Research Article

A Note on the Multiple Twisted Carlitz's Type q-Bernoulli Polynomials

Lee-Chae Jang ${ }^{\mathbf{1}}$ and Cheon-Seoung Ryoo ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics and Computer Science, Konkuk University, Chungju 380701, South Korea
${ }^{2}$ Department of Mathematics, Hannam University, Daejeon 306-791, South Korea

Correspondence should be addressed to Lee-Chae Jang, leechae.jang@kku.ac.kr
Received 26 January 2008; Accepted 17 March 2008
Recommended by Ferhan Atici

Abstract

We give the twisted Carlitz's type q-Bernoulli polynomials and numbers associated with p-adic q inetgrals and discuss their properties. Furthermore, we define the multiple twisted Carlitz's type q-Bernoulli polynomials and numbers and obtain the distribution relation for them.

Copyright © 2008 L.-C. Jang and C.-S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$, and \mathbb{C}_{p} will, respectively, be the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the p-adic completion of the algebraic closure of \mathbb{Q}_{p}. The p-adic absolute value in \mathbb{C}_{p} is normalized so that $|p|_{p}=1 / p$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, one normally assumes $|q|<1$. If $q \in \mathbb{C}_{p}$, one normally assumes that $|1-q|_{p}<p^{-1 /(p-1)}$ so that $q^{x}=\exp (x \log q)$ for each $x \in \mathbb{Z}_{p}$. We use the notation

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad[x]_{-q}=\frac{1-(-q)^{x}}{1+q} \tag{1.1}
\end{equation*}
$$

(cf. [1-20]) for all $x \in \mathbb{Z}_{p}$. For a fixed odd positive integer d with $(p, d)=1$, let

$$
\begin{gather*}
X=X_{d}=\frac{\lim _{-1}^{-} \mathbb{Z}}{d p^{n} \mathbb{Z}}, \quad X_{1}=\mathbb{Z}_{p}, \quad X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}}\left(a+d p \mathbb{Z}_{p}\right), \tag{1.2}\\
a+d p^{n} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{n}\right)\right\},
\end{gather*}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{n}$. For any $n \in \mathbb{N}$,

$$
\begin{equation*}
\mu_{q}\left(a+d p^{n} \mathbb{Z}_{p}\right)=\frac{q^{a}}{\left[d p^{n}\right]_{q}} \tag{1.3}
\end{equation*}
$$

is known to be a distribution on X (cf. [1-20]).
We say that f is uniformly differentiable function at a point $a \in \mathbb{Z}_{p}$ and denote this property by $f \in \mathrm{UD}\left(\mathbb{Z}_{p}\right)$, if the difference quotients

$$
\begin{equation*}
F_{f}(x, y)=\frac{f(x)-f(y)}{x-y} \tag{1.4}
\end{equation*}
$$

have a limit $l=f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)(c f .[10-13])$. The p-adic q-integral of a function $f \in$ $\mathrm{UD}\left(\mathbb{Z}_{p}\right)$ was defined as

$$
\begin{equation*}
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{n \rightarrow \infty} \frac{1}{\left[p^{n}\right]_{q}} \sum_{x=0}^{p^{n}-1} f(x) q^{x} \tag{1.5}
\end{equation*}
$$

By using p-adic q-integrals on \mathbb{Z}_{p}, it is well known that

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} x^{n} d \mu_{1}(x) \frac{t^{n}}{n!} \tag{1.6}
\end{equation*}
$$

where $\mu_{1}\left(x+p^{n} \mathbb{Z}_{p}\right)=1 / p^{n}$. Then, we note that the Bernoulli numbers B_{n} were defined as

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} \tag{1.7}
\end{equation*}
$$

and hence, we have

$$
\begin{equation*}
B_{n}=\int_{\mathbb{Z}_{p}} x^{n} d \mu_{1}(x) \tag{1.8}
\end{equation*}
$$

for all $n \in \mathbb{N} \cup\{0\}$. For $k \in \mathbb{N}$ and $n \in \mathbb{N} \cup\{0\}$, the multiple Bernoulli polynomials $B_{n}^{(k)}(x)$ were defined as

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{k} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{t^{n}}{n!} \tag{1.9}
\end{equation*}
$$

(cf. [2]). We note that

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{k} e^{x t}=\sum_{n=0}^{\infty} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text {-times }}\left(x+x_{1}+\cdots+x_{k}\right)^{n} d \mu_{1}\left(x_{1}\right) \cdots d \mu_{1}\left(x_{k}\right) . \tag{1.10}
\end{equation*}
$$

From (1.9) and (1.10), we obtain

$$
\begin{equation*}
B_{n}^{(k)}(x)=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text {-times }}\left(x+x_{1}+\cdots+x_{k}\right)^{n} d \mu_{1}\left(x_{1}\right) \cdots d \mu_{1}\left(x_{k}\right) . \tag{1.11}
\end{equation*}
$$

In view of (1.11), the multiple Carlitz's type q-Bernoulli polynomials were defined as

$$
\begin{equation*}
\beta_{n}^{(k, q)}(x)=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text {-times }}\left[x+x_{1}+\cdots+x_{k}\right]_{q}^{n} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{k}\right) \tag{1.12}
\end{equation*}
$$

In this case, $x=0$, we write $\beta_{n}^{(k, q)}(0)=\beta_{n}^{(k, q)}$, which were called the Carlitz's type q-Bernoulli numbers. By (1.11) and (1.12), we note that

$$
\begin{equation*}
\lim _{q \rightarrow 1} \beta_{n}^{(k, q)}=B_{n}^{(k, 1)}=B_{n}^{k} \tag{1.13}
\end{equation*}
$$

In Section 2, we give the twisted Carlitz's type q-Bernoulli polynomials and numbers associated with p-adic q-inetgrals and discuss their properties. In Section 3, we define the multiple twisted Carlitz's type q-Bernoulli polynomials and numbers. We also obtain the distribution relation for them.

2. Twisted Carlitz's type q-Bernoulli polynomials

In this section, we assume that $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-1 /(p-1)}$. By using p-adic q-integral on \mathbb{Z}_{p}, we derive

$$
\begin{equation*}
I_{q}\left(f_{1}\right)=\frac{1}{q} I_{q}(f)+\left(\frac{q-1}{\log q} f^{\prime}(0)+(q-1) f(0)\right) \tag{2.1}
\end{equation*}
$$

(cf. [8]), where $f_{1}(x)=f(x+1)$. From (1.5), we can derive

$$
\begin{equation*}
q^{n} I_{q}\left(f_{n}\right)=I_{q}(f)+\frac{q(q-1)}{\log q}\left(\sum_{i=0}^{n-1} f^{\prime}(i) q^{i}+\log q \sum_{i=0}^{n-1} f(i) q^{i}\right) \tag{2.2}
\end{equation*}
$$

(cf. [8]), where $n \in \mathbb{N}$ and $f_{n}(x)=f(x+n)$.
Let $T_{p}=\bigcup_{n>1} C_{p^{n}}=\lim _{n \rightarrow \infty} C_{p^{n}}=C_{p^{\infty}}$ be the locally constant space, where $C_{p^{n}}=\{w \mid$ $\left.w^{p^{n}}=1\right\}$ is the cyclic group of order p^{n}. For $w \in T_{p}$, we denote the locally constant function by $\phi_{w}: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}, x \rightarrow w^{x}$. If we take $f(x)=\phi_{w}(x)=w^{x}$, then we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{t x} \phi_{w}(x) d \mu_{q}(x)=\left(\frac{\log q+t}{q w e^{t}-1}\right) \frac{q(q-1)}{\log q} \equiv F_{w}^{q}(t) \tag{2.3}
\end{equation*}
$$

Now we define the twisted q-Bernoulli polynomials as follows:

$$
\begin{equation*}
F_{w}^{q}(x, t)=\left(\frac{\log q+t}{q w e^{t}-1}\right) \frac{q(q-1)}{\log q} e^{x t}=\sum_{n=0}^{\infty} B_{n, w}^{q}(x) \frac{t^{n}}{n!} . \tag{2.4}
\end{equation*}
$$

We note that $B_{n, w}^{q}(0)=B_{n, w}^{q}$ are called the twisted q-Bernoulli numbers and by substituting $w=1, \lim _{q \rightarrow 1} B_{n, 1}^{q}=B_{n}$ are the familiar Bernoulli numbers. By (2.3), we obtain the following Witt's type formula for the twisted q-Bernoulli polynomials and numbers.

Theorem 2.1. For $n \in \mathbb{N}$ and $w \in T_{p}$, one has

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}(t+x)^{n} w^{t} d \mu_{q}(t)=B_{n, w}^{q}(x) \tag{2.5}
\end{equation*}
$$

From (2.5), we consider the twisted Carliz's type q-Bernoulli polynomials by using p adic q-integrals. For $w \in T_{p}$, we define the twisted Carlitz's type q-Bernoulli polynomials as follows:

$$
\begin{equation*}
\beta_{n, w}^{q}(x)=\frac{1}{1-q} \int_{\mathbb{Z}_{p}}[t+x]_{q}^{n} w^{t} d \mu_{q}(t) \tag{2.6}
\end{equation*}
$$

When $x=0$, we write $\beta_{n, w}^{q}(0)=\beta_{n, w}^{q}$ which are called twisted Carlitz's type q-Bernoulli numbers. Note that if $w=1$, then $\lim _{q \rightarrow 1} \beta_{n, 1}^{q}=B_{n}$. From (2.6), we can see that

$$
\begin{equation*}
\beta_{n, w}^{q}(x)=\frac{1}{(1-q)^{n}} \sum_{i=0}^{n}\binom{n}{i} q^{i x}(-1)^{i} \frac{1}{1-q^{i+1} w} \tag{2.7}
\end{equation*}
$$

From (2.7), we can derive the generating function for the twisted Carlitz's type q-Bernoulli polynomials as follows:

$$
\begin{align*}
G_{w}^{q}(x, t) & =\sum_{n=0}^{\infty} \beta_{n, w}^{q}(x) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{(1-q)^{n}} \sum_{i=0}^{n}\binom{n}{i} q^{i x}(-1)^{i} \frac{1}{1-q^{i+1} w}\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{(1-q)^{n}} \sum_{i=0}^{n}\binom{n}{i} q^{i x}(-1)^{i} \sum_{l=0}^{\infty} q^{(i+1) l} w^{l}\right) \frac{t^{n}}{n!} \tag{2.8}\\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{\infty} \frac{q^{l} w^{l}}{(1-q)^{n}} \sum_{i=0}^{n}\binom{n}{i} q^{(x+l) i}(-1)^{i}\right) \frac{t^{n}}{n!} \\
& =\sum_{l=0}^{\infty} q^{l} w^{l} \sum_{n=0}^{\infty} \frac{\left(1-q^{x+l}\right)^{n}}{(1-q)^{n}} \frac{t^{n}}{n!} \\
& =\sum_{l=0}^{\infty} q^{l} w^{l} e^{[x+l]_{q^{t}}} .
\end{align*}
$$

Then it is easily to see that

$$
\begin{equation*}
G_{w}^{q}(x, t)=\int_{\mathbb{Z}_{p}} e^{[t+x]_{q} t} w^{t} d \mu_{q}(t) \tag{2.9}
\end{equation*}
$$

By the k th differentiation on both sides of (2.8) at $t=0$, we also have

$$
\begin{equation*}
\beta_{n, w}^{q}(x)=\left.\frac{d^{n}}{d t^{n}} G_{w}^{q}(x, t)\right|_{t=0}=\sum_{l=0}^{\infty} q^{l} w^{l}[x+l]_{q}^{n} \tag{2.10}
\end{equation*}
$$

for $n \in \mathbb{N} \cup\{0\}$. We note that

$$
\begin{equation*}
\beta_{n, w}^{q}=\beta_{n, w}^{q}(0)=\sum_{l=0}^{\infty} q^{l} w^{l}[l]_{q}^{n} . \tag{2.11}
\end{equation*}
$$

In view of (2.10), we define twisted Carlitz's type q-zeta function as follows:

$$
\begin{equation*}
\zeta_{w}^{q}(s, x)=\sum_{l=0}^{\infty} \frac{q^{l} w^{l}}{[x+l]_{q}^{s}} \tag{2.12}
\end{equation*}
$$

for all $s \in \mathbb{C}$ and $\operatorname{Re}(x)>0$. We note that $\zeta_{w}^{q}(s, x)$ is analytic function in the whole complex s-plane. We also have the following theorem in which twisted Carlitz's type q-zeta functions interpolate twisted Carlitz's type q-Bernoulli numbers and polynomials.

Theorem 2.2. For $k \in \mathbb{N} \cup\{0\}$ and $w \in T_{p}$, one has

$$
\begin{align*}
& \zeta_{w}^{q}(-k, x)=\beta_{k, w}^{q}(x), \\
& \zeta_{w}^{q}(-k, 0)=\beta_{k, w}^{q} . \tag{2.13}
\end{align*}
$$

From (2.11), we obtain the following distribution relation for the twisted q-Bernoulli polynomials.

Theorem 2.3. For $r \in \mathbb{N}, n \in \mathbb{N} \cup\{0\}$, and $w \in T_{p}$, one has

$$
\begin{equation*}
\beta_{n, w}^{q}(x)=[r]_{q}^{n-1} \sum_{i=0}^{r-1} w^{i} q^{i} \beta_{n, w^{r}}^{q^{r}}\left(\frac{i+x}{r}\right) . \tag{2.14}
\end{equation*}
$$

Proof. If we put $i+r l=j$ and $i=1 \cdots r$ and $l=0,1, \ldots$, then by (2.11), we have

$$
\begin{align*}
\beta_{n, w}^{q}(x) & =\sum_{j=0}^{\infty} w^{j} q^{j}[x+j]_{q}^{n} \\
& =\sum_{l=0}^{\infty} \sum_{i=0}^{r-1} w^{i+r l} q^{i+r l}[x+i+r l]_{q}^{n} \tag{2.15}\\
& =\left(\frac{1-q^{r}}{1-q}\right)^{n r-1} \sum_{i=0}^{n} w^{i} q^{i} \sum_{l=0}^{\infty} w^{r l} q^{r l}\left(\frac{1-q^{r((i+x) / r+l)}}{1-q^{r}}\right)^{n} \\
& =[r]_{q}^{n-1} \sum_{i=0}^{r-1} w^{i} q^{i} \beta_{n, w^{r}}^{q^{r}}\left(\frac{i+x}{r}\right) .
\end{align*}
$$

3. Multiple twisted Carlitz's type q-Bernoulli polynomials

In this section, we consider the multiple twisted Carlitz's type q-Bernoulli polynomials as follows:

$$
\begin{align*}
\beta_{k, w}^{(h, q)}(x) & =\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[x_{1}+\cdots+x_{h}+x\right]_{q}^{n} w^{x_{1}+\cdots+x_{h}} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{h}\right)}_{h \text {-times }} \tag{3.1}\\
& =\lim _{\varrho \rightarrow \infty} \frac{1}{\left[p^{\varrho}\right]_{q}^{h}} \sum_{x_{1} \cdots x_{h}=0}^{p^{\varrho-1}}\left[x+x_{1}+\cdots+x_{h}\right]_{q}^{n} w^{x_{1}+\cdots+x_{h}} q^{x_{1}+\cdots+x_{h}},
\end{align*}
$$

where $h \in \mathbb{N}, k \in \mathbb{N} \cup\{0\}$, and $w \in T_{p}$. We note that $\beta_{n, w}^{(h, q)}(0)=\beta_{n, w}^{(h, q)}$ are called the multiple twisted Carlitz's type q-Bernoulli numbers. We also obtain the generating function of the multiple twisted Carlitz's type q-Bernoulli polynomials as follows:

$$
\begin{align*}
G_{w}^{(h, q)}(x, t) & =\underbrace{\int_{h \text {-imes }} \cdots \int_{\mathbb{Z}_{p}} e^{\left[x_{1}+\cdots+x_{h}+x\right]_{q} t} w^{x_{1}+\cdots+x_{h}} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{h}\right)}_{\mathbb{Z}_{p}} \\
& =\sum_{l=0}^{\infty} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[x_{1}+\cdots+x_{h}+x\right]_{q}^{l} w^{x_{1}+\cdots+x_{h}} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{h}\right) \frac{t^{l}}{l!}}_{h \text {-times }} \tag{3.2}\\
& =\sum_{l=0}^{\infty} \beta_{l, w}^{(h, q)}(x) \frac{t^{l}}{l!} .
\end{align*}
$$

Finally, we have the following distribution relation for the multiple twisted q-Bernoulli polynomials.

Theorem 3.1. For each $w \in T_{p}, h, r \in \mathbb{N}, n \in \mathbb{N} \cup\{0\}$, and $w \in T_{p,}$,

$$
\begin{equation*}
\beta_{n, w}^{(h, q)}(x)=[r]_{q}^{n-h} \sum_{j_{1}, \ldots, j_{h}=0}^{r-1} w^{j_{1}+\cdots+j_{h}} q^{j_{1}+\cdots+j_{h}} \beta_{n, w^{r}}^{\left(h, q^{r}\right)}\left(\frac{x+j_{1}+\cdots+j_{h}}{r}\right) \tag{3.3}
\end{equation*}
$$

Proof. If we put $j_{k}+r l_{k}=x_{k}, j_{k}=0,1, \ldots r-1$, and $k=1 \cdots h$, then by (3.1), we have

$$
\begin{aligned}
\beta_{k, w}^{(h, q)}(x) & =\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[x_{1}+\cdots+x_{h}+x\right]_{q}^{n} w^{x_{1}+\cdots+x_{h}} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{h}\right)}_{h \text {-times }} \\
& =\lim _{\varrho \rightarrow \infty} \frac{1}{\left[r p^{\varrho}\right]_{q}^{h}} \sum_{x_{1} \cdots x_{h}=0}^{r p^{\rho}-1}\left[x+x_{1}+\cdots+x_{h}\right]_{q}^{n} w^{x_{1}+\cdots+x_{h}} q^{x_{1}+\cdots+x_{h}} \\
& =\lim _{\varrho \rightarrow \infty}[r]_{q}^{n-h} \frac{1}{\left[p^{\varrho}\right]_{q^{r}}^{h}} \sum_{j_{1}, \ldots, j_{h}=0}^{r-1} \sum_{l_{1} \cdots l_{h}=0}^{p^{\rho}-1}\left[x+j_{1}+r l_{1}+\cdots+j_{h}+r l_{h}\right]_{q}^{n} \cdot w^{j_{1}+r l_{1}+\cdots+j_{h}+r l_{h}} q^{j_{1}+r l_{1}+\cdots+j_{h}+r l_{h}}
\end{aligned}
$$

$$
\begin{align*}
& =[r]_{q}^{n-h} \sum_{j_{1}, \ldots, j_{h}=0}^{r-1} w^{j_{1}+\cdots+j_{h}} q^{j_{1}+\cdots+j_{h}} \cdot \lim _{\rho \rightarrow \infty} \frac{1}{\left[p^{\rho}\right]_{q^{r}}^{h}} \sum_{l_{1} \cdots l_{h}=0}^{p^{\rho}-1}\left[\frac{x+j_{1}+\cdots+j_{h}}{r}+l_{1}+\cdots+l_{h}\right]_{q^{r}}^{n} w^{r\left(l_{1}+\cdots+l_{h}\right)} q^{r\left(l_{1}+\cdots+l_{h}\right)} \\
& =[r]_{q}^{n-h} \sum_{j_{1}, \ldots, j_{h}=0}^{r-1} w^{j_{1}+\cdots+j_{h}} q^{j_{1}+\cdots+j_{h}} \beta_{n, w^{r}}^{\left(h, q^{r}\right)}\left(\frac{x+j_{1}+\cdots+j_{h}}{r}\right) . \tag{3.4}
\end{align*}
$$

Question 1. Are there the analytic multiple twisted Carlitz's type q-zeta functions which interpolate multiple twisted Carlitz's type q-Bernoulli polynomials?

References

[1] L. Carlitz, " q-Bernoulli numbers and polynomials," Duke Mathematical Journal, vol. 15, no. 4, pp. 9871000, 1948.
[2] L.-C. Jang, "On a q-analogue of the p-adic generalized twisted L-functions and p-adic q-integrals," Journal of the Korean Mathematical Society, vol. 44, no. 1, pp. 1-10, 2007.
[3] L.-C. Jang, T. Kim, and D.-W. Park, "Kummer congruence for the Bernoulli numbers of higher order," Applied Mathematics and Computation, vol. 151, no. 2, pp. 589-593, 2004.
[4] T. Kim, " q-Volkenborn integration," Russian Journal of Mathematical Physics, vol. 9, no. 3, pp. 288-299, 2002.
[5] T. Kim, "On a q-analogue of the p-adic log gamma functions and related integrals," Journal of Number Theory, vol. 76, no. 2, pp. 320-329, 1999.
[6] T. Kim, "Some formulae for the q-Bernoulli and Euler polynomials of higher order," Journal of Mathematical Analysis and Applications, vol. 273, no. 1, pp. 236-242, 2002.
[7] T. Kim, "On p-adic q-L-functions and sums of powers," Discrete Mathematics, vol. 252, no. 1-3, pp. 179-187, 2002.
[8] T. Kim, "An invariant p-adic q-integrals on \mathbb{Z}_{p}," Applied Mathematics Letters, vol. 21, pp. 105-108, 2008.
[9] T. Kim and H. S. Kim, "Remark on p-adic q-Bernoulli numbers," Advanced Studies in Contemporary Mathematics, vol. 1, pp. 127-136, 1999.
[10] T. Kim and J.-S. Cho, "A note on multiple Dirichlet's q-L-function," Advanced Studies in Contemporary Mathematics, vol. 11, no. 1, pp. 57-60, 2005.
[11] T. Kim, "Sums of products of q-Bernoulli numbers," Archiv der Mathematik, vol. 76, no. 3, pp. 190-195, 2001.
[12] M. Cenkci, Y. Simsek, and V. Kurt, "Further remarks on multiple p-adic q - L-function of two variables," Advanced Studies in Contemporary Mathematics, vol. 14, no. 1, pp. 49-68, 2007.
[13] Y. Simsek, "Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function," Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 790-804, 2006.
[14] Y. Simsek, "The behavior of the twisted p-adic (h, q)-L-functions at $s=0$, " Journal of the Korean Mathematical Society, vol. 44, no. 4, pp. 915-929, 2007.
[15] Y. Simsek, V. Kurt, and D. Kim, "New approach to the complete sum of products of the twisted (h,q)Bernoulli numbers and polynomials," Journal of Nonlinear Mathematical Physics, vol. 14, no. 1, pp. $44-$ 56, 2007.
[16] Y. Simsek, "On p-adic twisted q - L-functions related to generalized twisted Bernoulli numbers," Russian Journal of Mathematical Physics, vol. 13, no. 3, pp. 340-348, 2006.
[17] Y. Simsek, "Twisted (h, q)-L-functions," to appear in Journal of Nonlinear Mathematical Physics.
[18] Y. Simsek, " p-adic Dedekind and Hardy-Berndt type sum related to Volkenborn integral on \mathbb{Z}_{p}," to appear in Journal of Nonlinear Mathematical Physics.
[19] H. Ozden, I. N. Cangul, and Y. Simsek, "Remarks on sum of products of (h, q)-twisted Euler polynomials and numbers," Journal of Inequalities and Applications, vol. 2008, Article ID 816129, 8 pages, 2008.
[20] H. Ozden, I. N. Cangul, and Y. Simsek, "Multivariate interpolation functions of higher-order q-Euler numbers and their applications," Abstract and Applied Analysis, vol. 2008, Article ID 390857, 16 pages, 2008.

