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Let X,Y be vector spaces and k a fixed positive integer. It is shown that a mapping f(kx + y) +
f(kx − y) = 2k2f(x) + 2f(y) for all x, y ∈ X if and only if the mapping f : X → Y satisfies
f(x + y) + f(x − y) = 2f(x) + 2f(y) for all x, y ∈ X. Furthermore, the Hyers-Ulam-Rassias stability
of the above functional equation in Banach spaces is proven.
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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concern-
ing the stability of group homomorphisms. Hyers [2] gave a first affirmative answer to the
question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [3] for additive
mapping and by Th. M. Rassias [4] for linear mappings by considering an unbounded Cauchy
difference. The paper of Th. M. Rassias [4] has provided a lot of influence in the development of
what we now call Hyers-Ulam-Rassias stability of functional equations. Th. M. Rassias [5] during
the 27th International Symposium on Functional Equations asked the question whether such a
theorem can also be proved for p ≥ 1. Gajda [6], following the same approach as in [4], gave
an affirmative solution to this question for p > 1. It was shown by Gajda [6] as well as by
Rassias and Šemrl [7] that one cannot prove a Th.M. Rassias’ type theorem when p = 1. J. M.
Rassias [8], following the spirit of the innovative approach of Th. M. Rassias [4] for the un-
bounded Cauchy difference, proved a similar stability theorem in which he replaced the factor
‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p + q /= 1.

The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
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equation is said to be a quadratic function. A Hyers-Ulam-Rassias stability problem for the
quadratic functional equation was proved by Skof [9] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [10] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. In [11], Czerwik proved
the Hyers-Ulam-Rassias stability of the quadratic functional equation. Several functional equa-
tions have been investigated in [12–17].

Throughout this paper, assume that k is a fixed positive integer.
In this paper, we solve the functional equation

f(kx + y) + f(kx − y) = 2k2f(x) + 2f(y) (1.2)

and prove the Hyers-Ulam-Rassias stability of the functional equation (1.2) in Banach spaces.

2. Hyers-Ulam-Rassias stability of the quadratic functional equation

Proposition 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies

f(kx + y) + f(kx − y) = 2k2f(x) + 2f(y) (2.1)

for all x, y ∈ X if and only if the mapping f : X → Y satisfies

f(x + y) + f(x − y) = 2f(x) + 2f(y) (2.2)

for all x, y ∈ X.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get f(0) = 0.
Letting y = 0 in (2.1), we get f(kx) = k2f(x) for all x ∈ X.
Letting x = 0 in (2.1), we get f(−y) = f(y) for all y ∈ X.
It follows from (2.1) that

f(kx + y) + f(kx − y) = 2k2f(x) + 2f(y) = 2f(kx) + 2f(y) (2.3)

for all x, y ∈ X. So the mapping f : X → Y satisfies

f(x + y) + f(x − y) = 2f(x) + 2f(y) (2.4)

for all x, y ∈ X.
Assume that f : X → Y satisfies f(x + y) + f(x − y) = 2f(x) + 2f(y) for all x, y ∈ X.
We prove (2.1) for k = j by induction on j.
For the case j = 1, (2.1) holds by the assumption.
For the case j = 2, since

f(2x + y) + f(2x − y) = f(x + y + x) + f(x − y + x)

= 2f(x + y) + 2f(x) − f(y) + 2f(x − y) + 2f(x) − f(−y)
= 2f(x + y) + 2f(x − y) + 4f(x) − 2f(y)

= 4f(x) + 4f(y) + 4f(x) − 2f(y)

= 8f(x) + 2f(y)

(2.5)

for all x, y ∈ X, then (2.1) holds.
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Assume that (2.1) holds for j = n − 2 and j = n − 1 (2 < n ≤ k). By the assumption,

f(nx + y) + f(nx − y) = f
(
(n − 1)x + y + x

)
+ f

(
(n − 1)x − y + x

)

= 2f
(
(n − 1)x + y

)
+ 2f(x) − f

(
(n − 2)x + y

)

+ 2f
(
(n − 1)x − y

)
+ 2f(x) − f

(
(n − 2)x − y

)

= 4(n − 1)2f(x) + 4f(y) + 4f(x) − 2(n − 2)2f(x) − 2f(y)

= 2n2f(x) + 2f(y)

(2.6)

for all x, y ∈ X, (2.1) holds for j = n. Hence the mapping f : X → Y satisfies (2.1) for j = k.

From now on, assume that X is a normed vector space with norm || · || and that Y is a
Banach space with norm ‖ · ‖.

For a given mapping f : X → Y , we define

Df(x, y) := f(kx + y) + f(kx − y) − 2k2f(x) − 2f(y) (2.7)

for all x, y ∈ X.
Now we prove the Hyers-Ulam-Rassias stability of the quadratic functional equation

Df(x, y) = 0.

Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function ϕ : X2 →
[0,∞) such that

ϕ̃(x, y) :=
∞∑

j=0

1
k2j

ϕ
(
kjx, kjy

)
< ∞, (2.8)

∥∥Df(x, y)
∥∥ ≤ ϕ(x, y) (2.9)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ 1

2k2
ϕ̃(x, 0) (2.10)

for all x ∈ X.

Proof. Letting y = 0 in (2.9), we get

∥
∥2f(kx) − 2k2f(x)

∥
∥ ≤ ϕ(x, 0) (2.11)

for all x ∈ X. So
∥∥∥∥f(x) −

1
k2

f(kx)
∥∥∥∥ ≤ 1

2k2
ϕ(x, 0) (2.12)

for all x ∈ X. Hence

∥∥∥∥
1
k2l

f
(
klx

) − 1
k2m

f
(
kmx

)
∥∥∥∥ ≤

m−1∑

j=l

1
2k2j+2

ϕ
(
kjx, 0

)
(2.13)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.13) that
the sequence {(1/k2n)f(knx)} is Cauchy for all x ∈ X. Since Y is complete, the sequence
{(1/k2n)f(knx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1
k2n

f
(
knx

)
(2.14)

for all x ∈ X.
By (2.8),

∥∥DQ(x, y)
∥∥ = lim

n→∞
1
k2n

∥∥Df
(
knx, kny

)∥∥ ≤ lim
n→∞

1
k2n

ϕ
(
knx, kny

)
= 0 (2.15)

for all x, y ∈ X. So DQ(x, y) = 0. By Proposition 2.1, the mapping Q : X → Y is quadratic.
Moreover, letting l = 0 and passing the limit m → ∞ in (2.13), we get (2.10).

Now, let T : X → Y be another quadratic mapping satisfying (2.1) and (2.10). Then we
have

∥∥Q(x) − T(x)
∥∥ =

1
k2n

∥∥Q
(
knx

) − T
(
knx

)∥∥

≤ 1
k2n

(∥∥Q
(
knx

) − f
(
knx

)∥∥ +
∥∥T

(
knx

) − f
(
knx

)∥∥)

≤ 1
k2n+2

ϕ̃
(
knx, 0

)
,

(2.16)

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that Q(x) = T(x) for all
x ∈ X. This proves the uniqueness ofQ. So there exists a unique quadratic mappingQ : X → Y
satisfying (2.10).

Corollary 2.3. Let p < 2 and θ be positive real numbers, and let f : X → Y be a mapping such that
∥∥Df(x, y)

∥∥ ≤ θ
(||x||p + ||y||p) (2.17)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ θ

8 − 2p+1
||x||p (2.18)

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking

ϕ(x, y) := θ
(||x||p + ||y||p) (2.19)

for all x, y ∈ A.

Theorem 2.4. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function ϕ : X2 →
[0,∞) satisfying (2.9) such that

ϕ̃(x, y) :=
∞∑

j=0

k2jϕ

(
x

kj
,
y

kj

)
< ∞ (2.20)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ 1

2
ϕ̃

(
x

k
, 0
)

(2.21)

for all x ∈ X.
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Proof. It follows from (2.11) that
∥
∥∥
∥f(x) − k2f

(
x

k

)∥
∥∥
∥ ≤ 1

2
ϕ

(
x

k
, 0
)

(2.22)

for all x ∈ X. Hence
∥∥∥∥k

2lf

(
x

kl

)
− k2mf

(
x

km

)∥∥∥∥ ≤
m−1∑

j=l

k2j

2
ϕ

(
x

kj+1
, 0
)

(2.23)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.23) that the
sequence {k2nf(x/kn)} is Cauchy for all x ∈ X. Since Y is complete, the sequence {k2nf(x/kn)}
converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

k2nf

(
x

kn

)
(2.24)

for all x ∈ X.
By (2.20),

∥∥DQ(x, y)
∥∥ = lim

n→∞
k2n

∥
∥∥∥Df

(
x

kn
,
y

kn

)∥
∥∥∥ ≤ lim

n→∞
k2nϕ

(
x

kn
,
y

kn

)
= 0 (2.25)

for all x, y ∈ X. So DQ(x, y) = 0. By Proposition 2.1, the mapping Q : X → Y is quadratic.
Moreover, letting l = 0 and passing the limit m → ∞ in (2.23), we get (2.21).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let p > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.17). Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ θ

2p+1 − 8
||x||p (2.26)

for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking

ϕ(x, y) := θ
(||x||p + ||y||p) (2.27)

for all x, y ∈ A.

From now on, assume that k = 2.

Theorem 2.6. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function ϕ : X2 →
[0,∞) satisfying (2.9) such that

ϕ̃(x, y) :=
∞∑

j=0

1
9j
ϕ
(
3jx, 3jy

)
< ∞ (2.28)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ 1

9
ϕ̃(x, x) (2.29)

for all x ∈ X.
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Proof. Letting y = x in (2.9), we get

∥
∥f(3x) − 9f(x)

∥∥ ≤ ϕ(x, x) (2.30)

for all x ∈ X. So
∥
∥∥
∥f(x) −

1
9
f(3x)

∥
∥
∥
∥ ≤ 1

9
ϕ(x, x) (2.31)

for all x ∈ X. Hence

∥∥
∥
∥
1
9l
f(3lx) − 1

9m
f
(
3mx

)
∥∥
∥
∥ ≤

m−1∑

j=l

1
9j+1

ϕ
(
3jx, 3jx

)
(2.32)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.32) that
the sequence {(1/9n)f(3nx)} is Cauchy for all x ∈ X. Since Y is complete, the sequence
{(1/9n)f(3nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1
9n

f
(
3nx

)
(2.33)

for all x ∈ X.
By (2.28),

∥∥DQ(x, y)
∥∥ = lim

n→∞
1
9n

∥∥Df
(
3nx, 3ny

)∥∥ ≤ lim
n→∞

1
9n

ϕ
(
3nx, 3ny

)
= 0 (2.34)

for all x, y ∈ X. So DQ(x, y) = 0. By Proposition 2.1, the mapping Q : X → Y is quadratic.
Moreover, letting l = 0 and passing the limit m → ∞ in (2.32), we get (2.29).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.7. Let p < 1 and θ be positive real numbers, and let f : X → Y be a mapping such that

∥∥Df(x, y)
∥∥ ≤ θ · ||x||p · ||y||p (2.35)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ θ

9 − 9p
||x||2p (2.36)

for all x ∈ X.

Proof. The proof follows from Theorem 2.6 by taking

ϕ(x, y) := θ · ||x||p · ||y||p (2.37)

for all x, y ∈ A.
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Theorem 2.8. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function ϕ : X2 →
[0,∞) satisfying (2.9) such that

ϕ̃(x, y) :=
∞∑

j=0

9jϕ
(
x

3j
,
y

3j

)
< ∞ (2.38)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ ϕ̃

(
x

3
,
x

3

)
(2.39)

for all x ∈ X.

Proof. It follows from (2.30) that
∥∥∥∥f(x) − 9f

(
x

3

)∥∥∥∥ ≤ ϕ

(
x

3
,
x

3

)
(2.40)

for all x ∈ X. Hence
∥∥
∥∥9

lf

(
x

3l

)
− 9mf

(
x

3m

)∥∥
∥∥ ≤

m−1∑

j=l

9jϕ
(

x

3j+1
,

x

3j+1

)
(2.41)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.41) that the
sequence {9nf(x/3n)} is Cauchy for all x ∈ X. Since Y is complete, the sequence {9nf(x/3n)}
converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

9nf
(

x

3n

)
(2.42)

for all x ∈ X.
By (2.38),

∥∥DQ(x, y)
∥∥ = lim

n→∞
1
9n

∥∥Df
(
3nx, 3ny

)∥∥ ≤ lim
n→∞

1
9n

ϕ
(
3nx, 3ny

)
= 0 (2.43)

for all x, y ∈ X. So DQ(x, y) = 0. By Proposition 2.1, the mapping Q : X → Y is quadratic.
Moreover, letting l = 0 and passing the limit m → ∞ in (2.41), we get (2.39).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.9. Let p > 1 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.35). Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ θ

9p − 9
||x||2p (2.44)

for all x ∈ X.

Proof. The proof follows from Theorem 2.8 by taking

ϕ(x, y) := θ · ||x||p · ||y||p (2.45)

for all x, y ∈ A.
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