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1. Introduction

The theory of calculus on time scales, which has recently received a lot of attention, was created
by Hilger [1] in order to unify the theories of differential equations and of difference equations
and in order to extend those theories to other kinds of the so-called “dynamic equations.” The
two main features of the calculus on time scales are unification and extension of continuous
and discrete analysis.

Time scale calculus is especially useful when studying systems with discrete and contin-
uous elements in their domains, such as an insect population that is continuous for parts of the
year and discrete for other parts of the year.

The calculus on time scales and dynamic equations on time scales have applications in
any field that requires simultaneous modeling of continuous and discrete processes, because
they bridge the divide between continuous and discrete aspects of processes. The applications
include insect population models, epidemic models, neural networks, and heat transfer.
Foundational definitions and results from the time scale calculus appear in an excellent
introductory text by Bohner and Peterson [2].

In [3], we extended the concept of h-stability introduced by Pinto [4] to dynamic
equations on time scales. The notion of h-stability is quite flexible because it includes the
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classical notions of uniform or exponential stability within one common framework. For the
detailed results of h-stability for differential and difference systems, see [4–7].

Regressivity plays a crucial role in developing the fundamental theory of linear dynamic
equations. Consider the scalar dynamic equation on time scale T:

xΔ(t) = a(t)x(t). (1.1)

Equation (1.1) is said to be regressive if a(t) satisfies

1 + a(t)μ(t)/=0 (1.2)

for all t ∈ T
κ. A system is nonregressive if it is not regressive. When we consider the generalized

time scale exponential function, we need the concept of regressiveness since the exponential
function ea(t, t0) is defined only for a(t) satisfying condition (1.2). The continuous dynamical
systems (e.g., ordinary differential equations) are always regressive since T = R has the
graininess function μ(t) ≡ 0. However, nonregressivity is always a possibility in discrete
dynamical systems (e.g., difference equations), where the underlying domain consists of a
mixture of discrete and continuous parts. In fact, if there is even one point in T with nonzero
graininess, then nonregressivity is possible [8].

In this paper, we investigate the h-stability for dynamic equations on time scales, with
the nonregressivity condition. Thus, we improve some results in [3].

2. Calculus on time scales

We mention without proof several foundational definitions and theorems, as well as a general
introduction to the theory of time scales in an excellent introductory text by Bohner and
Peterson [2].

Definition 2.1. A time scale T is any nonempty closed subset of the real numbers R.

One assumes throughout that T has the topology that it inherits from the standard
topology on R.

It is also assumed throughout that in T the interval [a, b]means the set {t ∈ T : a ≤ t ≤ b}
for the points a < b in T. Since a time scale may or may not be connected, one needs the
following concept of jump operators.

Definition 2.2. The functions σ, ρ : T→T defined by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t}

(2.1)

are called the jump operators.

The jump operators σ and ρ allow the classification of points in T in the following way.

Definition 2.3. A nonmaximal element t ∈ T is said to be right-dense if σ(t) = t, and right-scattered
if σ(t) > t. Also, a nonminimal element t ∈ T is called left-dense if ρ(t) = t, and left-scattered if
ρ(t) < t.
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Definition 2.4. The function μ : T→R+ defined by μ(t) = σ(t) − t is called the graininess function.

If T has a left-scattered maximum m, then T
κ = T − {m}. Otherwise T

κ = T.

Definition 2.5. A function f : T→R is called differentiable at t ∈ T
κ with (delta) derivative fΔ(t) ∈ R

if given ε > 0 there exists a neighborhood U of t such that, for all s ∈ U,

∣
∣fσ(t) − f(s) − fΔ(t)[σ(t) − s]

∣
∣ ≤ ε

∣
∣σ(t) − s

∣
∣, (2.2)

where fσ = f ◦ σ. If f is delta differentiable for every t ∈ T
κ, then f : T→R is called delta

differentiable on T
κ.

Some basic properties of delta derivatives are as follows [9, 10].

(i) If f is differentiable at t ∈ T
κ, then

fσ(t) = f(t) + μ(t)fΔ(t). (2.3)

(ii) If both f and g are differentiable at t ∈ T
κ, then the product fg is also differentiable

at t ∈ T
κ with

(fg)Δ(t) = fΔ(t)g(t) + fσ(t)gΔ(t) = f(t)gΔ(t) + fΔ(t)gσ(t). (2.4)

Definition 2.6. The function f : T→R is said to be rd-continuous (denoted by f ∈ Crd(T,R)) if

(i) f is continuous at every right-dense point t ∈ T,

(ii) lims→t−f(s) exists and is finite at every left-dense point t ∈ T.

Definition 2.7. Let f ∈ Crd(T,R). The function g : T→R is called the antiderivative of f on T if it
is differentiable on T and satisfies gΔ(t) = f(t) for t ∈ T

κ. In this case, one defines

∫ t

a

f(s)Δs = g(t) − g(a), t ∈ T. (2.5)

Some basic properties of delta integral are as follows [2, 9, 10].
Let f, g : T→R be rd-continuous.

(i) If r, s ∈ T, α, β ∈ R, then

∫s

r

[

αf(t) + βg(t)
]

Δt = α

∫ s

r

f(t)Δt + β

∫ s

r

g(t)Δt. (2.6)

(ii) If t ∈ T
κ, then

∫σ(t)

t

f(τ)Δτ = μ(t)f(t). (2.7)
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(iii) If T = R and a, b ∈ T, then
∫b

a

f(t)Δt =
∫b

a

f(t)dt, (2.8)

where the integral on the right is the usual Riemann integral from calculus.

(iv) If [a, b] consists of only isolated points, then

∫b

a

f(t)Δt =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

t∈[a,b)
μ(t)f(t) if a < b,

0 if a = b,

−
∑

t∈[b,a)
μ(t)f(t) if a > b.

(2.9)

(v) If T = δZ, where δ > 0, then

∫b

a

f(t)Δt =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b/δ−1∑

k=a/δ

f(kδ)δ ifa < b,

0 ifa = b,

−
a/δ−1∑

k=b/δ

f(kδ)δ ifa > b.

(2.10)

3. h-stability

Let Mn(R) be the set of all n × n matrices over R and the class of all rd-continuous operators
A : T→Mn(R) denoted by

Crd
(

T,Mn(R)
)

. (3.1)

We consider the linear homogeneous dynamic system

xΔ = A(t)x, x
(

t0
)

= x0, (3.2)

where A ∈ Crd(T,Mn(R)).

Definition 3.1 (see [8]). System (3.2) is said to be regressive if

det
[

I + μ(t)A(t)
]

/=0 (3.3)

for all t ∈ T
κ, where I denotes the n × n identity matrix.

It turns out that condition (3.3) is equivalent to having all of the eigenvalues of A(t)
regressive in the sense of (1.2) [8].

The norm of an n × n matrix A is defined to be

|A| = max
1≤j≤n

∣
∣Aj

∣
∣, (3.4)

where Aj is the jth column of A.
We recall the notion of the transition matrix of the linear dynamic systems without

regressivity.
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Definition 3.2 (see [11, Definition 1.3.5]). Let τ ∈ T and A ∈ Crd(T,Mn(R)), and assume that
ΦA : {(t, τ) ∈ T × T : τ ≤ t}→Mn(R) is an operator with ΦA(τ, τ) = I for all τ ∈ T. Then, the
unique solution ΦA of the IVP

XΔ(t) = A(t)X(t), X(τ) = I (3.5)

is called the transition matrix of (3.2).

Definition 3.3 (see [2, Definition 5.18]). Let τ ∈ T and assume that A ∈ Crd(T,Mn(R)) is
regressive. The unique solution ΦA(t, τ) of IVP (3.5) is called the matrix exponential function
of (3.2).

Note that the solution of (3.2) through (t0, x0) can be represented as x(t) = x(t, t0, x0) =
ΦA(t, t0)x(t0). The transition operator has the following properties.

Lemma 3.4 (see [11, Theorem 1.3.9]). IfA ∈ Crd(Tκ,Mn(R)), then there exists the transition matrix
ΦA(t, τ) of (3.2) which satisfies the following properties:

(i) ΦA : {(t, τ) ∈ T × T : τ ≤ t}→Mn(R) with ΦA(τ, τ) = I for all τ ∈ T;

(ii) ΦA(t, τ) = ΦA(t, s)ΦA(s, τ) for all τ ≤ s ≤ t;

(iii)

ΦΔt

A (t, τ) = A(t)ΦA(t, τ) ∀τ ≤ t,

ΦΔτ

A (t, τ) = −ΦA

(

t, σ(τ)
)

A(τ) ∀σ(τ) ≤ t;
(3.6)

(iv)

ΦA

(

σ(τ), τ
)

= I + μ(τ)A(τ) ∀τ ∈ T
κ; (3.7)

if A ∈ Crd(Tκ,Mn(R)) is regressive, that is, (I + μ(t)A(t)) is invertible for all t ∈ T
κ, then

ΦA : T × T→Mn(R) satisfies (ii) and (iii) for all t, τ ∈ T;

(v) ΦA(t, τ) is invertible inMn(R) with ΦA(t, τ)
−1 = ΦA(τ, t) for all t, τ ∈ T.

Assume throughout that T is unbounded above.
We recall the definitions about the various types of stability for the solutions of (3.2).

Definition 3.5. The solution x = 0 of (3.2) is said to be stable if to any pair of numbers t0, ε > 0,
there exists a δ = δ(t0, ε) > 0 such that, for any solution x(t, t0, x0) of (3.2), the inequality
|x0| ≤ δ implies |x(t)| < ε for all t ≥ t0 ∈ T. A system is said to be stable if all of its solutions are
stable.

Definition 3.6. The solution x = 0 of (3.2) is said to be uniformly stable if it is stable and δ does
not depend on t0.

Definition 3.7. The solution x = 0 of (3.2) is said to be asymptotically stable if it is stable and if
there exists a δ0 > 0 such that |x0| ≤ δ0 implies |x(t)|→0 as t→∞.
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Pinto [4] introduced the notion of h-stability which is an extension of the notions of
exponential stability and uniform Lipschitz stability.

Definition 3.8. System (3.2) is said to be

(i) an h-system if there exist a positive function h : T→R and a constant c ≥ 1 such that
∣
∣x
(

t, t0, x0
)∣
∣ ≤ c

∣
∣x0

∣
∣h(t)h

(

t0
)−1

, t ≥ t0, (3.8)

for |x0| small enough (here h(t)−1 = 1/h(t));

(ii) h-stable if system (3.2) is an h-system and the function h is bounded.

Remark 3.9. If h(t) = e−t, then h-stability coincides with exponential stability, and if h(t) is
constant, then we have uniform Lipschitz stability.

Example 3.10. A linear dynamic system on time scale T with μ(t) ≤ 1/2,

xΔ(t) =

[

−2 1

−1 − sin t − 2

]

x(t), (3.9)

is h-stable [3].

For the various definitions of stability, we refer to [12] and we obtain the following
possible implications for system (3.2) among the various types of stability:

h-stability=⇒uniformexponential stability=⇒uniformLipschitz stability=⇒uniform stability
(3.10)

as in [6]. The above implications can be proved by the characterization due to Pinto [7, Lemma
1] for the case T = R, in terms of the transition matrix for system (3.2).

Now, we consider the linear dynamic system (3.2) without the regressivity condition.
Firstly, we show that stability for solutions of (3.2) is equivalent to boundedness of

solutions.

Theorem 3.11. All solutions of (3.2) are stable if and only if they are bounded for all t ≥ t0 ∈ T.

Proof. Suppose that the solution x = 0 of (3.2) is stable. Then, given any ε > 0, there exists a
δ > 0 such that |x0| < δ implies |x(t, t0, x0)| < ε. However, |x(t, t0, x0)| = |ΦA(t, t0)x0| < ε for all
t ≥ t0 ∈ T. Now, let x0 be a vector (δ/2)ej for j = 1, 2, . . . , n. Then,

∣
∣ΦA

(

t, t0
)

x0
∣
∣ =

∣
∣xj(t, t0

)∣
∣
δ

2
< ε, t ≥ t0, j = 1, . . . , n, (3.11)

where xj(t, t0) is the jth column of ΦA(t, t0). Thus,

∣
∣ΦA

(

t, t0
)∣
∣ = max

1≤j≤n

∣
∣xj(t, t0

)∣
∣ <

2ε
δ
, t ≥ t0. (3.12)

Consequently, for any solution x(t, t0, x0) of (3.2),

∣
∣x
(

t, t0, x0
)∣
∣ =

∣
∣ΦA

(

t, t0
)

x0
∣
∣ <

2ε
δ

∣
∣x0

∣
∣ = M

∣
∣x0

∣
∣, t ≥ t0, (3.13)

whereM = 2ε/δ. That is, all solutions of (3.2) are bounded.
Similarly, we can prove the converse.
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In [12, Theorem 2.1], DaCunha obtained the characterization of uniform stability for the
regressive system (3.2). Also, we have the same characterization for the nonregressive system
(3.2) in what follows.

Theorem 3.12. Equation (3.2) is uniformly stable if and only if there exists a constant γ > 0 such that

|ΦA(t, t0)| ≤ γ, t ≥ t0 ∈ T, (3.14)

where ΦA(t, t0) is a transition matrix of (3.2).

Proof. Suppose that (3.2) is uniformly stable. Then, for any given ε > 0, there exists a δ = δ(ε) >
0 such that t0 ≤ t1 ∈ T and |x(t1)| < δ imply |x(t)| < ε for all t ≥ t1 ∈ T. Thus,

∣
∣ΦA

(

t, t1
)

x
(

t1
)∣
∣ < ε ∀t ≥ t1 ≥ t0 ∈ T. (3.15)

Since x(t1) = ΦA(t1, t0)x0 can be selected for any t0 and t1 ≥ t0, let x(t0) be a vector (δ/2)ej for
each j = 1, 2, . . . , n. Then,

∣
∣ΦA

(

t, t1
)

ΦA

(

t1, t0
)

x0
∣
∣ =

∣
∣ΦA

(

t, t0
)

x0
∣
∣ =

∣
∣xj(t, t0

)∣
∣
δ

2
< ε, t ≥ t1 ≥ t0, (3.16)

where xj(t, t0) is the jth column of ΦA(t, t0). Thus,

∣
∣ΦA

(

t, t0
)∣
∣ = max

1≤j≤n

∣
∣xj(t, t0

)∣
∣ < γ, t ≥ t0, (3.17)

where γ = 2ε/δ. We see that |ΦA(t, t0)| ≤ γ for all t, t0 ∈ T with t ≥ t0.
Conversely, suppose that there exists a γ > 0 such that |ΦA(t, t0)| ≤ γ for all t, t0 ∈ T with

t ≥ t0. For any t0 and x(t0) = x0, the solution of (3.2) satisfies

∣
∣x(t)

∣
∣ =

∣
∣ΦA

(

t, t0
)

x0
∣
∣ ≤ ∣

∣ΦA

(

t, t0
)∣
∣
∣
∣x0

∣
∣ ≤ γ

∣
∣x0

∣
∣, t ≥ t0. (3.18)

Thus, uniform stability of (3.2) is established.

Pinto [4] gave the characterization of h-system. We obtain the time scale version in what
follows.

Theorem 3.13. Equation (3.2) is an h-system if and only if there exist a positive function h defined on
T and a constant c ≥ 1 such that

∣
∣ΦA

(

t, t0
)∣
∣ ≤ ch(t)h

(

t0
)−1

, t ≥ t0 ∈ T, (3.19)

where ΦA(t, t0) is a transition matrix of (3.2).

Proof. Suppose that (3.2) is an h-system. Let x0 be a vector (δ/2)ej for j = 1, . . . , n. Then, we
have

∣
∣x
(

t, t0, x0
)∣
∣ =

∣
∣ΦA

(

t, t0
)

x0
∣
∣ =

∣
∣xj(t, t0

)∣
∣
δ

2
≤ ∣
∣x0

∣
∣ch(t)h

(

t0
)−1

, t ≥ t0, j = 1, 2, . . . , n, (3.20)

where xj(t, t0) is the jth column of ΦA(t, t0).
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Thus, we obtain

∣
∣ΦA

(

t, t0
)∣
∣ ≤ 2

δ

∣
∣x0

∣
∣ch(t)h

(

t0
)−1 = ch(t)h

(

t0
)−1

, t ≥ t0. (3.21)

Conversely, we have

∣
∣x
(

t, t0, x0
)∣
∣ =

∣
∣ΦA

(

t, t0
)

x0
∣
∣ ≤ ∣

∣ΦA

(

t, t0
)∣
∣
∣
∣x0

∣
∣ ≤ ch(t)h

(

t0
)−1∣

∣x0
∣
∣, t ≥ t0. (3.22)

Hence, (3.2) is an h-system.

Remark 3.14. Theorems 3.11, 3.12, and 3.13 also hold for the linear dynamic systems with
regressivity.

Now, we study the h-stability of the nonlinear perturbed dynamic system without the
regressivity condition on the right-hand side of the equation via Gronwall’s inequality and
Bihari’s inequality on time scales.

We consider the perturbed systems of (3.2):

xΔ = A(t)x + F(t)x, x
(

t0
)

= x0, (3.23)

where A,F ∈ Crd(T,Mn(R)).
We can obtain the following variation-of-constants formula [11].

Lemma 3.15 (see [11]). The solution x(t, t0, x0) of system (3.24)

xΔ(t) = A(t)x(t) + g(t, x), t ∈ T, (3.24)

whereA ∈ Crd(T,Mn(R)) and g : T×R
n→R

n is rd-continuous in the first argument with g(t, 0) = 0,
with the initial value x(t0) = x0 is given by

x
(

t, t0, x0
)

= ΦA

(

t, t0
)

x0 +
∫ t

t0

ΦA

(

t, σ(s)
)

g
(

s, x(s)
)

Δs, t ≥ t0, (3.25)

where ΦA(t, t0) is a transition matrix of (3.2).

Theorem 3.16. Suppose that (3.2) is h-stable. Then, (3.23) is h-stable if there exists a positive constant
β such that for all t0 ∈ T,

∫∞

t0

h(s)
h
(

σ(s)
)

∣
∣F(s)

∣
∣Δs ≤ β. (3.26)

Proof. Since (3.2) is h-stable, there exist a constant c ≥ 1 and a positive bounded function h(t)
such that

∣
∣ΦA

(

t, t0
)∣
∣ ≤ ch(t)h

(

t0
)−1 (3.27)
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for all t ≥ t0 ∈ T. By Lemma 3.15, the solution x(t) of (3.23) satisfies

x(t) = ΦA

(

t, t0
)

x0 +
∫ t

t0

ΦA

(

t, σ(s)
)

F(s)x(s)Δs, t ≥ t0, (3.28)

where ΦA(t, t0) is a transition matrix of (3.2).
By taking the norms of both sides of (3.28), we have

∣
∣x(t)

∣
∣ ≤ ch(t)h

(

t0
)−1∣

∣x0
∣
∣ + c

∫ t

t0

h(t)h
(

σ(s)
)−1∣

∣F(s)
∣
∣
∣
∣x(s)

∣
∣Δs, t ≥ t0. (3.29)

Dividing by h(t) > 0 on both sides,

∣
∣x(t)

∣
∣

h(t)
≤ c

∣
∣x0

∣
∣

h
(

t0
) + c

∫ t

t0

h(s)
h
(

σ(s)
) |F(s)|

∣
∣x(s)

∣
∣

h(s)
Δs, t ≥ t0. (3.30)

In view of Gronwall’s inequality on time scales in [9], we obtain

∣
∣x(t)

∣
∣

h(t)
≤ c

∣
∣x0

∣
∣

h
(

t0
)ec(h(s)/h(σ(s)))|F(s)|(t, t0)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

c

∣
∣x0

∣
∣

h
(

t0
) exp

(∫ t

t0

log
(

1 + μ(s)c
(

h(s)/h
(

σ(s)
))∣
∣F(s)

∣
∣
)

μ(s)
Δs

)

if μ/=0,

c

∣
∣x0

∣
∣

h
(

t0
) exp

(∫ t

t0

c
h(s)

h
(

σ(s)
)

∣
∣F(s)

∣
∣Δs

)

if μ = 0

≤ c

∣
∣x0

∣
∣

h
(

t0
) exp

(∫ t

t0

c
h(s)

h
(

σ(s)
)

∣
∣F(s)

∣
∣Δs

)

≤ c

∣
∣x0

∣
∣

h
(

t0
) exp

(∫∞

t0

c
h(s)

h
(

σ(s)
)

∣
∣F(s)

∣
∣Δs

)

≤ c

∣
∣x0

∣
∣

h
(

t0
)ecβ

(3.31)

for all t ≥ t0 ∈ T. Thus,

∣
∣x(t)

∣
∣ ≤ d

∣
∣x0

∣
∣h(t)h

(

t0
)−1

, t ≥ t0, (3.32)

where d = cecβ ≥ 1. Hence, (3.23) is h-stable.

Corollary 3.17. Suppose that (3.2) is h-stable with bounded h(t)/h(σ(t)) for each t ∈ T. Then, (3.23)
is h-stable if there exists a positive constant β such that for all t0 ∈ T,

∫∞

t0

∣
∣F(s)

∣
∣Δs ≤ β. (3.33)
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Corollary 3.18. When T = R, (3.23) is h-stable if there exists a positive constant β such that for all
t0 ∈ R,

∫∞

t0

∣
∣F(s)

∣
∣ds ≤ β. (3.34)

Corollary 3.19. When T = δZ with a positive constant δ, (3.23) is h-stable if there exists a positive
constant β such that for all t0 ∈ δZ,

∞∑

s=t0

h(s)
h(s + δ)

∣
∣F(s)

∣
∣ ≤ β. (3.35)

We consider the nonlinear perturbed dynamic system

zΔ(t) = A(t)z(t) +G
(

t, z(t)
)

, (3.36)

where A ∈ Crd(T,Mn(R)) and G is rd-continuous on T × R
n.

We recall the notion of the class Ĥ.

Definition 3.20. A function w : R
+→R

+ belongs to the class Ĥ if

(H1) w(u) is nondecreasing and continuous for u ≥ 0 and positive for u > 0,

(H2) there exists a continuous function φ on R
+ with w(αu) ≤ φ(α)w(u) for α > 0, u ≥ 0,

(H3) limu→0+(w(u)/u) exists.

Theorem 3.21. Suppose that (3.2) is h-stable and
∣
∣G(t, x)

∣
∣ ≤ F(t)w

(|x|), t ≥ t0, (3.37)

where F is positive and rd-continuous, and w ∈ Ĥ with corresponding multiplier function φ and

λ(t) =
h
(

t0
)

F(t)

h
(

σ(t)
)∣
∣z0

∣
∣
φ

(∣
∣z0

∣
∣h(t

)

h
(

t0
)

)

,

d = W−1
[

W(c) + c

∫∞

t0

λ(s)Δs

]
(3.38)

in [13, Theorem 5.8]. Then, (3.36) is h-stable.

Proof. It follows from Lemma 3.15 that the solution z(t) of (3.36) is given by

z(t) = ΦA

(

t, t0
)

z0 +
∫ t

t0

ΦA

(

t, σ(s)
)

G
(

s, z(s)
)

Δs, t ≥ t0, (3.39)

where ΦA(t, t0) is a transition matrix of (3.2).
By h-stability of (3.2), there exists a positive bounded function h(t) such that

∣
∣ΦA

(

t, t0
)∣
∣ ≤ ch(t)h

(

t0
)−1 (3.40)

for all t ≥ t0 ∈ T.
The rest of the proof is the same as that of [3, Theorem 2.10].
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Now, we obtain some results about the h-stability of system (3.36) in the following
corollaries.

Corollary 3.22. Suppose that (3.2) is h-stable with a nondecreasing function h(t) and
∣
∣G(t, x)

∣
∣ ≤ F(t)w

(|x|), t ≥ t0, (3.41)

where w ∈ Ĥ with corresponding multiplier function φ(α) = α for all α > 0 and

d = W−1
[

W(c) + c

∫∞

t0

F(s)Δs

]

. (3.42)

Then, (3.36) is h-stable.

Corollary 3.23. Suppose that (3.2) is h-stable and

|G(t, x)| ≤ F(t)w(|x|), t ≥ t0 ∈ T = R, (3.43)

where w ∈ Ĥ with corresponding multiplier function φ and

λ(t) =
h
(

t0
)

F(t)

h(t)
∣
∣z0

∣
∣
φ

(∣
∣z0

∣
∣h(t)

h
(

t0
)

)

,

d = W−1
[

W(c) + c

∫∞

t0

λ(s)ds
]

.

(3.44)

Then, (3.36) is h-stable.

Corollary 3.24. Suppose that (3.2) is h-stable and
∣
∣G(t, x)

∣
∣ ≤ F(t)w

(|x|), t ≥ t0 ∈ T = δZ, (3.45)

where w ∈ Ĥ with corresponding multiplier function φ and

λ(t) =
h
(

t0
)

F(t)

h(t + δ)
∣
∣z0

∣
∣
φ

(∣
∣z0

∣
∣h(t)

h
(

t0
)

)

,

d = W−1
[

W(c) + cδ
∑

s∈δZt0

λ(s)
]

.

(3.46)

Then, (3.36) is h-stable.

We examine the property of h-stability for the perturbed dynamic system (3.24) on time
scale T.

Lemma 3.25. Suppose that k ∈ Crd(T × R+,R) is nondecreasing in the second argument x for each
fixed t ≥ t0 with the property

x(t) −
∫ t

t0

k
(

s, x(s)
)

Δs ≤ y(t) −
∫ t

t0

k
(

s, y(s)
)

Δs, t ≥ t0 ∈ T, (3.47)

for x, y ∈ Crd(T,R+). If x(t0) < y(t0), then x(t) < y(t) for all t ≥ t0 ∈ T.
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Proof. Suppose that there exists a τ ∈ T with t0 < τ such that x(s) < y(s) for t0 ≤ s < τ and
x(τ) ≥ y(τ). Also, we obtain

x(τ) −
∫ τ

t0

k
(

s, x(s)
)

Δs > y(τ) −
∫ τ

t0

k
(

s, y(s)
)

Δs, τ ≥ t0 ∈ T. (3.48)

This is a contradiction.

If T = R and T = δZ with a positive constant δ, then we can obtain the following results
as corollaries of Lemma 3.25.

Corollary 3.26 (see [14, Lemma 2.1]). Suppose that k ∈ C(R×R+,R) is nondecreasing in the second
argument x for t ≥ t0 with the property

x(t) −
∫ t

t0

k
(

s, x(s)
)

ds ≤ y(t) −
∫ t

t0

k
(

s, y(s)
)

ds, t ≥ t0 ∈ R, (3.49)

for x, y ∈ C(T,R+). If x(t0) < y(t0), then x(t) < y(t) for all t ≥ t0 ∈ R.

Corollary 3.27 (see [5, Lemma 9]). Suppose that k : δZ × R+→R is nondecreasing in the second
argument x for t ≥ t0 with the property

x(t) −
t−δ∑

s=t0

k
(

s, x(s)
)

δ ≤ y(t) −
t−δ∑

s=t0

k
(

s, y(s)
)

δ, t ≥ t0 ∈ δZ, (3.50)

for x, y : δZ→R+. If x(t0) < y(t0), then x(t) < y(t) for all t ≥ t0 ∈ δZ.

Theorem 3.28. Assume that x = 0 of (3.2) is uniformly stable. Suppose that
∣
∣g(t, x)

∣
∣ ≤ ι

(

t, |x|), (3.51)

where ι ∈ Crd(T ×R+,R+) is strictly increasing in u for each fixed t ∈ Tt0 with ι(t, 0) = 0. Consider the
scalar dynamic equation

uΔ = cι(t, u), u
(

t0
)

= u0, t ∈ Tt0 , (3.52)

where c ≥ 1 is a constant. If u = 0 of (3.52) is h-stable, then (3.24) is h-stable whenever u0 = c|x0|.

Proof. It follows from Lemma 3.15 that the solution x(t) of (3.24) is given by

x(t) = ΦA

(

t, t0
)

x0 +
∫ t

t0

ΦA

(

t, σ(s)
)

g
(

s, x(s)
)

Δs, t ∈ Tt0 . (3.53)

Since x = 0 of (3.2) is uniformly stable, we obtain

∣
∣x(t)

∣
∣ ≤ ∣

∣ΦA

(

t, t0
)∣
∣
∣
∣x0

∣
∣ +

∫ t

t0

∣
∣ΦA

(

t, σ(s)
)∣
∣
∣
∣g
(

s, x(s)
)∣
∣Δs ≤ c

∣
∣x0

∣
∣ + c

∫ t

t0

ι
(

s,
∣
∣x(s)

∣
∣
)

Δs. (3.54)

Thus, we have

∣
∣x(t)

∣
∣ − c

∫ t

t0

ι
(

s,
∣
∣x(s)

∣
∣
)

Δs ≤ c
∣
∣x0

∣
∣ ≤ u0 = u(t) − c

∫ t

t0

ι
(

s, u(s)
)

Δs, t ∈ Tt0 . (3.55)
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By Lemma 3.25, we have |x(t)| < u(t) for all t ∈ Tt0 . Since u = 0 of (3.52) is h-stable, we obtain

∣
∣x(t)

∣
∣ ≤ c1u0h(t)h

(

t0
)−1 ≤ c1c

∣
∣x0

∣
∣h(t)h

(

t0
)−1 = M

∣
∣x0

∣
∣h(t)h

(

t0
)−1

, t ∈ Tt0 , (3.56)

whereM = c1c ≥ 1 is a constant. This completes the proof.
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