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1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp, Qp, C, and Cp will, respectively,
be the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number
field, and the p-adic completion of the algebraic closure of Qp. The p-adic absolute value in Cp

is normalized so that |p|p = 1/p. When one talks of q-extension, q is variously considered as
an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally
assumes |q| < 1. If q ∈ Cp, one normally assumes that |1−q|p < p−1/(p−1) so that qx = exp(x log q)
for each x ∈ Zp. We use the notation

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

(1.1)

(cf. [1–20]) for all x ∈ Zp. For a fixed odd positive integer d with (p, d) = 1, let

X = Xd =
lim←

nZ

dpnZ
, X1 = Zp, X∗ =

⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpnZp =
{
x ∈ X | x ≡ a

(
mod dpn

)}
,

(1.2)
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where a ∈ Z lies in 0 ≤ a < dpn. For any n ∈ N,

μq

(
a + dpnZp

)
=

qa
[
dpn

]
q

(1.3)

is known to be a distribution on X (cf. [1–20]).
We say that f is uniformly differentiable function at a point a ∈ Zp and denote this

property by f ∈ UD(Zp), if the difference quotients

Ff(x, y) =
f(x) − f(y)

x − y (1.4)

have a limit l = f ′(a) as (x, y) → (a, a) (cf. [10–13]). The p-adic q-integral of a function f ∈
UD(Zp) was defined as

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
n→∞

1
[
pn

]
q

pn−1∑

x=0

f(x)qx. (1.5)

By using p-adic q-integrals on Zp, it is well known that

t

et − 1 =
∞∑

n=0

∫

Zp

xndμ1(x)
tn

n!
, (1.6)

where μ1(x + pnZp) = 1/pn. Then, we note that the Bernoulli numbers Bn were defined as

t

et − 1 =
∞∑

n=0

Bn
tn

n!
, (1.7)

and hence, we have

Bn =
∫

Zp

xndμ1(x) (1.8)

for all n ∈ N ∪ {0}. For k ∈ N and n ∈ N ∪ {0}, the multiple Bernoulli polynomials B(k)
n (x) were

defined as

(
t

et − 1
)k

ext =
∞∑

n=0

B
(k)
n (x)

tn

n!
(1.9)

(cf. [2]). We note that

(
t

et − 1
)k

ext =
∞∑

n=0

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

(
x + x1 + · · · + xk

)n
dμ1

(
x1
) · · ·dμ1

(
xk

)
. (1.10)
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From (1.9) and (1.10), we obtain

B
(k)
n (x) =

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

(
x + x1 + · · · + xk

)n
dμ1

(
x1
) · · ·dμ1

(
xk

)
. (1.11)

In view of (1.11), the multiple Carlitz’s type q-Bernoulli polynomials were defined as

β
(k,q)
n (x) =

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

[
x + x1 + · · · + xk

]n
qdμq

(
x1
) · · ·dμq

(
xk

)
. (1.12)

In this case, x = 0, we write β
(k,q)
n (0) = β

(k,q)
n , which were called the Carlitz’s type q-Bernoulli

numbers. By (1.11) and (1.12), we note that

lim
q→1

β
(k,q)
n = B

(k,1)
n = Bk

n. (1.13)

In Section 2, we give the twisted Carlitz’s type q-Bernoulli polynomials and numbers
associated with p-adic q-inetgrals and discuss their properties. In Section 3, we define the
multiple twisted Carlitz’s type q-Bernoulli polynomials and numbers. We also obtain the
distribution relation for them.

2. Twisted Carlitz’s type q-Bernoulli polynomials

In this section, we assume that q ∈ Cp with |1 − q|p < p−1/(p−1). By using p-adic q-integral on Zp,
we derive

Iq
(
f1
)
=

1
q
Iq(f) +

(
q − 1
log q

f ′(0) + (q − 1)f(0)
)
, (2.1)

(cf. [8]), where f1(x) = f(x + 1). From (1.5), we can derive

qnIq
(
fn
)
= Iq(f) +

q(q − 1)
log q

(
n−1∑

i=0

f ′(i)qi + log q
n−1∑

i=0

f(i)qi
)
, (2.2)

(cf. [8]), where n ∈ N and fn(x) = f(x + n).
Let Tp =

⋃
n≥1Cpn = limn→∞Cpn = Cp∞ be the locally constant space, where Cpn = {w |

wpn = 1} is the cyclic group of order pn. Forw ∈ Tp, we denote the locally constant function by
φw : Zp → Cp, x → wx. If we take f(x) = φw(x) = wx, then we have

∫

Zp

etxφw(x)dμq(x) =
(
log q + t

qwet − 1
)
q(q − 1)
log q

≡ F
q
w(t). (2.3)
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Now we define the twisted q-Bernoulli polynomials as follows:

F
q
w(x, t) =

(
log q + t

qwet − 1
)
q(q − 1)
log q

ext =
∞∑

n=0

B
q
n,w(x)

tn

n!
. (2.4)

We note that Bq
n,w(0) = B

q
n,w are called the twisted q-Bernoulli numbers and by substituting

w = 1, limq→1B
q

n,1 = Bn are the familiar Bernoulli numbers. By (2.3), we obtain the following
Witt’s type formula for the twisted q-Bernoulli polynomials and numbers.

Theorem 2.1. For n ∈ N and w ∈ Tp, one has
∫

Zp

(t + x)nwtdμq(t) = B
q
n,w(x). (2.5)

From (2.5), we consider the twisted Carliz’s type q-Bernoulli polynomials by using p-
adic q-integrals. For w ∈ Tp, we define the twisted Carlitz’s type q-Bernoulli polynomials as
follows:

β
q
n,w(x) =

1
1 − q

∫

Zp

[t + x]nqw
tdμq(t). (2.6)

When x = 0, we write β
q
n,w(0) = β

q
n,w which are called twisted Carlitz’s type q-Bernoulli

numbers. Note that if w = 1, then limq→1β
q

n,1 = Bn. From (2.6), we can see that

β
q
n,w(x) =

1
(1 − q)n

n∑

i=0

(
n
i

)
qix(−1)i 1

1 − qi+1w. (2.7)

From (2.7), we can derive the generating function for the twisted Carlitz’s type q-Bernoulli
polynomials as follows:

G
q
w(x, t) =

∞∑

n=0

β
q
n,w(x)

tn

n!

=
∞∑

n=0

(
1

(1 − q)n
n∑

i=0

(
n
i

)
qix(−1)i 1

1 − qi+1w

)
tn

n!

=
∞∑

n=0

(
1

(1 − q)n
n∑

i=0

(
n
i

)
qix(−1)i

∞∑

l=0

q(i+1)lwl

)
tn

n!

=
∞∑

l=0

( ∞∑

n=0

qlwl

(1 − q)n
n∑

i=0

(
n
i

)
q(x+l)i(−1)i

)
tn

n!

=
∞∑

l=0

qlwl
∞∑

n=0

(
1 − qx+l)n

(1 − q)n
tn

n!

=
∞∑

l=0

qlwle[x+l]qt.

(2.8)

Then it is easily to see that

G
q
w(x, t) =

∫

Zp

e[t+x]qtwtdμq(t). (2.9)
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By the kth differentiation on both sides of (2.8) at t = 0, we also have

β
q
n,w(x) =

dn

dtn
G

q
w(x, t)

∣∣∣∣
t=0

=
∞∑

l=0

qlwl[x + l]nq (2.10)

for n ∈ N ∪ {0}. We note that

β
q
n,w = β

q
n,w(0) =

∞∑

l=0

qlwl[l]nq . (2.11)

In view of (2.10), we define twisted Carlitz’s type q-zeta function as follows:

ζ
q
w(s, x) =

∞∑

l=0

qlwl

[x + l]sq
(2.12)

for all s ∈ C and Re(x) > 0. We note that ζqw(s, x) is analytic function in the whole complex
s-plane. We also have the following theorem in which twisted Carlitz’s type q-zeta functions
interpolate twisted Carlitz’s type q-Bernoulli numbers and polynomials.

Theorem 2.2. For k ∈ N ∪ {0} and w ∈ Tp, one has

ζ
q
w(−k, x) = β

q

k,w
(x),

ζ
q
w(−k, 0) = β

q

k,w
.

(2.13)

From (2.11), we obtain the following distribution relation for the twisted q-Bernoulli
polynomials.

Theorem 2.3. For r ∈ N, n ∈ N ∪ {0}, and w ∈ Tp, one has

β
q
n,w(x) = [r]n−1q

r−1∑

i=0

wiqiβ
qr

n,wr

(
i + x

r

)
. (2.14)

Proof. If we put i + rl = j and i = 1 · · · r and l = 0, 1, . . ., then by (2.11), we have

β
q
n,w(x) =

∞∑

j=0

wjqj[x + j]nq

=
∞∑

l=0

r−1∑

i=0

wi+rlqi+rl[x + i + rl]nq

=
(
1 − qr
1 − q

)n r−1∑

i=0

wiqi
∞∑

l=0

wrlqrl
(

1 − qr((i+x)/r+l)
1 − qr

)n

= [r]n−1q

r−1∑

i=0

wiqiβ
qr

n,wr

(
i + x

r

)
.

(2.15)
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3. Multiple twisted Carlitz’s type q-Bernoulli polynomials

In this section, we consider the multiple twisted Carlitz’s type q-Bernoulli polynomials as
follows:

β
(h,q)
k,w

(x) =
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

[
x1 + · · · + xh + x

]n
qw

x1+···+xhdμq

(
x1
) · · ·dμq

(
xh

)

= lim
�→∞

1
[
p�
]h
q

p�−1∑

x1···xh=0

[
x + x1 + · · · + xh

]n
qw

x1+···+xhqx1+···+xh,

(3.1)

where h ∈ N, k ∈ N ∪ {0}, and w ∈ Tp. We note that β(h,q)n,w (0) = β
(h,q)
n,w are called the multiple

twisted Carlitz’s type q-Bernoulli numbers. We also obtain the generating function of the
multiple twisted Carlitz’s type q-Bernoulli polynomials as follows:

G
(h,q)
w (x, t) =

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

e[x1+···+xh+x]qtwx1+···+xhdμq

(
x1
) · · ·dμq

(
xh

)

=
∞∑

l=0

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

[
x1 + · · · + xh + x

]l
qw

x1+···+xhdμq

(
x1
) · · ·dμq

(
xh

) tl

l!

=
∞∑

l=0

β
(h,q)
l,w

(x)
tl

l!
.

(3.2)

Finally, we have the following distribution relation for the multiple twisted q-Bernoulli
polynomials.

Theorem 3.1. For each w ∈ Tp, h, r ∈ N, n ∈ N ∪ {0}, and w ∈ Tp,

β
(h,q)
n,w (x) = [r]n−hq

r−1∑

j1,...,jh=0

wj1+···+jhqj1+···+jhβ(h,q
r)

n,wr

(
x + j1 + · · · + jh

r

)
. (3.3)

Proof. If we put jk + rlk = xk, jk = 0, 1, . . . r − 1, and k = 1 · · ·h, then by (3.1), we have

β
(h,q)
k,w

(x) =
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

[
x1 + · · · + xh + x

]n
qw

x1+···+xhdμq

(
x1
) · · ·dμq

(
xh

)

= lim
�→∞

1
[
rp�

]h
q

rp�−1∑

x1···xh=0

[
x + x1 + · · · + xh

]n
qw

x1+···+xhqx1+···+xh

= lim
�→∞

[r]n−hq

1
[
p�
]h
qr

r−1∑

j1,...,jh=0

p�−1∑

l1···lh=0

[
x + j1 + rl1 + · · · + jh + rlh

]n
q ·wj1+rl1+···+jh+rlhqj1+rl1+···+jh+rlh
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=[r]n−hq

r−1∑

j1,...,jh=0

wj1+···+jhqj1+···+jh · lim
�→∞

1
[
p�
]h
qr

p�−1∑

l1···lh=0

[
x + j1 + · · · + jh

r
+ l1 + · · · + lh

]n

qr
wr(l1+···+lh)qr(l1+···+lh)

= [r]n−hq

r−1∑

j1,...,jh=0

wj1+···+jhqj1+···+jhβ(h,q
r)

n,wr

(
x + j1 + · · · + jh

r

)
.

(3.4)

Question 1. Are there the analytic multiple twisted Carlitz’s type q-zeta functions which
interpolate multiple twisted Carlitz’s type q-Bernoulli polynomials?
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