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This paper studies the boundedness, global asymptotic stability, and periodicity of positive solu-
tions of the equation xn = f(xn−2)/g(xn−1), n ∈ N0, where f, g ∈ C[(0,∞), (0,∞)]. It is shown that
if f and g are nondecreasing, then for every solution of the equation the subsequences {x2n} and
{x2n−1} are eventually monotone. For the case when f(x) = α + βx and g satisfies the conditions
g(0) = 1, g is nondecreasing, and x/g(x) is increasing, we prove that every prime periodic solution
of the equation has period equal to one or two.We also investigate the global periodicity of the equa-
tion, showing that if all solutions of the equation are periodic with period three, then f(x) = c1/x
and g(x) = c2x, for some positive c1 and c2.

Copyright q 2008 S. Stević and K. S. Berenhaut. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently there has been great interest in the study of nonlinear and rational difference equa-
tions (cf. [1–35] and the references therein).

In this paper, we study the boundedness, global asymptotic stability, and periodicity for
positive solutions of the equation

xn =
f(xn−2)
g(xn−1)

, n ∈ N0, (1.1)

where f, g ∈ C[(0,∞), (0,∞)].
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2. Asymptotic periodicity of (1.1)

In this section,we investigate asymptotic periodicity of (1.1). The asymptotic periodicity of
some difference equations has been investigated, for example, in the papers [3–6, 10, 12, 15, 20,
22, 23, 25–29, 31, 32, 35]. Our first result is the following theorem regarding eventual mono-
tonicity, which is a natural extension of [24, Theorem 2].

Theorem 2.1. Assume that f and g are nondecreasing functions which map the interval (0,∞) into
itself, and assume that {xn} is a solution of (1.1). Then, the sequences {x2n} and {x2n+1} are eventually
monotone.

Proof. Suppose that {xn} is a solution to (1.1), and set

rn =

⎧
⎨

⎩

1 if
xn

xn−2
≥ 1,

0 otherwise,
(2.1)

for n ≥ 0. Note that it suffices to show that {r2i}i≥0 and {r2i+1}i≥0 are eventually constant.
From (1.1), we have that

xn

xn−2
=
f(xn−2)
g(xn−1)

g(xn−3)
f(xn−4)

=
f(xn−2)
f(xn−4)

g(xn−3)
g(xn−1)

. (2.2)

If rn−2 = 1 and rn−1 = 0, then by (1.1) and the monotonicity of f and g we have that xn/xn−2 ≥ 1,
and hence rn = 1. Similarly, if rn−2 = 0 and rn−1 = 1, then rn = 0. Hence, if rn0/=rn0+1 for some n0 ≥
0, then the sequences {rn0+2i}i≥0 and {rn0+2i+1}i≥0 are both constant, as required. This confirms
the statement in the theorem, in this case. Otherwise, {ri}i≥0 itself is a constant sequence and
the result again follows.

Remark 2.2. Note that Theorem 2.1 guarantees only the eventually monotonicity of the se-
quences {x2n} and {x2n+1}. Hence, for a solution {xn} of (1.1), one of these two subsequences
can be infinite. See, for example, [27, Theorem 1], where it was shown that for the case
f(x) = g(x) = xp, p ≥ 1, (1.1) has unbounded solutions. The problem was previously treated
in the papers [1, 11] but the proofs appearing there have a gap (for more details see [27]).

The first special case of the nonrational (1.1)was considered in the paper [22], where the
second author considered the equation

xn =
α + βxn−2
1 + g(xn−1)

, (2.3)

where the function g satisfies the following conditions:

(i) g(x) > 0 for x ≥ 0,

(ii) g(x) is increasing on [0,∞),

(iii) x/g(x) is increasing on [0,∞).

The following two conjectures, which were posed by the second author, have circulated
among the experts in the field, since early 2001.
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Conjecture 2.3. Assume that β = 1. Show that every solution of (2.3) is bounded.

Conjecture 2.4. Assume that β = 1. Show that every prime periodic solution of (2.3) has period equal
to one or two.

Conjecture 2.3 was confirmed in [28]where the following lemma was proved.

Lemma 2.5. Suppose h is a function which satisfies the following conditions:

(a) h(0) ≥ 0,

(b) h(x) is increasing on [0,∞),

(c) x/h(x) is nondecreasing on [0,∞).

Then for given l, L, α > 0 such that l < L, there exist l0 and L0 such that

(1) 0 < l0 ≤ l and L ≤ L0,

(2) l0h(L0) ≤ α ≤ h(l0)L0.

By Lemma 2.5, a result was proven concerning an extension of (2.3). We present the proof
of the theorem for the case of (2.3), for the benefit of the reader, since the proof is instructive.
For related results regarding boundedness, see, for example, [1, 6, 10, 22, 27, 31, 33, 34].

Theorem 2.6. Assume that g is a function which satisfies conditions (ii) and (iii) and that g(0) ≥ 0.
Consider (2.3) where α, x−2, x−1 ∈ (0,∞). Then every solution of (2.3) is bounded and persists.

Proof. Choose l and L such that L > max {x−2, x−1} and min {x−2, x−1} > l > 0. By
Lemma 2.5, we may also assume that lg(L) ≤ α ≤ g(l)L. Now we may use mathematical
induction to prove the result. Assume the statement is true for x−2, x−1, x0, . . . , xn, that is,

l ≤ xi ≤ L ∀ i = −2,−1, 0, 1, . . . , n − 1. (2.4)

Then

xn =
α + xn−2

1 + g(xn−1)
≤ α + L

1 + g(l)
. (2.5)

We claim that (α + L)/(1 + g(l)) ≤ L. But this is obvious since

α + L ≤ (1 + g(l))L ⇐⇒ α ≤ g(l)L. (2.6)

Similarly, we have that

xn =
α + xn−2

1 + g(xn−1)
≥ α + l

1 + g(L)
, (2.7)

from which it follows that xn ≥ l for n = −2,−1, 0, . . . , completing the proof of the theorem.

By Theorems 2.1 and 2.6 we confirm Conjecture 2.4. Indeed, by Theorem 2.6 we have
that every solution {xn} of (2.3) is bounded. On the other hand, by Theorem 2.1, the sequences
{x2n} and {x2n−1} are eventually monotone, thus convergent. Hence, if (2.3) has periodic solu-
tions they have period one or two, as conjectured.
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3. Global periodicity of (1.1)

Definition 3.1. Let g be a function defined on a subset of R
n. Say that the difference equation

xn = g(xn−1, . . . , xn−k), n ∈ N0, (3.1)

where k ∈ N, is periodic, if every solution of (3.1) is periodic.

Periodic equations have been investigated, for example, in [2, 7, 8, 12, 14, 16–19, 26] (see
also the references therein).

In this section, we investigate periodic equations of type (1.1). In order to facilitate nota-
tion we will write (1.1) in the equivalent form

xn = h(xn−1)f(xn−2), n ∈ N0. (3.2)

If every solution of (3.2) is periodic with period p = 2, then it must hold that

x = h(y)f(x), x, y ∈ (0,∞), (3.3)

that is x/f(x) = h(y), which implies that f(x) = cx and h(y) = c for some positive constant
c. Thus, (3.2) has the form xn = c2xn−2. Since every solution of (3.2) must be two periodic, it
follows that c = 1. Hence, the equation xn = xn−2 is a unique equation of type (3.2) for which
all solutions are periodic with period two.

Further we consider those equations of type (3.2) for which all solutions are periodic
with period three. For amapping f : X→X the sequence of iterates {f [m]}m∈N∪{0} of f, is defined
by f [0] = I (I is the identity function on X), f [1] = f and generally f [m+1] = f ◦ f [m] for any
m ∈ N.

Before we prove the result concerning the case, we need the following auxiliary result
which is folklore.

Lemma 3.2. Assume that f : (0,∞)→(0,∞) is a continuous function such that

f [6](x) = x, x ∈ (0,∞). (3.4)

Then, f(x) = x, x ∈ (0,∞) or f [2](x) = x.

Proof. If f(x) = f(y), then from (3.4) it follows that

x = f [6](x) = f [6](y) = y, (3.5)

which implies that the function f must be 1 − 1. Since f is a continuous function we have that
f must be strictly monotone.

First assume that f is strictly increasing. If there is a point x0 ∈ I such that x0 < f(x0),
then by the monotonicity of f we have

x0 < f(x0) < f [2](x0) < · · · < f [6](x0) = x0, (3.6)

which is a contradiction.
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If x0 > f(x0), then we have

x0 > f(x0) > f [2](x0) > · · · > f [6](x0) = x0, (3.7)

arriving again at a contradiction.
From this it follows that f(x) = x for every x ∈ (0,∞).
Assume now that f is strictly decreasing. Then the function g(x) = f [2](x) is strictly

increasing and

g[3](x) =
(
f [2])[3](x) = x. (3.8)

Similar to the first case, we obtain that f [2](x) ≡ x, finishing the proof of the lemma.

Remark 3.3. Note that if f [2](x) = x, then f is decreasing, maps interval (0,∞), “1−1,” and onto
itself, and its graph is symmetric with respect to the line y = x, since f(x) = f−1(x).

Theorem 3.4. All solutions of (3.2) are periodic with period three if and only if f(x) = c1/x and
h(x) = c2/x, for some positive constants c1 and c2.

Proof. Assume that f(x) = c1/x and h(x) = c2/x, for some positive constants c1 and c2. Then
(3.2) becomes

xn =
c3

xn−1xn−2
, c3 = c1c2. (3.9)

It is easy to see that every solution of the equation is periodic with period three (see, e.g., [12]).
Assume now that every solution of (3.2) is periodic with period three. Then, we have

that

u = h(y)f(x), x = h(u)f(y), y = h(x)f(u), (3.10)

for every x, y ∈ (0,∞).
Eliminating u in (3.10)we obtain that

x = h(h(y)f(x))f(y), y = h(x)f(h(y)f(x)). (3.11)

Now, in each of the two equations (3.11), we choose that a variable is arbitrary and the other is
equal to 1, and use the changes

ĥ(x) = h(x)f(1), f̂(x) = f(x)h(1). (3.12)

Then, we obtain

ĥ
(
f̂(z)

)
= z, ĥ

(
ĥ(z)

)
f̂(z) = C,

f̂
(
f̂(z)

)
ĥ(z) = C, f̂

(
ĥ(z)

)
= z,

(3.13)

for every z ∈ (0,∞), where C = f(1)h(1).
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From (3.13) we have

f̂
(
ĥ(z)

)
= ĥ

(
f̂(z)

)
= z, (3.14)

which implies that

f̂(z) = ĥ−1(z). (3.15)

If we set z→ĥ(z) in the second identity in (3.13) and z→f̂(z) in the third identity, and
then apply (3.14), we obtain

f̂ [3](z) = ĥ[3](z) =
C

z
. (3.16)

From (3.15) and (3.16) it follows that

ĥ[6](z) = z. (3.17)

Lemma 2.5 implies that ĥ(z) = z or ĥ[2](z) = z. If ĥ(z) = z, then (3.13) implies f̂(z) = z,
and by the second identity in (3.13) we obtain z = C,which is a contradiction.Hence,

ĥ[2](z) = f̂ [2](z) = z. (3.18)

Substituting (3.18) in (3.13)we obtain that

ĥ(z) = f̂(z) =
C

z
, (3.19)

from which it follows that

h(z) =
h(1)
z

, f(z) =
f(1)
z

, (3.20)

as desired.

Remark 3.5. It is expected that Theorem 3.4 can be generalized for the case when all solutions
of (3.2) are periodic with period more than three.

In the case when all solutions of (3.2) are periodic with period four, the functions f and
g must satisfy the following system of functional equations:

x = h[h(h(y)·f(x))·f(y)]·f(h(y)f(x)),
y = h(x)·f[h(h(y)·f(x))·f(y)]. (3.21)

From the system as in the proof of Theorem 3.4, it can be obtained that the functions ĥ and f̂
satisfy the following identities:

ĥ
(
ĥ
(
ĥ(z)

)
f̂(z)C−1)f̂

(
ĥ(z)

)
= C, ĥ

(
ĥ
(
f̂(z)

))
f̂
(
f̂(z)

)
= Cz,

ĥ(z)f̂
(
ĥ
(
f̂(z)

))
= C, f̂

(
ĥ
(
ĥ(z)

)
f̂(z)C−1) = z,

(3.22)

where C = f(1)h(1).
An obvious solution of the system is h(x) = c1 and f(x) = c2/x,where c1, c2 ∈ (0,∞).We

leave the problem of finding all solutions of the system as a further direction for investigation
for interested readers.
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Note. An early draft by the second author of the paper, containing only results in Section 3,
has circulated among the experts since the end of 2005 and was the starting point for further
important investigations in the research field, see, for example, [2, 30]. The paper in the present
form is a slight modification of a version fromMarch 2006. Aminor publication mishap caused
some wrong citations (see [30]), as well as a delay in publishing of it.
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[13] B. D. Iričanin, “A global convergence result for a higher order difference equation,” Discrete Dynamics
in Nature and Society, vol. 2007, Article ID 91292, 7 pages, 2007.
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[30] S. Stević, “On global periodicity of a class of difference equations,” Discrete Dynamics in Nature and

Society, vol. 2007, Article ID 23503, 10 pages, 2007.
[31] S. Stević, “On the recursive sequence xn = α +

∑ k
i=1αixn−pi/1 +

∑m
j=1βjxn−qj ,” Journal of Difference Equa-

tions and Applications, vol. 13, no. 1, pp. 41–46, 2007.
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