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1. Introduction

In the well-known monograph of Colojoară and Foiaş [1], it is mentioned (in Chapter 5,
Corollary 5.7) that J-unitary and J-self-adjoint operators in Pontrjagin spaces give examples of
generalized spectral operators. Actually, it is clear that this observation can be applied also to
many operator classes in Krein spaces, so Operator Theory in Krein spaces is a good laboratory
where different methods of general Operator Theory can be tested. One of these methods is
related with model spaces of function type.

The main goal of the paper is a problem of model representation for a commutative
operator family Y acting on a separable Krein space and possessing a maximal nonnegative
invariant subspace, presented as a direct sum of a neutral subspace with a finite dimension
and a uniformly positive subspace. As it is known (see [2]), this family generates a spectral
function Eλ with a peculiar spectral set Λ that provides a resolution of the spectral type for the
family. In particular, with every operatorA, one can associate a scalar function fA(λ) such that

AE(Δ) =
∫
Δ
fA(λ)dEλ, (1.1)

where Δ runs through the set of all closed intervals of the real line disjoint with Λ.
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The key results (Theorems 6.5, 6.19, and 6.29) say that there is a suitable function space
(so-called basic model space) where fA(λ) generates a multiplication operator similar to a
compression of A on a subspace calculated through Eλ.

Section 2 gives a draft of problems considered in the paper, analyzing a simple case
of self-adjoint operator in Pontryagin space. Section 3 contains definitions and well-known
results used throughout the paper. Section 4 deals with a model representation of a resolution
of the identity that is simultaneously J-orthogonal and similar to an orthogonal resolution
of the identity. In Section 5 a notion of unbounded elements conformed with a resolution of
the identity is introduced and studied. Roughly speaking, a resolution sets a correspondence
between a Hilbert space and a (vector-valued) function space L2

�σ
. From this point of view,

the unbounded elements correspond to measurable vector-valued functions outside of L2
�σ
. The

main results are presented in Section 6, where the notion of a basic model space is introduced.
Also, a relation is established between multiplication operators by scalar functions acting in
a basic model space, and operators of a commutative J-symmetric algebra of D+

κ-class. Here,
emphasis is made on the problem of uniqueness of a basic model space for such algebras.
Section 6.2 corresponds to resolutions of the identity with properties like those in Pontryagin
spaces. Section 6.3 deals with general J-orthogonal resolutions of the identity of D+

κ-class,
and Section 6.4 contains a theorem on a model representation of a commutative J-symmetric
operator family of D+

κ-class. Historical and bibliographical remarks are presented in the last
section.

It is assumed that the reader is familiar with elements of Krein space geometry and
Operator theory (see [3–7]). In this paper, the terminology given in [8]will be used.

2. An elementary description of the problem

Let H be a separable Hilbert space with a scalar product (·, ·). H is said to be an indefinite
metric space if it is equipped by a sesquilinear continuous Hermitian form (indefinite inner
product) [·, ·] such that the corresponding quadratic form has an indefinite sign (i.e., [x, x]
takes positive, negative, and zero values). The indefinite inner product can be represented in
the form [·, ·] = (G·, ·), where G is a so-called Gram operator. The operator G is bounded and
self-adjoint. If the Gram operator for an indefinite metric space is boundedly invertible and its
invariant subspace that corresponds to the negative spectrum (or, alternatively, to the positive
spectrum) of G is finite dimensional, the space is called a Pontryagin space. In this section, we
consider Pontryagin spaces only.

Now, let A: H �→ H be a bounded linear operator. This operator is said to be π-self-
adjoint (π-s.a.) if [Ax, y] = [x,Ay] for all x, y ∈ H. The properties of π-s.a. operators differ
from the properties of ordinary self-adjoint operators. For instance, a π-s.a. can have a nonreal
spectrum or/and a nontrivial Jordan chain. If A has only a real spectrum, then there is, on
R, the eigen spectral function (e.s.f.) Eλ of A with a finite set Λ of critical points such that
(Δ = (a; b), a, b /∈ Λ)

(a) for every λ ∈ R \Λ it holds that AEλ = EλA;

(b) σ
(
A|E(Δ)H

) ⊂ Δ;

(c) if Δ ∩Λ = ∅ then the subspace E(Δ)H is positive;

(d) if Δ ∩Λ /= ∅ then the subspace E(Δ)H is negative or indefinite.

(2.1)
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Let λ0 ∈ Λ. Then for every point of Λ there are three options.

(1) For an interval Δ = (a; b) such that Δ ∩ Λ = {λ0} and a, b /∈ Λ, the spectral function
Eλ|E(Δ)H is bounded and the representation

∫
Δ ξE(dξ) takes place.

(2) For an interval Δ = (a; b) such that Δ ∩ Λ = {λ0} and a, b /∈ Λ, the spectral function
Eλ|E(Δ)H is bounded but the representation

∫
Δ ξE(dξ) does not take place.

(3) For an interval Δ = (a; b) such that Δ ∩ Λ = {λ0} and a, b /∈ Λ, the spectral function
Eλ|E(Δ)H is unbounded.

The first item means that the operator A|E(Δ)H is similar to a self-adjoint operator, that
is, it is a scalar spectral operator. The second item corresponds to a spectral operator with
a nontrivial finite-dimensional nilpotent summand. Thus only the third item represents a
situation that is out of the ordinary theory of model representation for spectral operators with
real spectrum. Below, we consider this exceptional case. Let us give an example of the case in
discussion.

Example 2.1. Let the system h, g, e1, e2, e3, . . . be an orthonormalized basis in a Hilbert space H
and let [x, y] = (x, h)(g, y) + (x, g)(h, y) +

∑∞
j=1(x, ej)(ej , y). Then this space is a Pontryagin

space with κ = 1. Let an operator A be given by the conditions

(i) Ah = 0,

(ii) Aej = 1/j · (ej + h), j = 1, 2, . . .,

(iii) Ag = h +
∑∞

j=1(1/j) · ej .
These conditions define a bounded operator, so A is naturally defined on H and, moreover,
is a π-self-adjoint operator. The spectral function of A can be described by the following
conditions:

E

({
1
j

})
x =
[
x,
(
ej + h

)] · (ej + h
)
, (2.2)

so

E

({
1
j

}n

j=1

)
x =

n∑
j=1

[
x,
(
ej + h

)] · (ej + h
)
. (2.3)

Put xn = 1/n · ∑n
j=1ej . Then E({1/j}nj=1)xn = 1/n · ∑n

j=1(ej + h) = h + xn. At the same time
‖xn‖ = 1/

√
n → 0 for n → ∞. Thus, for A and its spectral function Eλ, we have the following

results:

(i) Eλ is unbounded;

(ii) h belongs to the closure of the linear span H̃ generated by the subspaces E(Δ)H,
where Δ = (a; b), 0 < a < b, so the kernel of the operator A|H̃ is not trivial;

(iii) H̃ is degenerated, H̃ ∩ H̃[⊥] = {μh}μ∈C.

Let us note that the coexistence of these properties reflects a general situation (in
particular, the first item yields the other two). Indeed, it is shown by the following theorem.
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Theorem 2.2 (see [8, Theorem I.9.6]). Let a subspace L be positive. Then there is a constant c > 1
such that (x, x) ≤ c[x, x] for every x ∈ L.

For simplicity everywhere below in this section, we assume that

(a) Λ = {0},
(b) Eλ is unbounded,

(c) for every interval Δ = [a; b], such that 0 /∈ Δ the operator

A|E(Δ)H has simple spectrum.

(2.4)

Then by Theorem 2.2, the subspace H̃ generated as the closed linear span of the subspaces
E(Δ)H, where Δ = [a; b], 0 /∈ Δ, is not a positive subspace, thus it has the nontrivial isotropic
part, H̃ ∩ H̃[⊥] /= { 0}. Let us denote, below, that H1 := H̃ ∩ H̃[⊥]. Since the subspace H̃ is
evidently nonnegative, it can be presented in the form

H̃ = H1 � H2, (2.5)

where H2 is a positive subspace. Note that H2 is not uniquely defined. Note also that, due to
the general theory, the subspace H̃ is a part of a maximal nonnegative subspace L+ invariant
with respect to A.

Theorem 2.3. Let Eλ be the e.s.f. of a π-self-adjoint operator A. Then there are a scalar Lebesgue
measure μσ , the Hilbert space L2

σ associated with μσ , and a collection of μσ-measurable scalar functions
{g̃j(t)}kj=1 such that if Δ = [a, b], 0 /∈ Δ, the operator E(Δ)|H̃ is similar to the operator acting by the
formulae

f(t) �−→ χΔ(t)f(t) +
k∑
j=1

∫
Δ
f(t)g̃j(t)dσ(t) · ej ,

ej �−→ 0 j = 1, 2, . . . , k

(2.6)

on the formal linear span of L2
σ and {ej}kj=1, where {ej}

k
j=1 is a basis on H1, χΔ(t) is the indicator of Δ,

χΔ(t)g̃j(t) ∈ L2
σ for j = 1, 2, . . . , n, and

k∑
j=1

αjg̃j(t) ∈ L2
σ =⇒ α1 = α2 = · · · = αk = 0. (2.7)

Proof. According to Equality (2.5), the restriction E(Δ)|H̃ has the following matrix representa-
tion:

E(Δ)|H̃ =

(
0 E12(Δ)
0 E22(Δ)

)
. (2.8)

With no loss of generality (see Proposition 3.3 below for details), one can assume that (·, ·) =
[·, ·] on H2 and H1 ⊥ H2. Then the operator-valued function Fλ := E22((−∞, λ)) represents an
(orthogonal) resolution of the identity acting in the Hilbert spaceH2. From the classical theory,
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we know that there is a Hilbert space L2
σ of scalar functions that is a model space for Fλ with

some corresponding operator W : L2
σ �→ H2 of similarity, that is,

W−1E22(Δ)Wf(t) = χΔ(t)f(t). (2.9)

Let {ej}n1 be an orthonormalized basis inL1. Then, for everyΔ = [a, b], 0 /∈ Δ, and j = 1, 2, . . . n,
the expression νΔj Wf(t) := (E12(Δ)Wf(t), ej) defines a continuous linear functional in L2

σ .
Thus, for every j = 1, 2, . . . n, there exists the F-measurable function g̃j(t) such that, for an
arbitrary Δ = [a, b], 0 /∈ Δ, and f(t) ∈ L2

σ , the representation

νΔj Wf(t) =
∫
Δ
f(t)g̃(t)dσ(t) (2.10)

holds. Since the spectral function E is unbounded,
∫1
−1 |g̃(t)|2dσ(t) = ∞ for at least one j =

1, 2, . . . , n. It means that at least one function (maybe all) of the collection

{g̃j(t)}nj=1 (2.11)

is not in L2
σ . Then we just need to prove (2.7).

Let
∑n

j=1αj · g̃j(t) ∈ L2
σ . Then the linear functional (f ∈ L2

σ)

φf :=
∫

R

f(t)
n∑
j=1

αj · g̃j(t)dσ(t) (2.12)

is bounded.
Next, by definition, the space H̃ is the closure of all vectors having the form

Wf(t) +
k∑
j=1

∫
R

f(t)g̃j(t)dσ(t) · ej , (2.13)

with f ∈ L2
σ vanishing near zero; so, for every x ∈ H1, there is a sequence {fm}∞m=1 such that

lim
m→∞
∥∥fm∥∥L2

σ
= 0, lim

m→∞

k∑
j=1

∫
R

fm(t)g̃j(t)dσ(t) · ej = x. (2.14)

The latter yields

(
x,

n∑
j=1

αj · ej
)

= lim
m→∞

k∑
j=1

∫
R

fm(t)αjg̃j(t)dσ(t) = lim
m→∞

φfm = 0. (2.15)

Thus
∑n

j=1αj · ej = 0, therefore α1 = α2 = · · · = αn = 0.

Theorem 2.3 gives a possibility to construct a partial model representation for A in a
sense exposed below. With no loss of generality, one can assume that the Hilbert scalar product
(·, ·) onH is such that the corresponding Gram operator re-denoted as J (i.e., [·, ·] = (J ·, ·)) has
the properties J = J−1 = J∗. Let (see (2.5))

H0 = JH1. (2.16)
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Then H0 ⊥ H̃. Additionally, one can assume that the basis {ej}kj=1 from Theorem 2.3 is
orthonormalized, [·, ·] = (·, ·) on H2 and H1 ⊥ H2. Let P0 and P2 be orthoprojections onto
subspaces H0 andH2, respectively.

Theorem 2.4. Let a space L2
σ and functions {g̃j}kj=1 be related with the e.s.f Eλ of a π-s.a. operator A

as in Theorem 2.3, and let L̃2
σ be a Hilbert space formed as the linear span of L2

σ and {g̃j}kj=1, where the
functions in {g̃j}kj=1 are mutually orthogonal, have unit norm, and are orthogonal to the space L2

σ which

conserves its Hilbert structure. Then tg̃j belongs to the linear span of L̃2
σ for every j = 1, 2, . . . , k, and

the compression (P0 + P2)A|H0⊕H2 of A is similar to the multiplication operator by t acting on L̃2
σ .

Theorem 2.4 is not new (see, e.g., a more general result in [9] and its applications in
[10, 11]) but it opens some ways to generalization and generates some open questions and
problems. For instance, (2.4)(c) is restrictive and must be dropped. This, in turn, implies a
replacement of the space L̃2

σ of scalar functions by a suitable space of vector-valued functions.
Next, the passing from a single self-adjoint operator to a family of self-adjoint operators in the
case of indefinite metric spaces has some difficulties which must be taken into account. Let us
consider the following example.

Example 2.5. Let the union of systems {h1, h2, h3}, {g1, g2, g3}, and {ek}∞k=1 give an orthonormal-
ized basis in a Hilbert spaceH. We define a fundamental symmetry J onH by formulae

Jgj = hj, Jhj = gj, j = 1, 2, 3, Jek = ek, k = 1, 2, . . . . (2.17)

Thus H becomes a Pontryagin space. Next, we define operators A and B by formulae

Ah1 = h2, Ah2 =
∞∑
k=1

1
k
· ek, Ah3 =

∞∑
k=1

1
k4/5

· ek, Ag1 = Ag3 = 0, Ag2 = g1,

Aek =
1
k
· ek + 1

k
· g2 + 1

k4/5
· g3, k = 1, 2, . . . ,

Bh1 = h3, Bh2 =
∞∑
k=1

1
k4/5

· ek, Bh3 =
∞∑
k=1

1
k3/5

· ek, Bg1 = Bg2 = 0,

Bg3 = g1, Bek =
1

k4/5
· ek + 1

k4/5
· g2 + 1

k3/5
· g3, k = 1, 2, . . . .

(2.18)

It is easy to check that the operators A and B are π-self-adjoint and commute. Next, the eigen
spectral function (e.s.f.) of A has the form

Eλ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if λ ≤ 0;

I −
∑

k:(1/k)≥λ

[·, uk

] · uk, if λ ∈ (0; 1];

I, if λ > 1,

(2.19)

where uk = ek + kg1 + g2 + (k)1/5e3, k = 1, 2, . . .. Moreover, for every β > α > 0, we have the
representations

AE
(
[α, β)

)
=
∫β
α

λE(dλ), BE
(
[α, β)

)
=
∫β
α

(λ)4/5E(dλ). (2.20)
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Therefore, Eλ can be considered as an “e.s.f.” of the family {A,B}; however,

A /=
∫1+0
0

λE(dλ), B /=
∫1+0
0

(λ)4/5E(dλ), (2.21)

because both integrals are nonconvergent. Next, dimKer (A) = dimKer (B) = 2, but Ker (A) /=
Ker (B). Thus B /∈ Alg (A) and A /∈ Alg (B), where Alg (·) means the weakly closed algebra
generated by the identity operator and the corresponding π-self-adjoint operator. The same
reasoning shows that there is no π-self-adjoint operator C for which, simultaneously, A ∈
Alg (C) and B ∈ Alg (C). Therefore, the description of the operator family in discussion cannot
be reduced to a representation of one operator. At the same time the existence of the spectral
function with (2.20) is not occasional (see Theorem 3.11 below) and gives a possibility to
construct a partial model for the whole family.

So one of the problems is to generalize Theorem 2.4 to commutative families of self-
adjoint operators in Pontryagin and Krein spaces. Next, it is clear that the space L̃2

σ depends
on the choice of (2.5), but the latter is not uniquely determined. Thus, another problem is
a description of the ambiguity of L̃2

σ or its analog with vector-valued functions. The present
paper is devoted mainly to these two problems.

Of course, the direction marked by Theorem 2.4 is not unique in relation to the goal
to construct a model representation of function type for operators in Pontryagin spaces. In
particular, in [12], it was shown that a bounded cyclic self-adjoint operator A in a Pontryagin
space is unitary equivalent to the operator AΦ of multiplication by the independent variable
in some space Π(Φ) generated by a “distribution” Φ. This distribution, in turn, is associated
with a quasiintegral representation for the moment sequence {[Anh, h]}∞n=0, where h is a cyclic
vector. The model in consideration describes the behavior ofA on the whole Pontryagin space,
and in this sense, it is complete. On the contrary, the model from Theorem 2.4 is a partial one;
it describes only the part of A that can be restored via its e.s.f.. It gives, indeed, an advantage
to the model [12] but this advantage concerns mainly cyclic operators because in the case of a
non-cyclic operator the corresponding space Π(Φ) contains matrix-valued functions, and this
space has a more or less complicated structure. The latter, however, is not the main obstacle.
The experience with a canonic representation of normal operators in finite-dimensional spaces
with an indefinite metric (see, e.g., [13, 14]) shows that any attempt to give an observable
and, simultaneously, complete description for a commutative family of self-adjoint operators
in spaces with indefinite metric with the rank of indefiniteness more than 2 has little chances
to prosper. On the contrary, a partial model representation in the style of Theorem 2.4 can
be generalized easily to commutative families of π-self-adjoint operators and to commutative
families of J-self-adjoint operators of the so-calledD+

κ-class. A previous experience shows that,
in spite of some incompleteness, this model was useful in some applications concerning a
single π-self-adjoint operator, see Section 7 for more details.

3. Preliminaries

3.1. Krein spaces

Let H be a Krein space with an indefinite sesquilinear form [·, ·], let H = H+[+̇]H− be its
canonical decomposition, let P+ and P− be canonical projections H+ = P+H and H− = P−H, let
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J = P+ − P− be a canonical symmetry, and let (·, ·) = [J ·, ·] be a canonical scalar product. Note
that one of these canonical objects uniquely determines the others. Everywhere below, we fix,
on H, a unique form [x, y] = (Jx, y). At the same time, let us note that, in the question we
consider, a concrete choice of Hilbert scalar product is not really essential. One needs only to
fix the topology (defined by the above-mentioned scalar product) and the structure of J . Let
us mention the following result (see [15]) concerning some redefinitions of a Hilbert structure
in Krein spaces.

Proposition 3.1. Let H = H+ ⊕ H− be a canonical decomposition of the Krein space H and let H =
L+[+̇]L− be another canonical decomposition of the same space. Let the first decomposition define the
canonical scalar product (·, ·) and let the second decomposition define the canonical scalar product (·, ·)1,
that is, [·, ·] = (J ·, ·) = (J1·, ·)1. Then spectrum of the operator Q = J1J is strictly positive, and the
operator D : D2 = Q, σ(D) ⊂ (0,+∞), has the properties

(a) [Dx,Dy] = [x, y]

(b) (Dx,Dy)1 = (x, y)

(c) DH+ = L+, DH− = L−.

(3.1)

Definition 3.2. The operator D that we introduced in Proposition 3.1 is called the canonical
isometry that maps the Krein space H with the scalar product (·, ·) on the same Krein space
H, but with the scalar product (·, ·)1. If it is necessary to exactly indicate the corresponding
scalar products or the canonical decompositions of the space H, we replace D with

DH,(·,·),(·,·)1 or D{H+,H−}{L+,L−}. (3.2)

Below nonnegative (especially maximal nonnegative) subspaces will play an important
role. The set of all maximal nonnegative subspaces of the Krein space H is denoted M+(H).

A subspace L is called pseudoregular [16] if it can be presented in the form

L = L̂+̇L1, (3.3)

where L̂ is a regular subspace and L1 is an isotropic part of L (i.e., L1 = L ∩ L[⊥]).

Proposition 3.3. Let

(i) L+ ∈ M+(H) and a pseudoregular subspace,

(ii) L0 the isotropic subspace of L+,

(iii) (·, ·)′ a scalar product on L0 such that the norm
√
(x, x)′ is equivalent to the original one,

(iv) L− = L
[⊥]
+ ,

and

L+ = L̂++̇L0, L− = L̂−+̇L0, (3.4)

where L̂+ and L̂− are uniformly definite subspaces. Then one can define, on H, a canonical scalar product
(·, ·) such that

(a) on L0 : (·, ·) ≡ (·, ·)′

(b) L0 ⊥ L̂+, L0 ⊥ L̂−

(c) on L̂+ : (·, ·) = [·, ·]
(d) on L̂− : (·, ·) = −[·, ·].

(3.5)
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Definition 3.4. If a canonical scalar product of Krein space H has (3.5), it is said to be compatible
with (3.4) and the choice of the scalar product (·, ·)′ on L1.

Definition 3.5. Let L be a pseudoregular subspace and let

L = L(1)+̇L1, L = L(2)+̇L1 (3.6)

be two different decompositions of L as a direct sum of a regular subspace and the isotropic
subspace. We will call the mapML,L(1),L(2) : L(1) �→ L(2), defined by the condition

[ML,L(1),L(2)x, y
]
= [x, y] (∀y ∈ L), (3.7)

the standard map associated with (3.6).

Remark 3.6. The map ML,L(1),L(2) is uniquely determined by the condition (3.7) since the
subspaces L(1) and L(2) are projectionally complete and the subspace L1 is neutral. This map
preserves the sesquilinear form [·, ·] (i.e., is J-isometric). Furthermore, the subspaces L(1) and
L(2) can be presented in the form

L(1) = L
(1)
+ [+̇]L(1)

− , L(2) = L
(2)
+ [+̇]L(2)

− , (3.8)

where L
(1)
+ is uniformly positive, L(1)

− is uniformly negative and

L
(2)
± = ML,L(1),L(2)L

(1)
± . (3.9)

Then the union of (3.6) and (3.8) generates two decompositions of the type (3.4).

Define a special case of pseudoregular subspaces: a nonnegative (non-positive) subspace
L is called a subspace of the class h+ (h−) if it is pseudoregular and dimL1 < ∞ for L1 as in
(3.3). In Pontryagin spaces, every subspace is pseudoregular, and every semidefinite subspace
belongs to class h+ or h−.

Here, the term “operator” means “bounded linear operator.” By the symbol B#, we
denote the operator J-adjoint (J-a.) to an operator B. Thus, ifA = A#, thenA is a J-s.a. operator.
For an operator A, the symbol σ(A) denotes its spectrum treated in the same way as in [17] or
[8].

If an operator family Y is such that the conditionA ∈ Y impliesA# ∈ Y, then this family
is said to be J-symmetric. An operator algebra A is said to be aWJ∗-algebra if it is closed in the
weak operator topology, J-symmetric, and contains the identity I. The symbol AlgY means
the minimal WJ∗-algebra which contains Y.

One of the most important directions in the development of the operator theory is
connected to the existence of invariant maximal semidefinite subspaces for certain operator
sets (see [18] for references) and the study of the properties of the operators in such sets. A
subspace L is said to be A -invariant (Y-invariant) if it is invariant with respect to the operator
A (operator family Y).
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Proposition 3.7. Let A be an operator that acts in H and has an invariant pseudoregular subspace L,
and let L1 = L ∩ L[⊥] be also an A-invariant. Consider two different decompositions of the space L,

L = L(1)+̇L1, L = L(2)+̇L1, (3.10)

as a direct sum of the isotropic part and a projectionally complete subspace. Let

A|L =

(
A(1) 0
A

(1)
1 A1

)
, A|L =

(
A(2) 0
A

(2)
1 A1

)
(3.11)

be two matrix representations of A|L corresponding to these decompositions. Then

A(1) =
(ML,L(1),L(2)

)
A(2)(ML,L(1),L(2)

)−1
, (3.12)

whereML,L(1),L(2) is the standard map associated with (3.10).

Proposition 3.8. Let

H = H+[+̇]H−, H = L+[+̇]L− (3.13)

be two different canonical decompositions of the Krein space H, and let H+ and L+ be invariant subspaces
of a J-s.a. operator A. Then

A ·D{H+,H−},{L+,L−} = D{H+,H−},{L+,L−} ·A, (3.14)

where D{H+,H−},{L+,L−} are associated with Definition 3.2.

Definition 3.9. A J-symmetric operator family Y belongs to the class D+
κ if there is a subspace

L+ in H such that

(i) L+ is Y-invariant,

(ii) L+ ∈ M+(H) ∩ h+,

(iii) dim (L+ ∩ L[⊥]
+ ) = κ.

Remark 3.10. If a J-symmetric family Y ∈ D+
κ and L+ is a Y-invariant subspace corresponding

to Definition 3.9, then the pseudoregular subspace L[⊥]
+ is Y-invariant too.

3.2. Spectral functions with peculiarities

The spectral resolution for different operator classes is one of the important problems in the
operator theory. Let us start with the following definition.

Let Λ = {λk}n1 be a finite set of real numbers and let RΛ be the family {X} of all Borel
subsets of R such that ∂X ∩ Λ = ∅, where ∂X is the boundary of X in R. Let E : X �→ E(X) be
a countably additive (in the weak topology) function, that maps RΛ to a commutative algebra
of projections in a Hilbert space H, where E([λ − ε, λ + ε]) /= 0 for every λ ∈ Λ, and ε > 0, and,
moreover, E(R) = I. E(X) is called a spectral function on R with the peculiar spectral set Λ; the
mention of Λ can be omitted. The symbol Supp(E)means the minimal closed subset of R such
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that E(X) = 0 for every X: X ⊂ R \ S and X ∈ RΛ. Besides the symbol E, we will use also, as a
notation of a spectral function, the symbol Eλ, λ ∈ R, where Eλ = E((−∞, λ)).

A spectral function E, that acts in a Krein space, is said to be J-orthogonal or J-s.a. if E(X)
is a J-orthoprojection for every X ∈ RΛ.

Let us recall the definition of scalar spectral operatorwith real spectrum [19]. An operator
A acting in a Hilbert space is said to be a scalar spectral operator if there exists a spectral
function E with empty peculiar spectral set Λ such that, for every X ∈ RΛ : E(X)A = AE(X),
σ(A|E(X)H) ⊂ X and AE(X) =

∫
X ξE(dξ) in the weak sense.

Now, let E be a spectral function with peculiar spectral set Λ. A scalar function f(ξ) is
said to be defined almost everywhere (with respect to E), to have a finite value almost everywhere,
and so on, if the corresponding property holds almost everywhere in the weak sense on an
arbitrary set X ∈ RΛ, X ∩Λ = ∅. We will assume that the function f(ξ) is not defined at Λ.

The following theorem was announced in [2] and proved in [20].

Theorem 3.11. Let Y ∈ D+
κ be a commutative family of J-s.a. operators with real spectra. Then there

exists a J-orthogonal spectral function Eλ with a finite number of spectral peculiarities Λ (Λ may be the
empty set) such that the following conditions hold

(a) Eλ ∈ AlgY ∀λ ∈ R \Λ;

(b) there is a nonnegative subspace L+, corresponding to Definition 3.9,
for which the descomposition E(Δ)H = E(Δ)L+[+̇]E(Δ)L− holds,
Δ being any closed segmentΔ ⊂ R satisfyingΔ ∈ RΛ andΔ∩Λ = ∅;

(c) for every operatorA ∈ Y, there exists a defined almost everywhere and
(uniformly) bounded function φ(λ) such that for every interval Δ ⊂
R, Δ ∈ RΛ, Δ ∩ Λ = ∅, the decomposition AE(Δ) =

∫
Δ
φ(λ)E(dλ)

is valid;

(d) the subspace H̃ = CLin
Δ∈RΛ,Δ∩Λ=∅

{E(Δ)H} is pseudoregular and its

isotropic part has finite dimension;

(e) if λ0 ∈ Λ and Hλ0 :=
⋂

λ0∈Δ
E(Δ)H, then for every operator A ∈ Y the

set σ(A|Hλ0
) is as ingletone {μA} and there is a positive integer mA

such that (A − μAI)
mA |Hλ0

= 0;

(f) if λ0 ∈ Λ, then lim sup
λ→λ0

‖Eλ‖ = ∞ or at least for one A ∈ Y the

operator A|Hλ0
is not a spectral operator of scalar type.

(3.15)

A spectral function E with a peculiar spectral set Λ, satisfying (3.15), is called an eigen
spectral function (e.s.f.) of the operator family Y.

Definition 3.12. Let Eλ be an e.s.f. of an operator family Y and let an operator A ∈ Y and a
function φ(λ) be connected by the system of equalities from (3.15)(c). Then the function φ(λ)
is said to be the portrait of the operatorA, and the operatorA is said to be the original of φ(λ) in
Y (with respect to Eλ).

Let a spectral function E with a peculiar spectral set Λ be an e.s.f. of Y. If λ ∈ Λ, then
λ will be called a peculiarity of Y. Let λ be a peculiarity. Fix a set X ∈ RΛ: X ∩ Λ = {λ}. The
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peculiarity λ is called regular if the operator family {E(X ∩ Y )}Y∈RΛ
is bounded; otherwise, it

is called singular. Note that the notion of regular and singular peculiarities is correctly defined
since the boundedness of the family {E(X ∩ Y )}Y∈RΛ

does not depend on X.

3.3. Some function spaces

Assume that σ(t) is a nondecreasing function defined on the segment [−1; 1], continuous in
the points −1, 0, and 1, continuous (at least) from the left in all other points of the segment,
and having an infinite number of growth points, where zero is one of these points. This
function σ(t) generates, on [−1; 1], a Lebesgue-Stieltjes measure μσ and spaces (L2

σ , L
∞
σ , etc.)

of complex-valued functions. At the same time we will consider also some spaces of vector-
valued functions; so, from time to time, we will note, after a symbol of a space a symbol of a
range for the functions forming this space, for instance, L2

σ(C). Next, let us consider a slightly
different construction. Let G(t) be a μσ-measurable function defined a.e. on [−1; 1] and such
that a.e. G(t) ≥ 1 for every τ ∈ (0; 1], it is true that

∫−τ
−1 G(t)dσ(t) < ∞ and

∫1
τ G(t)dσ(t) < ∞, but∫1

−1G(t)dσ(t) =∞. Set

ν(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ τ
−1
G(t)dσ(t), if τ ∈ [−1; 0];

−
∫1
τ

G(t)dσ(t), if τ ∈ [0; 1];

(3.16)

The function ν(t) is nondecreasing in both segments [−1; 0) and (0; 1], but it is unbounded
in neighborhoods of zero. Define, for it, a corresponding function space. Let f(t) and g(t) be
arbitrary functions continuous in [−1; 1] and vanishing in some neighborhoods (different in
the general case for f(t) and g(t)) of zero. Then the integral

∫1
−1 f(t)g(t)dν(t) is well defined

and generates a structure of pre-Hilbert space on the set of all such functions. The completion
of the space will be denoted L2

ν (or L
2
ν(C)). Note that, due to (3.16), the spaces L∞

σ and L2
ν form

a Banach pair, so the space L∞
σ ∩ L2

ν is well defined (for details, see [21]).
Let us pass to some notation relating to direct integrals of Hilbert spaces and

corresponding model descriptions of self-adjoint operators (see [22, Section 41]; [23, Chapter
7]; [24, Chapter 4.4]; [25, Chapter VII]). We will use definitions close to the “coordinate
notation” given in [22]. A difference between [22] and the definitions that follow is related
to the fact that direct integrals, here, will be used not only for a resolution of Hilbert spaces
but also for a resolution of Krein spaces. Let E be some separable Hilbert space (E can be
finite dimensional), let {dj}α1 be an orthonormalized basis of this space, let σ(t) be be the same
as above. Let {ρj(t)}α1 be a system of nonnegative μσ-measurable functions defined almost
everywhere (a.e) on the segment [−1; 1] and such that every function of the system is the
indicator of some set of nonzero measure and μσ{t : ρj(t) = 0, j = 1, 2, . . . , α} = 0. Denote

d�σ(t) =
α∑
j=1

djρj(t)dσ(t). (3.17)

In this case the sum in the right part of the formula is considered as a formal expressionwithout
any suggestion of its convergence or divergence.
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Here the space M�σ(E) means the space of vector-valued functions {f(t)} defined a.e.
(with respect to μσ) on the segment [−1; 1] and taking values in E under the conditions

f(t) =
α∑
j=1

βj(t)dj, (3.18)

where βj(t) runs the set of all μσ-measurable a.e. finite scalar functions such that

(a) βj(t) = ρj(t)βj(t), j = 1, 2, . . . , α;

(b) a.e.
∥∥f(t)∥∥2E =

α∑
j=1

∣∣βj(t)∣∣2 < ∞.
(3.19)

The topology on M�σ(E) is introduced by a base for neighborhoods of zero, where any
neighborhood of the base is defined by a couple of positive numbers ε and δ (the couples are
different for the different neighborhoods) and contains all functions satisfying the condition
μσ{t : ‖f(t)‖2E ≥ δ} < ε. Next, the symbol L2

�σ
(E) means here a Hilbert space of functions

f(t) ∈ M�σ(E) such that
∫1
−1 ‖f(t)‖2Edσ(t) < ∞.

The spaces M�σ(E) and L2
�σ
(E) are said to be a standard space of measurable functions and a

standard Hilbert space, respectively.
The choice of {dj}α1 in the construction of spaces M�σ(E) and L2

�σ
(E) is not essential if

ρj(t) = ρl(t) for l, j = 1, 2, . . . , α. (3.20)

Spaces L2
�σ
(E) of this type correspond, in particular, to model representations of self-adjoint

operators with uniform multiplicity (see [25]). So M�σ(E) and L2
�σ
(E) are said to be spaces of

uniform multiplicity α if conditions (3.20) are fulfilled.
If L2

�σ
(E) is not a space of uniformmultiplicity, it can be represented as an orthogonal sum

of spaces of uniform multiplicity. Note a special case of such representation.

Definition 3.13. A space L2
�σ
(E) is said to be orderly decomposable on uniform components if

(see (3.17))

L2
�σ(E) = L2

�σ1
(E1) ⊕ L2

�σ2
(E2) ⊕ . . . , (3.21)

where E = ⊕∑β

j=1Ej (both β = ∞ and β < ∞ can occur), the above decomposition of E is
concordant with the choice of the basis {dj}α1 in the sense that Ej = CLin{dj}dj∈Ej

, L2
�σj
(Ej) is a

space of uniform multiplicity dimEj , Ej ⊂ Ej+1, dimEj < dimEj+1, σj(t) =
∫ t
−1 χj(τ)dσ(τ), χj(τ)

is the indicator of some μσ-measurable set Xj, μXj /= 0, d�σj(t) = (
∑

l:dl∈Ej
dl)d�σj(t), Xj ∩Xl = ∅,

j, l = 1, 2, . . . , β, j /= l.

Spaces orderly decomposable on uniform components play the key role in the theory
of model representation for self-adjoint operators (for details, see, [25, Theorem VII.6]).
Practically the same definition can be given for spacesM�σ(E).

Definition 3.14. M�σ(E) is said to be orderly decomposable on uniform components if

M�σ(E) = M�σ1

(E1
)
+M�σ2

(E2
)
+ . . . , (3.22)

whereM�σj
(Ej) is a space of uniform multiplicity, the rest of the elements in (3.22) are the same

as in (3.21).
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We introduce some notation related to multiplication operators by scalar functions.
Everywhere below we assume a scalar function ϕ(t) to be defined a.e. on [−1; 1], μσ-
measurable, and a.e. bounded. For f(t) ∈ M�σ(E), set

(Φf)(t) = ϕ(t)f(t). (3.23)

It is clear that (Φf)(t) ∈ M�σ(E), so (3.23) defines on M�σ(E) the continuous operator Φ (= the
multiplication operator by the function ϕ(t)). If ϕ(t) satisfies some additional conditions, one
can consider the operator Φ as acting simultaneously on different spaces. If, for instance, ϕ(t)
is continuous, then the operatorΦ is well defined on every spaceMσ(E) independently of �σ(t)
and E. If ϕ(t) ∈ L∞

σ (C), then L2
�σ
(E) can also be taken as a domain of Φ. So, if it is necessary,

we will mention, simultaneously, the operatorΦ and its domain using the notation {Φ,D(Φ)},
say, {Φ, L2

�σ
(E)}.

Let Xτ be the multiplication operator by the indicator χ[−1;τ)(t) of the set [−1; τ), Xτ =
{Xτ , L2

�σ
(E)}. Pass to the description of automorphisms acting on L2

�σ
(E) and commuting with

operators Xτ , τ ∈ [−1; 1]. Denote, by Gt, the subspace of the space E spanned by all vectors of
the set {dj}αj=1 such that ρj(t) /= 0 (see (3.17)). The following result is well known (e.g., Birman,
Solomjak [23, Chapter 7]; [24, Theorem 4.4.6]; [22, Proposition 1, Subsection 2; Section 41]).

Proposition 3.15. Let U be a unitary operator commuting with {Xτ , L
2
�σ
(E)} for a.a. τ ∈ [−1; 1]. Then

there is an operator-valued weakly μσ-measurable function Ut defined a.e. on [−1; 1] such that, for a.e.
t ∈ [−1; 1], the operatorUt is unitary on E and

(a) (Uf)(t) = Utf(t);

(b) UtGt = Gt;

(c) Ut|G⊥
t
= I|G⊥

t
.

(3.24)

Remark 3.16. The space L2
�σ
(E) is a complete linear set inM�σ(E). So if initially an operatorU acts

on L2
�σ
(E) and satisfies conditions (3.24), its domain can be extended to M�σ(E) via the passage

to the limit. Thus the operator {U,M�σ(E)} is a continuous bijective mapping.

4. On a model representation for J-orthogonal spectral
functions without peculiarities

We define, on L2
�σ
(E), an additional structure of a Krein space. Let J be an operator acting on

L2
�σ
(E), being at the same time self-adjoint, unitary and commuting with Xτ for a.e. τ ∈ [−1; 1].

By Proposition 3.15, the operator J has the representation

(Jf)(t) = Jtf(t), t ∈ [−1; 1], (4.1)

where Jt is self-adjoint a.e. on [−1; 1]. Let[
f1(t), f2(t)

]
E =
(
Jtf1(t), f2(t)

)
E. (4.2)

Then the inner product

[
f1(t), f2(t)

]
L2
�σ
(E) =

∫1
−1

[
f1(t), f2(t)

]
Edσ(t). (4.3)

converts the space L2
�σ
(E) to a Krein space. This Krein space is denoted J − L2

�σ
(E) and it is said

to be a standard Krein space.
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Remark 4.1. The product [f1(t), f2(t)]E is a.e. well defined both for f1(t), f2(t) ∈ L2
�σ
(E) and

f1(t), f2(t) ∈ M�σ(E).

A standard Krein space can be used for a model representation of a J-spectral function
(= J-orth.sp.f.) Eλ without peculiarities. For simplicity everywhere below, we will assume that

E−1 = 0, E+1 = I, E−1 = E−1+0. (4.4)

Definition 4.2. Let Eλ be a J-orth.sp.f. with the empty set of peculiarities. A space J − L2
�σ
(E) is

said to be a model space for Eλ if, for some canonical scalar product on H, there is an isometric
and J-isometric operator W : J − L2

�σ
(E) �→ H such that, for every λ ∈ [−1; 1],

Eλ = WXλW
−1, (4.5)

where, as above, Xλ is the multiplication operator by the indicator χ[−1;λ)(t) of the set [−1;λ),
Xλ = {Xλ,J − L2

�σ
(E)}. The operatorW is said to be an operator of similarity.

Proposition 4.3. Every J-orth.sp.f. Eλ with an empty set of peculiarities has a model space J − L2
�σ
(E).

Proof. By [19, Lemma XV.6.2], one can define, on H, a new scalar product (noncanonical in
the general case) (·, ·)1, topologically equivalent to the initial scalar product (·, ·) and such
that the spectral function Eλ, is orthogonal with respect to (·, ·)1. Then [·, ·] = (G·, ·)1, where
the operators Eλ commute with G for a.a. λ ∈ [−1; 1]. Now one can introduce, on H, a new
canonical scalar product (·, ·)2 = (|G|·, ·)1, where |G| = (G2)1/2 is the module of G. The new
scalar product generates the canonical decompositionH = H(2)

+ ⊕2H(2)
− . It easy to show that the

subspaces H(2)
+ and H(2)

− are Eλ-invariant for a.a. λ ∈ [−1; 1]. Thus there are model spaces
J − L2

�σ+
(E+) and J − L2

�σ−
(E−) for orth.sp.f. Eλ|H(2)

+
and Eλ|H(2)

−
, respectively. Without loss of

generality one can assume that the scalar functions (see (3.17)) σ+(t) and σ−(t) are such that

σ+(t) =
∫ t
−1
ρ+(λ)dσ(λ), σ−(t) =

∫ t
−1
ρ−(λ)dσ(λ), ρ2+(λ) = ρ+(λ),

ρ2−(λ) = ρ−(λ), σ(t) =
∫ t
−1

(
ρ+(λ) + ρ−(λ) − ρ+(λ)ρ−(λ)

)
dσ(λ).

(4.6)

Put J − L2
�σ
(E) := J − L2

�σ+
(E+) ⊕ J − L2

�σ−
(E−). The rest is straightforward.

Remark 4.4. As is well known, a model representation for an orth.sp.f. is not uniquely
determined. At the same time, all scalar measures for such representations in the case of
the same orth.sp.f. are equivalent among themselves and the function (see (3.24)) r(t) =
dimGt does not depend on the choice of the model representation. This is the reason why a
model representation for orth.sp.f., usually is taken in the class of Lebesgue spaces orderly
decomposable on uniform components. In the case of J-orth.sp.f., the situation is slightly more
complicated. Specifically, for all model representations for a fixed J-orth.sp.f., all admissible
scalar measures are equivalent among themselves and two functions r+(t) = dimKer ((Jt−I)|Gt

)
and r−(t) = dimKer ((Jt + I)|Gt

) do not depend among themselves and of the choice on the
model representation. Conversely, if data include a class of equivalent measures, functions
r+(t) and r−(t), then a J-orth.sp.f. with empty set of peculiarities can be restored up to
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J-isometric equivalence. In particular, one can choose a suitable function σ(t), construct a space
J − L2

�σ+
(E+) using σ(t) and r+(t), construct a space J − L2

�σ−
(E−) using σ(t) and r−(t), and put

J−L2
�σ
(E) := J−L2

�σ+
(E+)⊕J−L2

�σ−
(E−). Note that, even if the spaces J−L2

�σ+
(E+) and J−L2

�σ−
(E−)

are orderly decomposable on uniform components, the spaces J−L2
�σ
(E) in the general case do

not have this property.

Proposition 4.5. Assume that Eλ is a J-orth.sp.f. with empty set of peculiarities, J − L2
�σ
(E) and J′ −

L2
�σ
(E) are two different standard Krein spaces such that each of them is a model space for Eλ and is

derived from the same space L2
�σ
(E) by canonical symmetries J and J′, respectively. Then, in L2

�σ
(E),

there is a unitary operator U satisfying (3.24) and such that J′ = U−1JU.

Proof. In the general case the operators of similarity W and W ′ correspond to different
canonical scalar products on the same space H, say, W : J − L2

�σ
(E) �→ {H, (·, ·)} and

W ′ : J′ − L2
�σ
(E) �→ {H, (·, ·)1}, where (·, ·) := [J ·, ·] and (·, ·)1 := [J1·, ·]. On the other

hand thanks to Definition 4.2, Eλ is self-adjoint simultaneously with respect to the scalar
products (·, ·) and (·, ·)1, hence it commutes with J and J1. Thus, taking into account
Proposition 3.1, we can assume that (·, ·) = (·, ·)1. Then the required operator U can be defined
by the formula U := W−1W ′. Indeed, first, this U is unitary because the canonical scalar
product on H is the same for W and W ′; second, for every function f(t) ∈ L2

�σ
(E) is true,

(J′f(t), f(t))L2
�σ
(E) = [f(t), f(t)]J′−L2

�σ
(E) = [Uf(t),Uf(t)]J−L2

�σ
(E) = [JUf(t),Uf(t)]L2

�σ
(E); third,

UXτf(t) = W−1EτW
′f(t) = XτUf(t). The rest follows from Proposition 3.15.

The proof of the next proposition will be omitted because it contains the same well-
known ideas as the proof of Proposition 3.15.

Proposition 4.6. LetM be a J-unitary operator in a standard Krein space J−L2
�σ
(E) commuting with

{Xτ ,J − L2
�σ
(E)} for a.a. τ ∈ [−1; 1]. Then there is an operator-valued weakly measurable function Mt

defined a.e. on [−1; 1] and taking values in the set of bounded operators acting in E such that, for a.a.
t ∈ [−1; 1],

(a) (Mf)(t) = Mtf(t);

(b) MtGt = Gt,MtG⊥
t = G⊥

t ,Mt|G⊥
t
= I|G⊥

t
;

(c)
[
Mtx,Mtx

]
= [x, x] ∀x ∈ E;

(d) EssSupt∈[−1;1]
∥∥Mt

∥∥
E = ‖M‖L2

�σ
(E).

(4.7)

5. Unbounded elements in Hilbert spaces

First, let us consider the notion of unbounded elements.
Assume that H is a Hilbert space, Pt is a resolution of the identity (= an orthogonal

spectral function with the empty set of peculiar points) defined on the segment [−1; 1],
continuous in zero (with respect to the w-topology), and

(a) P−1 = 0, P1 = I;

(b) for every t ∈ [−1; 1] the unilateral limits w − lim
μ→t−0

Pμ

and w − lim
μ→t+0

Pμ exist, where for definiteness Pt−0 = Pt.

(5.1)

Set Pλ,μ = I + Pλ − Pμ+0, where λ ∈ [−1; 0), μ ∈ (0; 1].
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Next, let xλ,μ be a mapping of the numerical set [−1; 0) × (0; 1] into H (λ ∈ [−1; 0), μ ∈
(0; 1]). The function xλ,μ is said to be conformed with Pt if the following condition is fulfilled;
for every λ, α ∈ [−1; 0), μ, β ∈ (0; 1]; the equality Pλ,μxα,β = xγ,δ holds, where γ = min{λ, α},
δ = max{μ, β}.

Note that xλ,μ has the following property:

if sup
λ∈[−1;0)
μ∈(0;1]

{‖xλ,μ‖} < ∞ then there is an element x ∈ H such that for every

λ ∈ [−1; 0), μ ∈ (0; 1] the equality xλ,μ = Pλ,μx holds.
(5.2)

It is clear that the element x from (5.2) is uniquely defined by xλ,μ and can be found by the
formula x = w − limλ→−0

μ→+0
xλ,μ.

Definition 5.1. A function xλ,μ, which is conformed with Pλ, is said to be an unbounded element
conformed with Pλ (or, if it cannot produce a misunderstanding or an unbounded element) if
supλ∈[−1;0)

μ∈(0;1]
{‖xλ,μ‖} = ∞.

Note that unbounded elements conformed with Pt exist if and only if zero is a point of
growth for Pt, that is, for every ε > 0 it is true that P+ε − P−ε /= 0. Everywhere below in this
section, this condition for Pt is assumed to be fulfilled.

For brevity everywhere below unbounded elements will be denoted by symbols x̃, ỹ,
and so on. For λ ∈ [−1; 0), μ ∈ (0; 1], we set xλ,μ := Pλ,μx̃.

Definition 5.2. Unbounded elements x̃1, x̃2, . . . , x̃k, conformed with a (common) resolution
of the identity Pλ, are said to be linearly independent modulo H if every nontrivial linear
combination of them is an unbounded element fromH.

Next, for every bounded Pt-measurable function φ(t), one can define, on H, the
following operator Φ:

Φx :=
∫1
−1
φ(t)dPtx. (5.3)

Using the previous notation, rewrite the last formula as

(Φx̃)λ,μ =
∫λ
−1
φ(t)dPtx̃ +

∫1
μ

φ(t)dPtx̃. (5.4)

Representation (5.4) allows a possibility to treat the operator Φ in a more general sense;
unbounded elements conformed with Pt can be naturally included to the domain of Φ. Note
that the portrait of an unbounded element can be both a bounded element and an unbounded
element. Moreover, φ(t) in (5.4) could also be taken unbounded. In this case the portrait of a
bounded element, optionally, is an unbounded element.

Proposition 5.3. If a function φ(t) is unbounded on every subset of complete Et-measure, then the
vector space ΦH contains an infinite number of unbounded elements conformed with Pt and a linearly
independent moduloH.
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The last proposition shows (see also below, Proposition 5.4) that if we need to operate
with a finite number of unbounded elements, then only bounded functions φ(t) are admissible
in (5.4).

Until the end of the present section, the orthogonal resolution of the identity Pt and
a nondecreasing function σ(t), such that μσ-measurability on [−1; 1] coincides with the Pt-
measurability, will be fixed. Note that the existence of σ(t) follows from the separability of H
(see [26, Section 76, Theorem 1]).

We give an additional notation. Let {x̃j}k1 be a fixed family of unbounded elements
conformed with Pt and a linearly independent modulo H. Both the unbounded elements and
the ordinary vectors from H can be considered as functions defined on [−1; 0) × (0; 1] and
taking values in H (see (5.2)). The linear span of vectors from H and unbounded elements
from {x̃j}k1 , consistently taken as functions on [−1; 0) × (; 1], is denoted H̃. Additionally H̃
will be considered as a Hilbert space, where H is a subspace with the the same scalar product
that was given on H from the beginning, and unbounded elements from {x̃j}k1 are mutually
orthogonal and orthogonal to H. The space H̃ is said to be an expansion of H (generated by
{x̃j}k1).

Next, using the system {x̃j}k1 , introduce the function ν(t);

ν(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ(t) +
k∑
j=1

∥∥Ptx̃j

∥∥2, if t ∈ [−1, 0);

−σ(1) + σ(t) −
k∑
j=1

∥∥(Pt − I
)
x̃j

∥∥2, if t ∈ [0, 1).
(5.5)

The connection between Pt and σ(t) implies that the function ν(t) introduced in (5.5) has (3.16).
In this case the function G(t) from (3.16) can be calculated directly through ν(t) and σ(t).

Proposition 5.4. Let {x̃j}k1 be a system of unbounded elements, forming together withH the space H̃,
let φ(t) be a μσ-measurable function, let Φ be the operator defined by (5.4). Then ΦH̃ ⊂ H if and only
if φ(t) ∈ L∞

σ ∩ L2
ν.

Proof. Sufficiency of the formulated condition is clear, so we will consider its necessity only.
Note that, by virtue of Proposition 5.3, condition ΦH̃ ⊂ H implies the boundedness of the
function φ(t). Next, since Φx̃j ∈ H for j = 1, 2, . . . , k, then, by (5.4) it is true that ‖Φx̃j‖2 =∫1
−1 |φ(t)|2d‖Ptx̃j‖2 < ∞ and, moreover,

∫1
−1 |φ(t)|2dσ(t) < ∞. Thus (5.5) implies φ(t) ∈ L∞

σ ∩ L2
ν.

For future applications, both the cases ΦH̃ ⊂ H and

ΦH̃ ⊂ H̃ (5.6)

are important.

Proposition 5.5. Let {x̃j}k1 be a system of unbounded elements, generating together with H the space
H̃. Then there are no more than k2μσ-measurable functions φ(t) linearly independent modulo L∞

σ ∩ L2
ν

such that (5.6) is fulfilled.
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Proof. Due to (5.6), every element from the system {Φx̃j}k1 can be uniquely represented
(modulo H) as a linear combination of elements from {x̃j}k1 , that is,

Φx̃j =
k∑

m=1

cjmx̃m(modH), j = 1, 2, . . . , k. (5.7)

Thus the operator Φ generates the matrix

CΦ =
(
cjm
)k
j,m=1, (5.8)

in addition, ΦH̃ ⊂ H if and only if CΦ = 0. Hence functions comparable modulo L∞
σ ∩ L2

ν have
the same matrix (5.8).

Remark 5.6. For the function φ(t) ≡ 1, (5.7) is always fulfilled. At the same time the example of
the unbounded elements {(1)m}∞m=1 and {(i)m}∞m=1 from the space l2 shows that the case, where
there are no functions different from a constant modulo L∞

σ ∩L2
ν and simultaneously satisfying

(5.6), is possible. Moreover, the estimation mentioned in Proposition 5.5 is excessive for every
k > 1 because two arbitrary matrices of the form (3.19) generated by (5.7) commute. For a
discursion of the linear dimension of a group of commutative matrices, see, for instance, [27,
Part 2, Section 10].

6. A function model for a J-symmetric family of the class D+
κ

6.1. Some remarks

In this section a function model of J-symmetric family Y ∈ D+
κ with real spectrum will

be discussed. This model is defined with the help of an e.s.f. Eλ of Y (see Section 3). It is
incomplete because the model describes the operator family restricted on some important
subspaces (in particular, on the subspace H̃ (see (3.15)(d))) and not this family itself. By virtue
of Theorem 3.11, it is clear that the general situation can be reduced to the case of J-orth.sp.f.
Eλ with a unique spectral peculiarity in zero. Furthermore, the case of a regular peculiarity is
trivial because, under this condition, all operators from Y are spectral in the sense of Dunford
and have a finite-dimensional nilpotent part. Thus Eλ is such that

(a)E−1 = E−1+0 = 0, E+1 = I;

(b)Λ = {0};
(c) sup

λ∈[−1;1]\{0}

{∥∥Eλ

∥∥} = ∞.
(6.1)

During the first stage, assume additionally that, for every closed interval Δ ⊂ [−1; 0) ∪ (0; 1],
the following condition holds:

if E(Δ) /= 0, then the subspace E(Δ)H is positive. (6.2)

Note that (6.2) does not necessarily mean that H is a Pontryagin space because the subspace
H̃[⊥] can contain both positive and negative subspaces of infinite dimension. We introduce
some notation. Let

H1 = H̃ ∩ H̃[⊥], H2 = H⊥
1 ∩ H̃, H0 = JH1,

Pj be an orthoprojection (in the sense of Hilbert spaces) onto Hj ,

j = 0, 1, 2, Ẽλ := Eλ|H̃.

(6.3)
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Note that, by virtue of (6.1)(c), the equality H1 /= {0} holds, and due to (6.2), the subspace
H2 is uniformly positive (recall that the subspace H1 is finite dimensional). Without loss of
generality one can assume that, onH2,

(·, ·) = [·, ·]. (6.4)

Now, we pass to a detailed analysis of the structure of Eλ. First, let X ∈ RΛ and

X ⊂ [−1; 1] \ {0}. (6.5)

Then

E(X)|(H0+̇H1+̇H2)
[⊥] = 0, (6.6)

thus it is enough to study the behavior of E(X) on the subspace

H0+̇H1+̇H2. (6.7)

Assume that a canonical scalar product on H is such that (H0+̇H1+̇H2)
[⊥] ⊥ (H0+̇H1+̇H2). In

this case, (6.7) is an invariant subspace for J .
A direct verification shows that, if (6.5) holds, the operatorE(X) has the followingmatrix

realization:

E(X)|H0+̇H1+̇H2 =

⎛
⎜⎜⎝

0 0 0

E10(X) 0 E12(X)

E20(X) 0 E22(X)

⎞
⎟⎟⎠ , (6.8)

with respect to (6.7), where

E10(X) = E12(X)E∗
12(X)V ; E20(X) = E∗

12(X)V ;

E2
22(X) = E∗

22(X) = E22(X); E12(X)E22(X) = E12(X),
(6.9)

and the operator V corresponds to the representation

J |H0+̇H1+̇H2 =

⎛
⎝0 V −1 0

V 0 0
0 0 I2

⎞
⎠ . (6.10)

Let X0 be a family of all sets under Condition (6.5). If X,Y ∈ X0, then, for the operators E(X)
and E(Y ), the condition of the form (6.8) holds simultaneously. Since E(X)E(Y ) = E(Y )E(X) =
E(X ∩ Y ), then

E22(X)E22(Y ) = E22(Y )E22(X) = E22(X ∩ Y ),

E12(X)E22(Y ) = E12(Y )E22(X) = E12(X ∩ Y )E22(X ∩ Y ).
(6.11)

Now, we discuss the spectrum multiplicity of the family Ẽλ. Recall that a subspace L is said to
be cyclicwith respect to Ẽλ if CLinλ∈[−1;1]\{0}{EλL} = H̃.



Vladimir Strauss 21

Definition 6.1. In what follows, a nonsingular multiplicity of J-orth.sp.f. Eλ means the minimal
dimension of all cyclic subspaces with respect to Ẽλ.

Remark 6.2. Due to the choice of H̃ one can assume that a cyclic subspace L is taken such that
L ⊂ H2, so the nonsingular multiplicity of Eλ coincides with the multiplicity (in the ordinary
sense) of the (orthogonal) spectral function P2Eλ|H2 .

Proposition 6.3. If (6.1) and (6.2) are fulfilled and the nonsingular multiplicity of Eλ is greater than
dimH1, then there is a decomposition H̃ = H(1)+̇H(2) such that H(1)[⊥]H(2), EλH(1) ⊂ H(1),
EλH(2) ⊂ H(2) for every λ ∈ [−1; 1] \ {0}, the subspace H(1) is uniformly positive and the J-orth.sp.f.
Eλ|(H(1))[⊥] has nonsingular multiplicity less than or equal to dimH1.

Proof. Since H1 ⊂ H̃ and (6.2) holds, there is a sequence of disjoint subsets {Xk}∞1 such that
a condition of the type (6.5) holds for all k = 1, 2, . . ., ∪∞

k=1Xk = [−1; 1] \ {0}, and for every k,

the equality E12(Xk)H2 = H1 is true. It is clear that dim (E∗
12(Xk)H1) = dimH1. Let {u(k)

j }n
1
be

some orthonormalized basis in E∗
12(Xk)H1, k = 1, 2, . . .. Set

uj =
∞∑
k=1

(
1/

√
2
)k
u
(k)
j , j = 1, 2, . . . , n; H(3) = CLin

Y∈X0

{
E22(Y )uj

}n
j=1, (6.12)

H(1) = (H(3))⊥ ∩ H2, H(2) = CLinY∈X0{E(Y )H(3)}. We show that the subspaces H(1) and H(2)

are as desired. First, we prove that, for every set X ∈ X0, the equality

E12(X)H(1) = {0}. (6.13)

holds. Indeed (see (6.11)), if y ∈ H(1) and z ∈ H1, then

(E12(X)y, z) =
(
y, E∗

12(X)z
)

=
(
y,

∞∑
k=1

E22
(
Xk

)
E∗
21(X)z

)
=

∞∑
k=1

(
y, E22

(
X ∩Xk

)
E∗
21

(
Xk

)
z
)

=
∞∑
k=1

(
y, E22

(
X ∩Xk

) n∑
j=1

α
(k)
j u

(k)
j

)
= 0.

(6.14)

Next, it is clear that H(3) is an invariant subspace with respect to the operators E22(X),
therefore, the subspace H(1) has the same property. Thus, taking into account (6.13), one can
conclude thatH(1) is invariant with respect to Eλ.

Remark 6.4. Proposition 6.3 shows that, in some problems one can assume that the nonsingular
multiplicity of Eλ is finite. At the same time, this hypothesis is not convenient in many
cases because the decomposition H̃ = H(1)+̇H(2) is not uniquely defined and, moreover, the
subspace H(1) can be always extended saving all properties enumerated in Proposition 6.3.
Basically, Proposition 6.3 gives a possibility to illustrate peculiarities of J-orth.sp.f. in question
using J-orth.sp.f. with finite nonsingular multiplicity.

In addition to (6.3), set

H̃↑ = H0 ⊕H2, Ẽλ = Eλ|H̃, Ẽ↑
λ
=
(
P0 + P2

)
Eλ|H̃↑ . (6.15)
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Now, let L2
�σ
(E) and M2

�σ
(E) be some standard Hilbert space and some standard space of

measurable vector-functions, respectively, and let g̃1(t), g̃2(t), . . . , g̃k(t) be a finite collection of
vector functions such that

(a) g̃j(t) ∈ M�σ(E), j = 1, 2, . . . , k;

(b) the set
{
g̃j(t)
}k
j=1 is a set of unbounded elements from

L2
�σ(E) linearly independent modulo L2

�σ(E) and conformed with Xτ .

(6.16)

Below L̃2
�σ
(E) ⊂ M�σ(E) is the linear span formed by L2

�σ
(E) and the collection {g̃j(t)}kj=1, where

(see Section 5) the functions from {g̃j(t)}kj=1 are assumed to be normalized, pairwise orthog-

onal, and orthogonal to L2
�σ
(E), that is, on L̃2

�σ
(E), a structure of Hilbert space is defined. Note

that, sometimes, L̃2
�σ
(E) will be considered without its Hilbert structure as a vector subspace

from M�σ(E) but this case will be noted explicitly.

6.2. Functional model of Eλ (a special case)

Theorem 6.5. If, for J-orth.sp.f. Eλ, (6.1) and (6.2) hold, and for a canonical scalar product (·, ·), (6.4)
holds, then there exist a standard Hilbert space L2

�σ
(E), a collection {g̃j(t)}kj=1 satisfying (6.16) which

generates the expansion L̃2
�σ
(E) of L2

�σ
(E), and an isometric operator W : L̃2

�σ
(E) �→ H̃, WL2

�σ
(E) = H2

such that, for every λ ∈ [−1; 1] \ {0}, the following representations take place (see (6.10)):

Ẽλ = W ·X∗
λ · (W)−1, W↑ =

(
I2 ⊕ V

)
W, Ẽ↑

λ
= W↑ · Xλ ·

(
W↑)−1, (6.17)

where Xλ = {Xλ, L̃
2
�σ
(E)}, k = dimH0 = dimH1.

Proof. First, P2Eλ|H2 is an orthogonal (in the ordinary Hilbert sense) spectral function, so there
is a space L2

�σ
(E) such that the operator P2Eλ is similar to the operator Xλ = {Xλ, L

2
�σ
(E)}. Let

a space L2
�σ
(E) be already chosen and let an isometric operator W2: L2

�σ
(E) �→ H2 be such that

P2Eλ|H2 = W2XλW
−1
2 . Now, it is necessary to find a collection of unbounded elements {g̃j(t)}kj=1,

so that the corresponding space L̃2
�σ
(E) and the operatorW would be as desired. Choose, inH1,

some orthonormalized basis {ej}kj=1. Let Δ ⊂ [−1; 1] \ {0} be a closed interval. Consider the
expression (E(Δ)x, ej), where x ∈ H2. It can be considered as a continuous linear functional
acting in H2 or, equivalently, in L2

�σ
(E). By the well-known theorem of Riesz on the general

representation of continuous linear functional, there is a function gj,Δ(t) ∈ L2
�σ
(E) such that

(
E(Δ)x, ej

)
=
∫1
−1

(
f(t), gj,Δ(t)

)
Edσ(t), (6.18)

where f(t) = W−1
2 x or (thanks to properties of the spectral function)

(
E(Δ)x, ej

)
=
∫
Δ

(
f(t), gj,Δ(t)

)
Edσ(t), (6.19)

gj,Δ(t) = 0, if t /∈ Δ. (6.20)
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Condition (6.20)means that there is a function g̃j(t) ∈ M�σ(E) such that, for every interval Δ as
defined above,

gj,Δ(t) = χΔ(t)g̃j(t), (6.21)

where χΔ(t) is the indicator of the interval Δ. The collection {g̃j(t)}kj=1 is as desired. We show

this. First, we prove that the set {g̃j(t)}kj=1 is linearly independent modulo L2
�σ
(E). Suppose the

contrary, that is, suppose the existence of a collection of coefficients {γj}kj=1 such that

0 <
k∑
j=1

∣∣γj∣∣,
k∑
j=1

γj g̃j(t) ∈ L2
�σ(E). (6.22)

Let y =
∑k

j=1γjej . By the definition of the space H̃, there is a sequence {xm}∞1 ⊂ Lin{E(Δ)H}
such that ‖xm − y‖ → 0 for m → ∞. Set W−1

2 (P2xm) = fm(t). Note that fm(t) ≡ 0 in some
neighborhood of zero, therefore, the representation

∥∥xm − y
∥∥2 = (∥∥fm(t)∥∥L2

�σ
(E)
)2 + k∑

j=1

∣∣∣∣γj −
∫1
−1

(
fm(t), g̃j(t)

)
Edσ(t)

∣∣∣∣
2

(6.23)

is valid, hence limm→∞‖fm(t)‖ = 0,

lim
m→∞

∫1
−1

(
fm(t), g̃j(t)

)
Edσ(t) = γj , j = 1, 2, . . . , k. (6.24)

These equalities and (6.22) imply

k∑
j=1

∣∣γj∣∣2 = lim
m→∞

k∑
j=1

γj

∫1
−1

(
fm(t), g̃j(t)

)
Edσ(t) = lim

m→∞

∫1
−1

(
fm(t),

k∑
j=1

γj g̃j(t)

)
E
dσ(t) = 0, (6.25)

which is a contradiction, that is, (6.22) is impossible.
Second, form L̃2

�σ
(E) according to the above procedure using the space L2

�σ
(E) and the

collection of unbounded elements {g̃j(t)}kj=1. Next, set

Wf(t) = W2f(t), if f(t) ∈ L2
�σ
(E);

Wg̃j(t) = ej , j = 1, 2, . . . , k.
(6.26)

In this case the dual operator W↑ is defined by the equalities

W↑f(t) = W2f(t), if f(t) ∈ L2
�σ
(E);

W↑g̃j(t) = hj, where hj = V −1ej , j = 1, 2, . . . , k.
(6.27)

Now, pass to (6.17). Assume (as above) that for a closed interval Δ the condition Δ ⊂ [−1; 1] \
{0} holds. Then, in concordance with (6.8) and (6.19), one has E12(Δ)x =

∑k
j=1(x, z

(Δ)
j )ej , where

z
(Δ)
j = Wgj,Δ(t), j = 1, 2, . . . , k, so E20(Δ)hj = z

(Δ)
j , j = 1, 2, . . . , k. The last equalities, (3.21),

and (3.23) imply (see the notation introduced in (6.15)) W−1Ẽ↑(Δ)Wg̃j(t) = χΔ(t)g̃j(t), j =
1, 2, . . . , k. Due to the choice of L2

�σ
(E), the rest follows from (6.9) and (6.27).
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Definition 6.6. If J-orth.sp.f. Eλ satisfies (6.1) and (6.2), and the space L̃2
�σ
(E) has (6.17), then

L̃2
�σ
(E) is said to be a basic model space for Eλ (compatible with (6.3) and (6.15)), and the operator

W is said to be an operator of similarity (generated by L̃2
�σ
(E)).

Theorem 6.7. Let a space L̃2
�σ
(E) be the expansion of a standard Hilbert space L2

�σ
(E) generated by a

collection {g̃j(t)}kj=1 satisfying (6.16). Then there exist a Pontryagin space H and a J-orth.sp.f. Eλ on

H such that L̃2
�σ
(E) is a basic model space for Eλ.

Proof. Let H be the set of triples (u, v, f(t)) with u, v ∈ C
k and f(t) ∈ L2

�σ
(E). For x1 = (u1, v1,

f1(t)) and x2 = (u2, v2, f2(t)), put
(
x1, x2

)
=
(
u1, u2

)
Ck +
(
v1, v2

)
Ck +
(
f1(t), f2(t)

)
L2
�σ
(E),[

x1, x2
]
=
(
u1, v2

)
Ck +
(
v1, u2

)
Ck +
(
f1(t), f2(t)

)
L2
�σ
(E).

(6.28)

Next, let {ej}kj=1 be the canonical basis in C
k. Then, for intervals Δ = [α, β), where 0 /∈ Δ and

α /= 0, we put

E(Δ)
(
ej , 0, 0

)
=

(
0,

k∑
m=1

(
χΔ(t)g̃j(t), χΔ(t)g̃m(t)

)
L2
�σ
(E) · em, χΔ(t)g̃j(t)

)

for j = 1, 2, . . . , k, E(Δ)(0, v, 0) = (0, 0, 0) for every v ∈ C
k,

E(Δ)
(
0, 0, f(t)

)
=

(
0,

k∑
m=1

(
χΔ(t)f(t), χΔ(t)g̃m(t)

)
L2
�σ
(E) · em, χΔ(t)f(t)

)
.

(6.29)

Direct verification shows that E(Δ) generates a J-orth.sp.f. with (6.1) and (6.2). Let us check
that

H1 =
{
(0, v, 0)

}
v∈Ck , H2 =

{
(0, 0, f(t))

}
f(t)∈L2

�σ
(E). (6.30)

We denote, by the symbol (L2
�σ
(E))0, the set of all functions from L2

�σ
(E) vanishing near zero, and

for every f(t) ∈ (L2
�σ
(E))0, we set T1f :=

∑k
m=1(f(t), g̃m(t))L2

�σ
(E) · em. Then the space H̃ is the

closure of the set
{(

0, T1f, f(t)
)}

f(t)∈(L2
�σ
(E))0

. (6.31)

Let a system {vj}kj=1 be an orthonormalized basis in C
k. Then

vj =
k∑

m=1

αmjem (6.32)

and (6.31) can be rewritten as
{(

0,
k∑

m=1

(
f(t), ĝm(t)

)
L2
�σ
(E) · vm, f(t)

)}
f(t)∈(L2

�σ
(E))0

, (6.33)

where, by (6.32), ĝm(t) =
∑k

j=1αjmg̃j(t). Note that system {ĝm(t)}km=1 also has (6.16).
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Initially, the basis {vm}km=1 was arbitrary but now we pass to choose it in a special way.
Since the elements from {g̃m(t)}km=1 are unbounded, there is a sequence {fl(t)}∞l=1 ⊂ (L2

�σ
(E))0

such that liml→∞‖fl(t)‖L2
�σ
(E) = 0 and ‖T1fl‖Ck = 1 for every l. Let wl = T1fl. Since wl ∈ C

k,

one can assume that there exists liml→∞wl, and put v1 := liml→∞wl ∈ H̃. Now, we apply the
same scheme for defining v2. Let T2f :=

∑k
m=2(f(t), ĝm(t))L2

�σ
(E) · vm = T1f − v1 · (T1f, v1)Ck .

Then (0, T2f, f(t)) ∈ H̃ for every f(t) ∈ (L2
�σ
(E))0. Since the elements from {ĝm(t)}km=2 are

unbounded for every choice of {vj}kj=1, there exists a (new) sequence {fl(t)}∞l=1 ⊂ (L2
�σ
(E))0 such

that liml→∞‖fl(t)‖L2
�σ
(E) = 0 and ‖T2fl‖Ck = 1 for every l. Let wl = T2fl. Since wl ∈ C

k, one can

assume that there exists liml→∞wl, and put v2 := liml→∞wl ∈ H̃. Then v1 ⊥ v2. The rest of the
proof of (6.30) is now evident. Next, we putWf(t) = (0, 0, f(t)) for every f(t) ∈ J−L2

�σ
(E), and

Wg̃j(t) = (0, ej , 0) for j = 1, 2, . . . , k. The rest is straightforward.

We note that a basic model space for a given J-orth.sp.f. is not uniquely defined and
discusses the arbitrariness for the choice of a concrete model. The construction of the basic
model space was started from (6.3) and these depend on the choice of a canonical scalar
product. So the first question is the following: does the basic model space depend on a choice
of canonical scalar product? In order to answer this question, note, first, that H1 does not
depend on any canonical scalar product and is calculated using only theHermitian sesquilinear
form [·, ·] and J-orth.sp.f. Eλ. Second, one can consider the factor space H̃/H1. Then, by
virtue of (6.2), the sesquilinear form [·, ·] generates in it the structure of Hilbert spaces, and
the spectral function induced on H̃/H1 by the operator function Ẽλ is orthogonal. Third,
by Definition 4.2 and Proposition 4.3, this induced function is similar to the spectral function
P2Eλ|H2 . Summarizing all mentioned arguments, we obtain the following proposition.

Proposition 6.8. If L̃2
�σ
(E) is a basic model space for J-orth.sp.f. Eλ satisfying (6.1) and (6.2), and W

is the corresponding operator of similarity, then the orth.sp.f.
∗
Eλ, induced on the Hilbert factor space

∗
H:=

H̃/H1 by the J-orth.sp.f.Eλ, is similar to the operator family Xλ acting in L2
�σ
(E), and the corresponding

operator of similarity
∗
W : L2

�σ
(E) �→ ∗

H is induced by the operatorW .

Thus the choice of L2
�σ
(E) as a source for constructing a basic model space L̃2

�σ
(E) is realized

in the same class of spaces as for the orth.sp.f.
∗
Eλ and does not depend on a canonical scalar

product on H̃.

Proposition 6.9. Let spaces L̃2
�σ
(E) and L̆2

�σ
(E) be expansions of a space L2

�σ
(E) generating, respectively,

by collections {g̃j(t)}kj=1 and {ğj(t)}kj=1 with (6.16), let both L̃2
�σ
(E) and L̆2

�σ
(E) be a basic model space

for the same J-orth.sp.f. Eλ with (6.1) and (6.2), and let W (1) and W (2) be the corresponding operators
of similarity. If for every function f(t) ∈ L2

�σ
(E), the relation

(
W (1) −W (2))f(t) ∈ H1, (6.34)

holds, then the spaces L̃2
�σ
(E) and L̆2

�σ
(E) coincide as vector subspaces in M�σ(E).

Proof. The complete proof will be divided in several stages. First, consider the case

W (1)L2
�σ(E) = W (2)L2

�σ(E). (6.35)
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This equality means that, in particular, the basic model spaces L̃2
�σ
(E) and L̆2

�σ
(E) were

constructed according to the procedure mentioned during the proof of Theorem 6.5 using the
same decomposition H̃ = H1+̇H2, but, generally speaking, a different choice of scalar products
(·, ·)(1), (·, ·)(2), and (or) basis in H1. Put

e
(1)
j := W (1)g̃j(t), e

(2)
j := W (2)ğj(t), j = 1, 2, . . . , k. (6.36)

Since the Hilbert structure of the spaces L̃2
�σ
(E) and L̆2

�σ
(E) is not in question, only the choice of

the bases {e(1)j }k
1

and {e(2)j }k
1

in H1 is important (if scalar products are different then
corresponding bases are necessarily different). Let

a
(1)
j (Δ) =

(
E(Δ)x, e(1)j

)(1)
, a

(2)
j (Δ) =

(
E(Δ)x, e(2)j

)(2)
,

Δ ⊂ [−1; 1] \ {0}, x ∈ H2, e
(2)
j =

k∑
l=1

γjle
(1)
l
, j = 1, 2, . . . , k.

(6.37)

Then, by (6.19) and (6.21)

a
(1)
j (Δ) =

∫
Δ

(
f(t), g̃j(t)

)
Edσ(t), a

(2)
j (Δ) =

∫
Δ

(
f(t), ğj(t)

)
Edσ(t), (6.38)

where f(t) = (W (1))−1x = (W (2))−1x. But {a(1)
j (Δ)}k

1
and {a(2)

j (Δ)}k
1
are the coefficients of de-

composition for the same vector with respect to bases {e(1)j }k
1
and {e(2)j }k

1
, respectively. Thus

(6.37) gives the collection of equalities a(2)
l
(Δ) =

∑k
j=1γjla

(1)
j (Δ), j = 1, 2, . . . , k, hence

∫
Δ

(
f(t), ğl(t)

)
Edσ(t) =

∫
Δ

(
f(t),

k∑
j=1

γjlg̃j(t)

)
E
dσ(t). (6.39)

Since the segment Δ is arbitrary and f(t) runs through the set of all functions from L2
�σ
(E), this

equality gives

ğl(t) =
k∑
j=1

γjlg̃j(t), j = 1, 2, . . . , k. (6.40)

Thus L̃2
�σ
(E) ⊃ L̆2

�σ
(E). Since the spaces L̃2

�σ
(E) and L̆2

�σ
(E) have an equal status, the inverse

inclusion is also true. So L̃2
�σ
(E) and L̆2

�σ
(E) coincide as subsets of M�σ(E). The proposition is

proved under (6.35).
For the second stage assume that the model spaces L̃2

�σ
(E) and L̆2

�σ
(E) are constructed

using different decompositions of the space H̃, that is, H̃ = H1+̇H(1)
2 , H̃ = H1+̇H(2)

2 , but the
basis inH1 and, moreover, the scalar product in H1 for both spaces are the same. Thus

ej = W (1)g̃j(t) = W (2)ğj(t), j = 1, 2, . . . , k. (6.41)

Next, the spaceH(2)
2 can be represented in the form

H(2)
2 = {x +Qx}

x∈H(1)
2
, (6.42)
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where Q : H(2)
2 �→ H1 is a linear operator. It is clear that Qx =

∑k
j=1ej(x, zj), where {zj}k1 is a

vector set from H(1)
2 . Note that the equality

(
W (1))−1x =

(
W (2))−1(x +Qx) (6.43)

holds for all x ∈ H(1)
2 . Indeed, if f(t) := (W (1))−1x, then by (6.42), W (2)f(t) = y + Qy, where

y ∈ H(1)
2 . This implies (W (1) −W (2))f(t) = x−y−Qy, and thanks to (6.34), one has x = y. Since

W (2) is a one-to-one mapping, (6.43) is proved.
Now, let x ∈ H(1)

2 ∩ (E(Δ)H+̇H1). Then by (6.15), the representation H̃ = H1+̇H(1)
2

implies E(Δ)x = x +
∑k

j=1ej(x, s
(1)
j ), where (cf., (6.19))

s
(1)
j = W (1)χΔ(t)g̃j(t), j = 1, 2, . . . , k, (6.44)

so if (W (1))−1x = f(t), then

E(Δ)x = x +
k∑
j=1

ej

∫
Δ

(
f(t), g̃j(t)

)
Edσ(t). (6.45)

The last equality can be rewritten as

E(Δ)x = (x +Qx) +
k∑
j=1

ej
(
x, s

(1)
j − zj

)

= (x +Qx) +
k∑
j=1

ej

∫
Δ

(
f(t), g̃j(t) − ζj(t)

)
Edσ(t),

(6.46)

where ζj(t) = (W (1))−1zj ∈ L2
�σ
(E), j = 1, 2, . . . , k. On the other hand, by (6.15) and (6.43), the

representation H̃ = H1+̇H(2)
2 and the equality E(Δ)x = E(Δ)(x +Qx) imply

E(Δ)x = (x +Qx) +
k∑
j=1

ej

∫
Δ

(
f(t), ğl(t)

)
Edσ(t). (6.47)

The comparison between (6.46) and (6.47) gives

k∑
j=1

ej

∫
Δ

(
f(t), ğl(t)

)
Edσ(t) =

k∑
j=1

ej

∫
Δ

(
f(t), g̃j(t) − ζj(t)

)
Edσ(t). (6.48)

Since the function f(t) is subjected only to the condition f(t) = χΔ(t)f(t) ∈ L2
�σ
(E) and the

closed segment Δ is arbitrary, then ğj(t) = g̃j(t) − ζj(t), j = 1, 2, . . . , k. The proposition is
proved under Hypothesis (6.41). The general case can be reduced to the two particular cases
considered above, so the rest is straightforward.

The following proposition is a partial inverse of Proposition 6.9.
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Proposition 6.10. Let spaces L̃2
�σ
(E) and L̆2

�σ
(E) be the expansions of a space L2

�σ
(E) generated,

respectively, by collections {g̃j(t)}kj=1 and {ğj(t)}kj=1 satisfying (6.16). If L̃2
�σ
(E) and L̆2

�σ
(E) coincide

as vector subspaces in M�σ(E) and the space L̃2
�σ
(E) is a basic model space for some J-orth.sp.f. Eλ with

(6.1) and (6.2), then the space L̆2
�σ
(E) is also a basic model space for Eλ.

Proof. Let W be the operator of similarity for Eλ that corresponds to the basic model space
L̃2
�σ
(E). The scheme of the proof will be the same as for Proposition 6.9; two particular cases will

be considered and the superposition of these will give the general case.
So let a system {ğj(t)}kj=1 be such that

g̃j(t) =
k∑
l=1

γjlğj(t), j = 1, 2, . . . , k. (6.49)

Set H2 := WL2
�σ
(E). The corresponding decomposition H̃ = H1+̇H2 (generated by W) will be

taken also for the construction of an operator of similarityW ′ corresponding to L̆2
�σ
(E). First, set

W ′f(t) := Wf(t) for f(t) ∈ L2
�σ
(E).

Next, for x ∈ H2, x = Wf(t), one has

P1E(Δ)x =
k∑
j=1

ej ·
∫
Δ

(
f(t), g̃j(t)

)
Edσ(t), (6.50)

this, jointly with (6.49) implies

P1E(Δ)x =
k∑
j=1

e′j ·
∫
Δ

(
f(t), ğj(t)

)
Edσ(t), (6.51)

where e′j =
∑k

l=1γ ljel, j = 1, 2, . . . , k. The vector system {e′j}kj=1 is taken as the new ortho-

normalized basis in H1 (so, generally speaking, the Hilbert structure on H1 is redefined). Set
W ′ğj(t) := e′j , j = 1, 2, . . . , k. Case (6.49) has been finished.

Now let g̃j(t) = ğj(t) + ζj(t), ζj(t) ∈ L2
�σ
(E), j = 1, 2, . . . , k. Put

W ′f(t) = Wf(t) +
k∑
j=1

ej ·
∫1
−1

(
f(t), ζj(t)

)
Edσ(t), (6.52)

where f(t) ∈ L2
�σ
(E) and W ′ğj(t) = ej , j = 1, 2, . . . , k, that is, H′

2 = W ′L2
�σ
(E). Note also that

the Hilbert structure of H1 does not change. It is easy to check that the operator W ′ and the
decomposition H̃ = H1+̇H′

2 are as required.

Remark 6.11. The proof of Proposition 6.10 shows that, if L̃2
�σ
(E) is a basic model space for J-

orth.sp.f. Eλ with (6.1) and (6.2), W is a corresponding operator of similarity, and L̃2
�σ
(E) and

W are conformed with the decomposition H̃ = H1+̇H2, where H2 = WL̃2
�σ
(E), then for every

different decomposition H̃ = H1+̇H′
2 it is possible to find a new Hilbert structure of the vector

set L̃2
�σ
(E) (evidently this change does not touch L2

�σ
(E)) and a new isometric map (an operator

of similarity) W ′: L̃2
�σ
(E) �→ H̃ such that W ′L2

�σ
(E) = H′

2 and (e.g., (6.34)) (W −W ′)L2
�σ
(E) ⊂ H1.

An analogous proposition can be formulated for a change of the given Hilbert structure onH1.
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Remark 6.12. Propositions 6.9 and 6.10 show that the Hilbert structure of the basic model space
L̃2
�σ
(E) introduced during an expansion of L2

�σ
(E) is not, in some sense, really important. On the

other hand, an example mentioned below demonstrates that spaces L̃2
�σ
(E) and L̆2

�σ
(E) obtained

as different expansions of a common space L2
�σ
(E) can be basic model spaces for the same

J-orth.sp.f. Eλ and be different vector subspaces in M2
�σ
(E). Thus (6.34) in Proposition 6.9

cannot be omitted.

Example 6.13. LetH be the totality of triples (γh, ξe, f(t)), where h and e are some fixed abstract
vectors γ, ξ ∈ C, f(t) ∈ L2

t (C), so the measure defining the space L2
t (C) is the standard Lebesgue

measure. For x1 = (γ1h, ξ1e, f1(t)) and x2 = (γ2h, ξ2e, f2(t)), put

(
x1, x2

)
= γ1γ2 + ξ1ξ2 +

∫1
−1
f1(t)f2(t)dt,

[
x1, x2

]
= γ1ξ2 + ξ1γ2 +

∫1
−1
f1(t)f2(t)dt.

(6.53)

Next, let

Eτx =

(
0,

(
γ

∫ τ
−1

(
1/t2
)
dt +
∫ τ
−1
(1/t)dt

)
e, χ[−1;τ)(t)

(
(γ/t) + f(t)

))
, (6.54)

for τ ∈ [−1; 0), and let

Eτx =

(
γh,

(
ξ −
∫1
τ

(
γ + tf(t)

)
t2

dt

)
e, χ[−1;τ)(t)f(t) +

γ(χ[−1;τ)(t) − 1)
t

)
, (6.55)

for τ ∈ (0; 1].

Direct verification shows that Eτ is a J-orth.sp.f. with (6.1), (6.2). In the capacity of
a basic model space for Eτ , one can take, first, the space L̃2

t (C) generated by L2
t (C) and

g̃(t) = 1/t, or, second, the space L̆2
t (C) generated by L2

t (C) and ğ(t) = (1/t)ei/t. In the first
case,W(ξg̃(t)+f(t)) = (0, ξe, f(t)) and in the second case,W ′(ξğ(t)+f(t)) = (0, ξe, ei/tf(t)) (W
and W ′ are the corresponding operators of similarity). At the same time, the spaces L̃2

t (C)
and L̆2

t (C) form different vector subsets in Mt(C) because |limα→+0
∫1
α g̃(t)e−i/tdt| < ∞ and

limα→+0
∫1
α ğ(t)e−i/tdt = ∞, that is, unbounded elements g̃(t) and ğ(t) are linearly independent

modulo L2
t (C).

Theorem 6.14. Let spaces L̃2
�σ
(E) and L̆2

�σ
(E) be the expansions of a space L2

�σ
(E) generated, respectively,

by collections {g̃j(t)}kj=1 and {ğj(t)}kj=1 with (6.16). Then L̃2
�σ
(E) and L̆2

�σ
(E) are basic model spaces for

a common J-orth.sp.f. Eλ with (6.1) and (6.2) if and only if there is a unitary-valued functionUt of the
type (3.23) such that the sets L̃2

�σ
(E) and {Utf̆(t)}f̆(t)∈L̆2

�σ
(E) coincide as vector spaces inM�σ(E).

Proof
Necessity

By virtue of Remark 6.11, one can assume that, for model spaces L̃2
�σ
(E), L2

�σ
(E), and

corresponding operators of similarity W (1) and W (2), there exist the same representation H̃ =
H1 ⊕ H2 and the same Hilbert structure on H1. In this case, the operator U : L̃2

�σ
(E) �→ L̃2

�σ
(E),

U := (W (2))−1W (1) is well defined. Direct verification gives U{Xτ , L̃
2
�σ
(E)}∗ = {Xτ , L̆

2
�σ
(E)}∗U,
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which implies U{Xτ , L̃
2
�σ
(E)} = {Xτ , L̆

2
�σ
(E)}U. Since the subspace L2

�σ
(E) is invariant both for

Xτ and U, these two operators commute on L2
�σ
(E). Moreover, for every closed interval Δ ⊂

[−1; 1] \ {0}, the condition X(Δ)g̃j(t) ∈ L2
�σ
(E) holds for all g̃j(t), j = 1, 2, . . . k. The rest follows

from Proposition 3.15.

Sufficiency

By Theorem 6.7, one can construct a Pontryagin space H and a J-orth.sp.f. Eλ such that L̃2
�σ
(E)

is a basic model space for Eλ. The rest follows from (3.23) and Proposition 6.10.

The results obtained above show that the choice of a basic model space L̃2
�σ
(E) for J-

orth.sp.f. Eλ with (6.1) and (6.2) is reduced (up to a finite number of functions) to the choice
of a standard Hilbert space L2

�σ
(E). The last choice is not uniquely defined. The arbitrariness

of the choice of L2
�σ
(E) can be diminished if one takes in consideration only the standard

Hilbert spaces orderly decomposable on uniform components. In the latter case, the choice
is reduced (see [25, Theorem VII.6]) to the choice of scalar measure in the corresponding class
of equivalent measures. Note that, if L2

�σ
(E) is orderly decomposable on uniform components,

then it is naturally embedded to the space M�σ(E) and, therefore, this space is also orderly
decomposable on uniform components. Moreover, the space M�σ(E) does not depend on σ(t)
but on the corresponding class of equivalent measures. This reasoning leads to the following
theorem.

Theorem 6.15. Let L̃2
�σ
(E) be a basic model space for J-orth.sp.f. Eλ with (6.1) and (6.2), and let the

space L2
�σ
(E) be orderly decomposable on uniform components. Then every basic model space for Eλ

constructed as an expansion of a standard Hilbert space orderly decomposable on uniform components
has the following form;

{
1

ϕ(t)
Utf̃(t)

}
f̃(t)∈L̃2

�σ
(E)

, (6.56)

where ϕ(t) is a fixed scalar function satisfying the conditions ϕ(t) ≥ 0 a.e. on [−1; 1], and∫1
−1 ϕ

2(t)dσ(t) < ∞, and the operator-valued function Ut is subject to (3.24). Conversely, every
functional vector space of the form (6.56) is a basic model space for Eλ.

Remark 6.16. Let us consider an interpretation of Theorem 6.15 for the case of J-orth.sp.f. Eλ

with simple nonsingular multiplicity (in particular, Eλ can be cyclic although this condition
is not necessary). In this case, L2

�σ
(E) converts to the space L2

σ(C) of scalar functions, and Ut

converts to the multiplication operator by a function eiϑ(t), where ϑ(t) : [−1; 1] �→ [0; 2π) is a
μσ-measurable function. Next, let {g̃j(t)}kj=1 be a collection of unbounded elements generating

the expansion L̃2
σ(C) that is a basic model space for Eλ. Then every basic model space for Eλ

constructed as an expansion of a standard Hilbert space orderly decomposable on uniform
components has, as a subset of Mσ(C), the following form:

{
1

ϕ(t)

(
f(t) + eiϑ(t)

k∑
j=1

γj g̃j(t)

)}

f(t)∈L2
σ(C),γ1,...,γk∈C

. (6.57)
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Concluding this part, let us consider an estimation of the norm of a J-orthogonal
projection E(X), where the set X satisfies (6.5) and the conventions given above on the choice
of the canonical scalar product onH are preserved.

Proposition 6.17. If, under the mentioned above conditions, E(X) /= 0, then ‖E(X)‖ = 1+‖E12(X)‖2.

Proof. If E12(X) = 0, when the desired formula directly follows from (6.8), (6.9), so we assume
that E12(X) /= 0. Let

V −1x ∈ H0, y ∈ H2, ‖x‖2 + ‖y‖2 = 1. (6.58)

Then ‖E(X)‖2 = supx,y{‖E(X)(V −1x+y)‖2}. On the other hand taking into account (6.9), (6.11),
we have ‖E(X)(V −1x + y)‖2 = ‖E12(X)E∗

12(X)x + E12(X)y‖2 + ‖E∗
12(X)x + E22(X)y‖2 ≤ (1 +

‖E12(X)‖2) · ‖E∗
12(X)x + E12(X)y‖2. A first step is an estimation of ‖E∗

12(X)x + E22(X)y‖2. Since
E22(X) is an orthogonal projection, it is clear that it is enough to consider the case E22(X)y = y.

Next, ‖E∗
12(X)x + y‖ ≤ ‖E∗

12(X)‖‖x‖ + ‖y‖ ≤
√
‖E∗(X)‖2 + 1 ·

√
‖x‖2 + ‖y‖2 =

√
‖E∗(X)‖2 + 1.

Thus ∥∥E(X)
(
V −1x + y

)∥∥2 ≤ (1 + ∥∥E12(X)
∥∥2)2. (6.59)

The proof will be finished if vectors x and y, satisfying (6.58) and converting (6.59) to an
equality, can be found.

Since the operator E∗
12(X) is finite dimensional, there is a vector z /= 0, z ∈ H1 such that∥∥E∗

12(X)z
∥∥ = ∥∥E∗

12(X)
∥∥‖z‖. (6.60)

Let

x =

∥∥E12(X)
∥∥z

‖z‖
√∥∥E∗(X)

∥∥2 + 1
, y =

E∗
12(X)z

∥∥E∗
12(X)z

∥∥√∥∥E∗(X)
∥∥2 + 1

. (6.61)

Since E22(X)E∗
12(X) = E∗

12(X) (see (6.9)), y is well defined. Then

E∗
12(X)x + y =

(∥∥E12(X)
∥∥ + 1∥∥E∗

12(X)
∥∥
)

· E12(X)z

‖z‖
√∥∥E∗(X)

∥∥2 + 1

=
√∥∥E∗(X)

∥∥2 + 1 · E12(X)z

‖z‖ · ∥∥E∗
12(X)

∥∥2 .
(6.62)

Finally (see (6.60)), ‖E12(X)E∗
12(X)z‖ = ‖E12(X)‖‖E∗

12(X)z‖.

Proposition 6.18. Let L̃2
�σ
(E) be a basic model space for J-orth.sp.f. Eλ with (6.1) and (6.2), and let

{g̃j(t)}kj=1 be the corresponding system with (6.16). Then

1
k

∫
X

k∑
j=1

∥∥g̃j(t)∥∥2Edσ(t) ≤
∥∥E12(X)

∥∥2 ≤
∫
X

k∑
j=1

∥∥g̃j(t)∥∥2Edσ(t). (6.63)

Proof. Let {ej}kj=1 be the orthonormalized basis in H1 corresponding to the system {g̃j(t)}kj=1.
Then the operator E∗

12(X)E12(X) has, with respect to this basis the matrix representation
(γmj)k×k with the elements γmj =

∫
X (g̃m(t), g̃j(t))Edσ(t). The rest is a usual estimation for the

norm of a positive matrix.
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6.3. A functional model for Eλ (the general case)

In the previous subsection, we studied J-orth.sp.f. Eλ with (6.1), (6.2). Now, we turn to a more
general case dropping (6.2). It implies that (6.9) and (6.11) must be substituted by some new
ones. Let us conserve (6.3), (6.15). However, it is necessary to take into account that, now,
generally speaking, the subspace H2 is indefinite. Recall that J-orth.sp.f. Eλ belongs to the
classD+

κ , so there is an Eλ-invariant pair of J-orthogonal maximal semi-definite pseudoregular
subspaces L+ and L− with finite-dimensional isotropic part; moreover, due to (3.15)(b), we can
assume that, for every closed interval Δ ⊂ [−1; 1] \ {0}, the subspace (E(Δ)H) ∩ L+ is positive
and the subspace (E(Δ)H)∩L− is negative. Thanks to the hypothesis, the following subspaces
are well defined:

H̃+ = CLin
Δ⊂[−1;1]\{0}

{
E(Δ)L+

}
, H̃− = CLin

Δ⊂[−1;1]\{0}
{
E(Δ)L−

}
. (6.64)

Set

H+
2 = H2 ∩ H̃+, H−

2 = H2 ∩ H̃−, (6.65)

and assume that a fundamental scalar product on H is simultaneously canonical for the
subspace H̃ ⊕ H0 and, on the last space, compatible (see Definition 3.4) with the given
decomposition of the subspaces

H1+̇H+
2 , H1+̇H−

2 . (6.66)

Thus

J |H0+̇H1+̇H2 =

⎛
⎝0 V −1 0

V 0 0
0 0 J2

⎞
⎠ , (6.67)

where the operator V is the same as in (6.10), and J2 is a canonical symmetry of the form [·, ·]
onH2. Then, for X satisfying (6.5), the elements of the matrix realization

E(X)|H0
+̇H1+̇H2 =

⎛
⎝ 0 0 0

E10(X) 0 E12(X)
E20(X) 0 E22(X)

⎞
⎠ (6.68)

satisfy (cf. (6.9)) the following relations

E10(X) = E12(X)J2E∗
12(X)V ; E20(X) = J∗2E12(X)V ;

E2
22(X) = E∗

22(X) = E#
22(X) = E22(X); E12(X)E22(X) = E12(X).

(6.69)

Here, E#
22(X) is the operator J-adjoint to the operator E22(X) (note that now H2 is a Krein

space). We note also that (6.11) remains valid.
Now, let J − L2

�σ
(E) be a standard Krein space (see Section 3) and let {g̃j(t)}kj=1 be a

system of unbounded elements conformed with the operator-valued function Xτ and linearly
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independent modulo J − L2
�σ
(E) (i.e., {g̃j(t)}kj=1 satisfies (6.16)). Denote, by J − L̃2

�σ
(E), the

linear span generated by the space J − L2
�σ
(E) and the system {g̃j(t)}kj=1. Define, on J − L̃2

�σ
(E),

structures of Hilbert and Krein spaces in the following way: on J − L2
�σ
(E) both structures

coincide with the original structures, and functions of the system {g̃j(t)}kj=1 are, by definition,
positive (as elements of the Krein space), mutually orthogonal and J-orthogonal, normalized
and J-normalized, and orthogonal and J-orthogonal to J − L2

�σ
(E). The space J − L̃2

�σ
(E) is said

to be the expansion of J − L2
�σ
(E) (generated by the collection {g̃j(t)}kj=1).

Theorem 6.19. If a J-orth.sp.f. Eλ satisfies (6.1) (but not (6.2)) and a scalar product onH is compatible
with (6.66), then there are, first, a subspace J − L2

�σ
(E) and a system {g̃j(t)}kj=1 with (6.16) forming

together the space J − L̃2
�σ
(E), and, second, an isometric J-isometric operator W : J − L̃2

�σ
(E) �→ H̃,

WL2
�σ
(E) = H2, such that, for every λ ∈ [−1; 1],

Ẽλ = W ·X#
λ · (W)−1, W↑ =

(
I2 ⊕ V

)
W, Ẽ↑

λ
= W↑ · Xλ ·

(
W↑)−1, (6.70)

where Xλ = {Xλ,J − L̃2
�σ
(E)}, k = dimH0 = dimH1.

Proof. Since the scalar product (·, ·) on H2 is canonical and conformed with the decomposition
H2 = H+

2[+̇]H−
2 , the spectral function P2Eλ is simultaneously orthogonal and J-orthogonal.

Then for P2Eλ, by Proposition 4.3 and in concordance with Definition 4.2, there exist a model
space J − L2

�σ
(E) and an operator of similarity W2. The rest of the proof is analogous to

the corresponding stage of the proof for Theorem 6.5 taking into account that (6.9) must be
substituted by (6.69).

Remark 6.20. Under the conditions of Theorem 6.19, the operator function Ẽλ is similar not only
to the operator function {X#

λ
,J − L̃2

�σ
(E)} but also to the operator-function {X∗

λ
, L̆2

�σ
(E)}, where

the space L̆2
�σ
(E) is formed by the standard Hilbert space L2

�σ
(E) (it is the same as for J-L̃2

�σ
(E))

and the system of unbounded elements {ğj(t) = Jg̃j(t)}kj=1. Thus the properties of the operator-
valued function Ẽλ (as well as for Ẽ↑

λ
) do not depend on either (6.2) is fulfilled or not for the

operator-valued function Eλ. However this dependence exists for the J-orth.sp.f. Eλ, and this
fact is connected with the different structure of the operator E10(X) in (6.9) and (6.69). Note,
in particular, that, if (6.2) is not fulfilled, then the estimation for the norm of operator E12(X)
given in Proposition 6.18 remains true, but at the same time, the equality for ‖E(X)‖ from
Proposition 6.17 is, generally speaking, incorrect.

Example 6.21. Take the space H coinciding with l2, denote {um}∞m=1 the canonical basis of this
space, that is, u1 = (1, 0, 0, . . .), u2 = (0, 1, 0, . . .), . . ., and define the canonical symmetry J by
the equalities Ju0 = u1, Ju1 = u0, Ju2m+1 = u2m+1, Ju2m = −u2m, m = 1, 2, . . ., and the spectral
function Eλ by the relations

(i) Eλ = 0 for every λ < 0;

(ii) if λ > 0, then (I − Eλ)u0 =
∑

1/m∈[λ;1)(u2(m−1) − u2m−1), (I − Eλ)u1 = 0, (I − Eλ)u2(m−1) =
u2(m−1) + u1, (I − Eλ)u2m−1 = u2m−1 + u1 for 1/m ∈ [λ; 1), and (I − Eλ)u2(m−1) = (I −
Eλ)u2m−1 = 0 for 1/m /∈ [λ; 1).
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For Δm = [1/m; 1], one has ‖E12(Δm)‖ =
√
2(m − 1) and ‖E(Δm)‖ =

√
2m − 1. Note that,

here, the values ‖E12(Δm)‖ and ‖E(Δm)‖ have the same order of growth for m → ∞. Note also
that E10(Δ) = 0 for every closed segment Δ ⊂ [−1; 1] \ {0}.

Definition 6.22. If, for (6.3) and (6.65), a relation between a J-orth.sp.f. Eλ satisfying (6.1) and
a space J − L̃2

�σ
(E) is given by (6.70), then J − L̃2

�σ
(E) is said to be a basic model space for Eλ

(compatible with (6.3), (6.15), and (6.66)) and the operator W is said to be an operator of
similarity corresponding to this space.

Note that Definition 6.22 does not contradict Definition 6.6, but amplifies it; if, for J-
orth.sp.f. Eλ, (6.2) is fulfilled, then J = I, so the canonical scalar product is uniquely defined
onH2 and coincides with [·, ·].

Now, we show that every space J − L̃2
�σ
(E) can be considered as a basic model space for

a suitable J-orth.sp.f. Eλ ∈ D+
k
.

Theorem 6.23. Let a space J − L̃2
�σ
(E) be the expansion of a standard Krein space J − L2

�σ
(E) generated

by a collection {g̃j(t)}kj=1 satisfying (6.16). Then there exist a Krein spaceH and a J-orth.sp.f. Eλ onH
such that Eλ ∈ D+

k
and J − L̃2

�σ
(E) is a basic model space for Eλ.

Proof. Let H be the set of triples (u, v, f(t)) with u, v ∈ C
k and f(t) ∈ J − L2

�σ
(E). For x1 =

(u1, v1, f1(t)) and x2 = (u2, v2, f2(t)), put (see (4.3))

(
x1, x2

)
=
(
u1, u2

)
Ck +
(
v1, v2

)
Ck +
(
f1(t), f2(t)

)
L2
�σ
(E),[

x1, x2
]
=
(
u1, v2

)
Ck +
(
v1, u2

)
Ck +
[
f1(t), f2(t)

]
L2
�σ
(E).

(6.71)

Next, let {ej}kj=1 be the canonical basis in C
k. For the intervals Δ = [α, β), where 0 /∈ Δ and

α /= 0, we put

E(Δ)
(
ej , 0, 0

)
=

(
0,

k∑
m=1

[
χΔ(t)g̃j(t), χΔ(t)g̃m(t)

]
L2
�σ
(E) · em, χΔ(t)g̃j(t)

)

for j = 1, 2, . . . , k, E(Δ)(0, v, 0) = (0, 0, 0) for every v ∈ C
k,

E(Δ)
(
0, 0, f(t)

)
=

(
0,

k∑
m=1

[
χΔ(t)f(t), χΔ(t)g̃m(t)

]
L2
�σ
(E) · em, χΔ(t)f(t)

)
.

(6.72)

Direct verification shows that E(Δ) generates a J-orth.sp.f. satisfying (6.1). The rest of this
proof looks like the corresponding part of the proof of Theorem 6.7 with some evident
modifications.

Next, the basic model space is constructed not only via the J-orth.sp.f. Eλ itself and via
the subspaces H̃ and H1 naturally generated by Eλ (note that, in this case, it is convenient
to consider the mentioned subspaces as linear topological spaces), but also via some other
subspaces and via the Hilbert structure introduced on H̃ and H1 that can be defined with
some ambiguity.
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Proposition 6.24. Let a spaceJ−L̃2
�σ
(E) (i.e., the expansion of standard Krein spaceJ−L2

�σ
(E) generated

by a collection {g̃j(t)}kj=1 with (6.16)) be a basic model space for a J-orth.sp.f. Eλ compatible with (6.3),
(6.15), and (6.66). Then for every different decomposition

H̃ = H1+̇H′
2, H′

2 = L+[+̇]L−, (6.73)

where L+ and L− are, respectively, uniformly positive and uniformly negative subspace, andH1+̇L+ and
H1+̇L− are Eλ-invariant, there is a collection {ğj(t)}kj=1 with (6.16) such that the expansion J-L̆2

�σ
(E)

of J − L2
�σ
(E) generated by {ğj(t)}kj=1 is also a basic model space for Eλ compatible with (6.3), (6.15),

and (6.73).

Proof. Note that a collection of unbounded elements {ğj(t)}kj=1 is uniquely defined by a set
composed by the following components: a choice of a normalized basis inH1, a decomposition
H̃ = H1+̇H′

2, and an isometric J-isometric map W ′
2: J − L2

�σ
(E) �→ H′

2. This collection always
exists for the mentioned set, so it is enough to show the existence ofW ′

2. Consider two cases.
(1) Let H′

2 = H2. Thus, on the Krein space H2, there are two different P2Eλ-invariant
canonical decompositions. Then, thanks to Proposition 3.8 and (6.70)

P2Eλ|H2 = D{H+
2 ,H−

2},{L+,L−}W2XλW
−1
2

(
D{H+

2 ,H−
2},{L+,L−}

)−1
, (6.74)

so one can take W ′
2 = D{H+

2 ,H−
2},{L+,L−}W2.

(2) LetH′
2 /= H2 and let the pairs {H+

2 ,H−
2} and {L+,L−} be related by a condition of the

type (3.9). Then by Remark 3.6 and Proposition 3.7, one can takeW ′
2 = MH̃,H2,H′

2
·W2.

Now, let us pass to the general case. Let L′
+ := MH̃,H2,H′

2
H+

2 and L′
− := MH̃,H2,H′

2
H−

2 . Then
H′

2 = L′
+[+̇]L

′
−, and one can take

W ′
2 = D{L′

+,L
′
−},{L+,L−}MH̃,H2,H′

2
·W2. (6.75)

Corollary 6.25. Assume that Eλ is a J-orth.sp.f. satisfying (6.1), (6.3) is fixed, and J − L2
�σ
(E) is a

standard Krein space. Then, independently of any realization of (6.73), an expansion of J−L2
�σ
(E), that

is a basic model space for Eλ compatible with (6.73), exists if and only if there is a J-isometric operator
W2 : J − L2

�σ
(E) �→ H2 such that

P2Eλ|H2 = W2XλW
−1
2 . (6.76)

Remark 6.26 (cf., with Proposition 6.8). Let
∗
H be the factor-space ofH generated byH1. Then

∗
H is a Krein space and Ẽλ induces, on this space, the J-orth.sp.f.

∗
Eλ. Note that the unique

peculiarity of
∗
Eλ is regular and can be removed, so, as a slight abuse of terminology, one can

say that
∗
Eλ has no peculiarities. It is clear that W2 in (6.76) exists if and only if there exists a

J-isometric operator
∗
W : J − L2

�σ
(E) �→ ∗

H such that
∗
Eλ=

∗
W Xλ

∗
W −1. Taking this reasoning

and Corollary 6.25 into account, one can say that an arbitrariness in the choice of a basic model
space for J-orth.sp.f. Eλ satisfying (6.1) does not depend on the choice of P2 but essentially
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depends on an arbitrariness in the choice of a basic model space for J-orth.sp.f.
∗
Eλ with the

empty set of peculiarities. The last problem was considered in Section 4.

Proposition 6.27. Assume that spacesJ−L̃2
�σ
(E) andJ′−L̆2

�σ
(E) are constructed on the base of the same

space L2
�σ
(E) passing by the following way: first, introduce on it two (maybe different) sesquilinear forms

by fundamental symmetries J and J′; second, expand these two standard Krein spaces using collections
of unbounded elements {g̃j(t)}kj=1 and {ğj(t)}kj=1, respectively. Assume also that, first, J − L̃2

�σ
(E) and

J′ − L̆2
�σ
(E) are basic model spaces for a J-orth.sp.f. Eλ, second, W (1) and W (2) are corresponding

operators of similarity, and, third, every function f(t) ∈ L2
�σ
(E) satisfies (6.34). Then J = J′ and

the spaces J − L̃2
�σ
(E), and J′ − L̆2

�σ
(E) coincide as subsets inM�σ(E).

Proof. Condition (6.34) implies that [W (1)f(t),W (1)f(t)] = [W (2)f(t),W (2)f(t)] is true for every
f(t) ∈ L2

�σ
(E), so [f(t), f(t)]J−L̃2

�σ
(E) = [f(t), f(t)]J−L̆2

�σ
(E). Hence J = J′. The rest of the reasoning

is similar to that of Proposition 6.9.

Comparing the last proposition with Proposition 6.10, note that the fulfilment of (6.34)
is essential for the simultaneous coincidence J − L̃2

�σ
(E) with J′ − L̆2

�σ
(E) as subsets in M�σ(E),

and J − L2
�σ
(E)with J′ − L2

�σ
(E) as standard Krein spaces, but at the same time is not necessary.

Theorem 6.28. Assume that spaces J − L̃2
�σ
(E) and J′ − L̆2

�σ
(E) are constructed on the base of the

same space L2
�σ
(E) passing by the following way: first, introduce on it two (maybe different) sesquilinear

forms by fundamental symmetries J and J′, and second, expand these two standard Krein spaces using
collections of unbounded elements {g̃j(t)}kj=1 and {ğj(t)}

k
j=1, respectively. ThenJ−L̃2

�σ
(E) andJ′−L̆2

�σ
(E)

are basic model spaces for a common J-orth.sp.f. Eλ satisfying (6.1) if and only if there exist operator
functions Ut and Mt, t ∈ [−1; 1], with (3.24) and (4.7), respectively, such that the sets L̃2

�σ
(E) and

{MtUtf̃(t)}f(t)∈L̃2
�σ
(E) coincide as subsets ofM�σ(E).

The proof of this theorem is similar to that of Theorem 6.14.

6.4. The passage to J-symmetric operator families

Up to this point, we discussed model representations not for a family Y ∈ D+
κ but for a

J-orth.sp.f. Eλ with the unique spectral peculiarity in zero subjected to the condition

There exists L+ ∈ M+(H) ∩ h+ such that for every
λ ∈ R\{0} it is trueEλL+ ⊂ L+ and for every closed
interval Δ ⊂ R \ {0} there is the decomposition
E(Δ)H = E(Δ)L+[+̇]E(Δ)L−.

(6.77)

Now, let Y ∈ D+
κ be a J-symmetric commutative operator family. Then its linear span

contains a family (not uniquely defined) Yr of J-s.a. operators such that the linear span of
Yr coincides with the linear span of Y. In [20], it was proved that there is the decomposition
H = Hre[+̇]Him, where Hre and Him are Y-invariant, all operators from Yr |Hre

have real
spectra, dimHim < ∞, and, at least, one J-s.a. operator from AlgY|Him

has no real points in its
spectrum. Let Eλ be an e.s.f. for Yr |Hre

. Extend the action of Eλ for allH setting Eλ|Him
= 0. This

extended function Eλ is said to be an e.s.f. of Y. Comparing Theorem 3.11 and Theorem 6.19, it
is easy to obtain the following result.
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Theorem 6.29. If Y ∈ D+
κ is a commutative J-symmetric family, its e.s.f. Eλ satisfies (6.1), a canonical

scalar product on H is compatible with (6.66), J − L̃2
�σ
(E) is a basic model space for Eλ, and W is a

corresponding operator of similarity, then, for every operator A ∈ Y, there is a function ϕ(t) such that

Ã↑ = W↑ ·Φ · (W↑)−1, Ã = W ·Φ# ·W−1, (6.78)

where Ã↑ := (P0 ⊕ P1)A|H̃↑ , the space H̃↑ and the operator W↑ are defined via (6.15) and (6.70),
Φ = {Φ,J − L2

�σ
(E)}, and Φ is the multiplication operator by ϕ(t) also acting in the space J − L̃2

�σ
(E).

Remark 6.30. If, under the conditions of Theorem 6.29, J-orth.sp.f. Eλ satisfies (6.2), then the

space J − L̃2
�σ
(E) must be substituted by the space L̃2

�σ
(E), and, respectively, the operator Φ

#

must be substituted by the operator Φ
∗
.

Definition 6.31. If Y ∈ D+
κ is a commutative J-symmetric family and Eλ (satisfying (6.1)) is its

e.s.f., then a basic model space for Eλ is said to be also a basic model space for Y.

Remark 6.32. Assume that Y ∈ D+
κ is a commutative J-symmetric family, its e.s.f. Eλ satisfies

(6.1), and J− L̃2
�σ
(E) andW are, respectively, a basic model space and a corresponding operator

of similarity for Y. If, under these conditions, an operatorA ∈ Y and a function ϕ(t) are related
by (6.78), then, according to Definition 3.12, the function ϕ(t) is a portrait of the operator A
(with respect to Eλ), and the operator A is an original (not unique in the general case) of ϕ(t)
in Y. It is clear that the portrait of an operator does not depend on the choice of the basic model
space J − L̃2

�σ
(E) and can be found via (3.15)(c), but at the same time depends on the choice of

Eλ.

Remark 6.33. Theorem 6.29 brings a natural problem concerning a characterization of functions
that can be portraits for operators from a given commutative J-symmetric operator family
Y ∈ D+

κ with a fixed choice of J-orth.sp.f. Eλ. A partial answer to the problem is contained by
Propositions 5.4 and 5.5. Indeed, under the present conditions, the function ν(t) from (5.5) has
the form

ν(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t
−1
G(t)dσ(t), t ∈ [−1; 0),

−
∫1
t

G(t)dσ(t), t ∈ (0; 1],

where G(t) = 1 +
k∑
j=1

∥∥g̃j(t)∥∥2E. (6.79)

7. Closing remarks

Spectral functions are a traditional source for constructions of model spaces for different classes
of normal operators in Hilbert spaces, so it is natural to use the same approach in Krein
spaces. The first theorem concerning the existence of spectral functions for π-s.a. operators
was published by Kreı̆n and Langer in [28] (see also [6] for detailed proofs). The spectral
functions introduced in Section 3.2 are a particular case of generalized spectral functions [1].
Our definition is inspired by spectral measures arising in the operator theory in indefinite
metric spaces (see [3, 6, 8, 29]) but formally, independent (see [30]) of this Theory. Another
development related with generalized spectral functions can be found in [31–34]. There are
some works on model representations for self-adjoint operators and algebras in Pontryagin
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spaces (the majority of them consider the case with the rank of indefiniteness 1) [35–40], (see
also [41] for more references). In [12], the case of a self-adjoint cyclic operator acting in an
arbitrary Pontryagin space was considered. The class D+

κ that is investigated in the present
paper differs from the well-known class of definitizable operators (see [42] for discussion) and
represents another natural generalization of the class of self-adjoint operators in Pontryagin
spaces. The notion of unbounded elements was given by the author in [43], thereupon, this
notion was used in [9], where the existence of a basic model space for a single π-self-adjoint
operator was proved. The latter result was applied in [10] (devoted to a description of a broad
functional calculus for π-self-adjoint operators) and [11], where the bicommutant problem for
a π-self-adjoint operator was studied. Some remarks concerning a model representation of π-
unitary operators were given in [44]. A connection between the spaces of the type L∞

σ ∩ L2
ν

and operator algebras was pointed out for the first time in [45] (for Pontryagin spaces with
the rank of indefiniteness 1) and [46]. On this subject, see also [47, 48]. Although the concept
of basic model spaces for commutative families of π-self-adjoint or J-self-adjoint operators of
the D+

κ-class was used by the author in some previous papers, its complete description and
corresponding proofs as well as the discussion of the ambiguity of basic model spaces are
given here for the first time.
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[27] D. A. Suprunenko and R. I. Tyškevič, Perestanovochnye Matritsy, Nauka i Tehnika, Minsk, Russia, 1966.
[28] M. G. Kreı̆n and G. K. Langer, “On the spectral function of a self-adjoint operator in a space with

indefinite metric,” Doklady Akademii Nauk SSSR, vol. 152, pp. 39–42, 1963 (Russian).
[29] P. Jonas, “On the functional calculus and the spectral function for definitizable operators in Kreı̆n
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