

α
H(x) (2.41)

for all x ∈ A; the mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}; (2.42)

and this implies thatH is a unique mapping satisfying (2.41) such that there exists C ∈ (0,∞)
satisfying

‖H(x) − f(x)‖B ≤ Cϕj(x, x) (2.43)

for all x ∈ A;
(2) d(Jmf,H) → 0 as m → ∞; and this implies the equality

lim
m→∞

(
α

n

)m

f

((
α

n

)m

x

)

= H(x) (2.44)

for all x ∈ A;
(3) d(f,H) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,H) ≤ L

α − αL
, (2.45)

which implies that the inequality (2.38) holds.
The rest of the proof is similar to the proof of Theorem 2.2.



10 Abstract and Applied Analysis

Corollary 2.5. Let r < 1 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.31), (2.32), and (2.33). Then there exists a unique C∗-algebra homomorphism H : A →
B such that

‖f(x) −H(x)‖B ≤ 2n(n2 − 1)r−2Lθ

(n2 − 1)r−1 − n2(r−1)
‖x‖rA (2.46)

for all x ∈ A and L = (n2/(n2 − 1))r−1.

Proof. The proof follows from Theorem 2.4 by taking

ϕ(z, x1, . . . , xn) := θ

(

‖z‖rA +
n∑

i=1

‖xi‖rA
)

(2.47)

for all z, x1, . . . , xn ∈ A. It follows from (2.31) that f(0) = 0.We can choose L = (n2/(n2−1))r−1
to get the desired result.

3. Stability of generalized derivations on C∗-algebras

For a given mapping f : A → A and for a fixed positive integer n ≥ 2, we define

Cμf(z, x1, . . . , xn) :=
n∑

i=1

μf(z − xi) +
1
n

∑

1≤i<j≤n
f(μxi + μxj) − nf

(

μz − 1
n2

n∑

i=1

μxi

)

(3.1)

for all μ ∈ T
1 and all z, x1, . . . , xn ∈ A.

Definition 3.1 (see [42]). A generalized derivation δ : A → A is involutive C-linear and fulfills

δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz)

for all x, y, z ∈ A.
We prove the generalized Hyers-Ulam stability of derivations on C∗-algebras for the

functional equation Cμf(z, x1, . . . , xn) = 0.

Theorem 3.2. Let f : A → A be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : An+1 → [0,∞) such that

∞∑

j=0

(
n2

n2 − 1

)3j

ϕ

((
n2 − 1
n2

)j

z,

(
n2 − 1
n2

)j

x1, . . . ,

(
n2 − 1
n2

)j

xn

)

< ∞, (3.2)

‖Cμf(x1, . . . , xn, z)‖A ≤ ϕ(z, x1, . . . , xn), (3.3)

‖f(xyz) − f(xy)z + xf(y)z − xf(yz)‖A ≤ ϕ(x, y, z, 0, . . . , 0
︸ ︷︷ ︸
n−2 times

), (3.4)

‖f(x∗) − f(x)∗‖A ≤ ϕ(x, . . . , x
︸ ︷︷ ︸
n+1 times

) (3.5)
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for all μ ∈ T
1 and all x, y, z, x1, . . . , xn ∈ A. If for some 1 ≤ j ≤ n there exists a Lipschitz constant

L < 1 such that

ϕ(x, 0, . . . , 0, x︸︷︷︸
jth

, 0, . . . , 0) ≤ n2 − 1
n2

Lϕ

(
n2

n2 − 1
x, 0, . . . , 0,

n2

n2 − 1
x

︸ ︷︷ ︸
jth

, 0, . . . , 0
)

(3.6)

for all x ∈ A, then there exists a unique generalized derivation δ : A → A such that

‖f(x) − δ(x)‖A ≤ n

(n2 − 1) × (1 − L)
ϕ(x, 0, . . . , 0, x︸︷︷︸

jth

, 0, . . . , 0) (3.7)

for all x ∈ A.

Proof. By the same reasoning as in the proof of Theorem 2.2, there exists a unique involutive
C-linear mapping δ : A → A satisfying (3.7). The mapping δ : A → A is given by

δ(x) =
(
n

α

)m

f

((
n

α

)m

x

)

(3.8)

for all x ∈ A.
It follows from (3.4) that

‖δ(xyz) − δ(xy)z + xδ(y)z − xδ(yz)‖A

= lim
m→∞

(
n

α

)3m∥∥
∥
∥f

((
α

n

)3m

xyz

)

− f

((
α

n

)2m

xy

)

·
(
α

n

)m

z

+
(
α

n

)m

xf

((
α

n

)m

y

)

·
(
α

n

)m

z −
(
α

n

)m

xf

((
α

n

)2m

yz

)∥
∥
∥
∥
A

≤ lim
m→∞

(
n

α

)3m

ϕ

((
α

n

)m

x,

(
α

n

)m

y,

(
α

n

)m

z, 0, . . . , 0
︸ ︷︷ ︸
n−2 times

)

= 0

(3.9)

for all x, y, z ∈ A. So

δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz) (3.10)

for all x, y, z ∈ A. Thus δ : A → A is a generalized derivation satisfying (3.7).

Theorem 3.3. Let f : A → A be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : An+1 → [0,∞) satisfying (2.36),(3.3), (3.4) and (3.5) for all x, y, z, x1, . . . , xn ∈ A. If for some
1 ≤ j ≤ n there exists a Lipschitz constant L < 1 such that

ϕ(x, 0, . . . , 0, x︸︷︷︸
jth

, 0, . . . , 0) ≤ n2

n2 − 1
Lϕ

(
n2 − 1
n2

x, 0, . . . , 0,
n2 − 1
n2

x
︸ ︷︷ ︸

jth

, 0, . . . , 0
)

(3.11)

for all x ∈ A, then there exists a unique generalized derivation δ : A → A such that

‖f(x) − δ(x)‖B ≤ nL

(n2 − 1) × (1 − L)
ϕ(x, 0, . . . , 0, x︸︷︷︸

jth

, 0, . . . , 0) (3.12)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.4 and 3.2.
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Sciences Mathématiques, vol. 108, no. 4, pp. 445–446, 1984.

[23] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Journal of
Functional Analysis, vol. 46, no. 1, pp. 126–130, 1982.



Fridoun Moradlou et al. 13

[24] J. M. Rassias, “Solution of a problem of Ulam,” Journal of Approximation Theory, vol. 57, no. 3, pp.
268–273, 1989.
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