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The aim of this paper, firstly, is to construct generating functions of q-Euler numbers and polynomi-
als of higher order by applying the fermionic p-adic q-Volkenborn integral, secondly, to define mul-
tivariate q-Euler zeta function (Barnes-type Hurwitz q-Euler zeta function) and l-function which
interpolate these numbers and polynomials at negative integers, respectively. We give relation be-
tween Barnes-type Hurwitz q-Euler zeta function and multivariate q-Euler l-function. Moreover,
complete sums of products of these numbers and polynomials are found. We give some applica-
tions related to these numbers and functions as well.
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1. Introduction, definitions, and notations

Let p be a fixed odd prime. Throughout this paper, Zp, Qp, C, and Cp will, respectively, denote
the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number
field, and the completion of the algebraic closure of Qp. Z+ = Z

+ ∪ {0}. Let vp be the normal-
ized exponential valuation of Cp with |p|p = p−vp(p) = 1/p (cf. [1–28]). When we talk about
q-extensions, q is variously considered as an indeterminate, either a complex q ∈ C, or a p-adic
number q ∈ Cp. If q ∈ C,we assume that |q| < 1. If q ∈ Cp, then we assume |q − 1|p < p−1/(p−1) so
that qx = exp(x log q) for |x|p ≤ 1.

For a fixed positive integer d with (p, d) = 1, set

Xd = lim
←
N

Z/dpNZ,

X1 = Zp,
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cX∗ =
⋃

0<a<dp
(a,p)=1

(a + dpZp),

a + dpNZp = {x ∈ X : x ≡ a(moddpN)},
(1.1)

where a ∈ Z satisfies the condition 0 ≤ a < dpN (cf. [1–28]).
The distribution μq(a + dpNZp) is given as

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

(1.2)

(cf. [4, 10]).
We say that f is a uniformly differentiable function at a point a ∈ Zp; we write f ∈

UD(Zp) if the difference quotient

Ff(x, y) =
f(x) − f(y)

x − y (1.3)

has a limit f ′(a) as (x, y)→ (a, a). Let f ∈ UD(Zp).An invariant p-adic q-integral is defined by

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[pN]q

pN−1∑

x=0

f(x)qx (1.4)

(cf. [4, 5, 10, 29, 30]).
The q-extension of n ∈ N is defined by

[n]q =
1 − qn
1 − q . (1.5)

We note that limq→1[n]q = n.
Classical Euler numbers are defined by means of the following generating function:

2
et + 1

=
∞∑

n=0

En
tn

n!
, (1.6)

(cf. [1–3, 5, 8, 9, 15, 16, 18–20, 23, 28, 30]), where En denotes classical Euler numbers. These
numbers are interpolated by the Euler zeta function which is defined as follows:

ζE(s) =
∞∑

n=1

(−1)n
ns

, s ∈ C, (1.7)

(cf. [8, 9, 24, 25, 28]).
q-Euler numbers and polynomials have been studied by many mathematicians. These

numbers and polynomials are very important in number theory, mathematical analysis and
statistics, and the other areas.
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In [16], Ozden and Simsek constructed extensions of q-Euler numbers and polynomials.
In [8], Kim et al. constructed new q-Euler numbers and polynomials which are different from
Ozden and Simsek [16].

In [31], Kim gave a detailed proof of fermionic p-adic q-measures on Zp. He treated
some interesting formulae related q-extension of Euler numbers and polynomials. He defined
fermionic p-adic q-measures on Zp as follows:

μ−q
(
a + dpNZp

)
=

(−q)a
[
dpN

]
−q
, (1.8)

where

[n]−q =
1 − (−q)n
1 + q

(1.9)

(cf. [1, 31]).
By using the fermionic p-adic q-measures, he defined the fermionic p-adic q-integral on

Zp as follows:

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

pN−1∑

x=0

f(x)(−q)x (1.10)

(cf. [31]).
Observe that I−q(f) can be written symbolically as

lim
q→−q

Iq(f) = I−q(f) (1.11)

(cf. [31]).
By using fermionic p-adic q-integral on Zp, Kim et al. [8] defined the generating function

of the q-Euler numbers as follows:

Fq(t) =
q + 1
qet + 1

=
∞∑

n=0

En,q
tn

n!
, (1.12)

where En,q denotes q-Euler numbers.
Witt’s formula of En(x, q) was given by Kim et al. [8]:

En(x, q) =
∫

Zp

(x + y)ndμ−q(y), (1.13)

where q ∈ Cp and |1 − q|p < 1.
In [16], Ozden and Simsek defined generating function of q-Euler numbers by

F(t, q) =
2

qet + 1
=

2
q + 1

Fq(t). (1.14)
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In [7, 9], Kim defined q-l-functions and q-multiple l-functions. He also gave many appli-
cations of these functions.

We summarize our paper as follows. In Section 2, we give some fundamental properties
of the q-Euler numbers and polynomials. We also give some relations related to these numbers
and polynomials. By using generating functions of q-Euler numbers and polynomials of higher
order, we define multivariate q-Euler zeta function (Barnes-type Hurwitz q-Euler zeta func-
tion) and l-function which interpolate these numbers and polynomials at negative integers.
We also give contour integral representation of these functions. In Section 3, we find relation
between l

(r)
E,q(s, χ) and ζ

(r)
q,E(s, x). By using these relations, we obtain distribution relations of the

generalized q-Euler numbers and polynomials of higher order. In Section 4, we find complete
sums of products of these numbers and polynomials. We also give some applications related
to these numbers and functions.

2. Some properties of q-Euler numbers and polynomials

For q ∈ C with |q| < 1,

Fq(t) =
q + 1
qet + 1

=
∞∑

n=0

En,q
tn

n!
(2.1)

(cf. [8]), where En,q denotes the q-Euler number and |t + log q| < π.
Observe that by (2.1) we have

q + 1
qet + 1

=
1 + q−1

et + q−1
=
∞∑

n=0

Hn

( − q−1) t
n

n!
. (2.2)

From (2.1) and (2.2), we note thatHn(−q−1) = En,q, where Hn(−q−1) are called Frobenius Euler
numbers (cf. [27, 28]).

The q-Euler polynomials are also defined by means of the following generating function
[8]:

Fq(t, x) =
q + 1
qet + 1

ext =
∞∑

n=0

En,q(x)
tn

n!
, (2.3)

where |t + log q| < π ;

q + 1
qet + 1

ext = eEq(x)t,

(q + 1)ext = qe(1+Eq(x))t + eEq(x)t,

(q + 1)
∞∑

n=0

xn t
n

n!
=
∞∑

n=0

(
q
(
1 + Eq(x)

)n + En,q(x)
) tn

n!
.

(2.4)

By comparing the coefficients of tn on both sides of the above equation, we have the following
theorem.
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Theorem 2.1. Let n be nonnegative integer. Then

q
(
1 + Eq(x)

)n + En,q(x) = (q + 1)xn, (2.5)

with the usual convention about replacing En
q(x) by En,q(x).

By using (2.5), we have

En,q(x) + q
n∑

k=0

(
n
k

)
Ek,q(x) = (q + 1)xn. (2.6)

From (2.3), by applying Cauchy product and using (2.1), we also obtain

( ∞∑

n=0

En,q
tn

n!

)( ∞∑

n=0

xn t
n

n!

)
=
∞∑

n=0

( ∞∑

k=0

(
n
k

)
xn−kEk,q

)
tn

n! =
∞∑

n=0

En,q(x)
tn

n!
. (2.7)

By comparing the coefficients of tn on both sides of the above equation, we have

En,q(x) =
n∑

k=0

(
n
k

)
xn−kEk,q (2.8)

(cf. [8, 14]).
By using Theorem 2.1 and [8, equation (3)], we obtain

En(x, q) =
∫

Zp

(x + y)ndμ−q(y)

= lim
N→∞

1
[
jpN

]
−q

jpN−1∑

x=0

(x + y)n(−q)x

=
1

[j]−q
lim
N→∞

1
[
pN

]
(−q)j

j−1∑

x=0

jpN−1∑

x=0

(a + jx + y)n(−q)a+jx

=
jn

[j]−q
lim
N→∞

1
[
pN

]
(−q)j

j−1∑

a=0

(−q)a
pN−1∑

x=0

(a + y

j
+ x

)n(
(−q)j)x

=
jn

[j]−q

j−1∑

a=0

(−q)a lim
N→∞

1
[
pN

]
(−q)j

pN−1∑

x=0

(a + y

j
+ x

)n(
(−q)j)x

=
jn

[j]−q

j−1∑

a=0

(−q)aEn

(a + y

j
, qj

)
.

(2.9)
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By using the above equation, we arrive at the following theorem.

Theorem 2.2. Let j be odd. Then

En,q(x) =
(q + 1)jn

qj + 1

j−1∑

a=0

(−1)aqaEn,qj

(
a + x

j

)
. (2.10)

By simple calculation in (2.3), Ryoo et al. [14] give another proof of Theorem 2.2,which
is given as follows: let j be odd;

∞∑

n=0

En(x)
tn

n!
=

q + 1
qet + 1

ext

=
q + 1

1 + qjejt

j−1∑

a=0

(−1)aqaeatext

= (q + 1)
j−1∑

a=0

(−1)aqa
( e(a+x)t

1 + qjejt

)qj + 1
qj + 1

=
∞∑

n=0

(
q + 1
qj + 1

jn
d−1∑

a=0

(−1)aqaEn,qj

(a + x

j

)) tn

n!
.

(2.11)

By comparing the coefficients of tn on both sides of the above equation, we have Theorem 2.2.
By substituting x = n, with n ∈ Z+ into (2.3), then we have

Fq(t, n) =
q + 1
qet + 1

ent =
∞∑

k=0

Ek,q(n)
tk

k!
. (2.12)

Thus,

Fq(t) − qn(−1)nFq(t, n)

= (q + 1)
∞∑

l=0

(−1)lqlelt − (q + 1)
∞∑

l=0

(−1)l+nql+net(l+n)

= (q + 1)
n−1∑

l=0

(−1)lqlelt + (q + 1)
∞∑

l=0

(−1)l+nql+net(l+n) − (q + 1)
∞∑

l=0

(−1)l+nql+net(l+n).

(2.13)

Hence, by (2.13), we have

Fq(t) − qn(−1)nFq(t, n) = (q + 1)
n−1∑

l=0

(−1)lqlelt. (2.14)

By the generating function of q-Euler numbers and polynomials and by (2.14), we see that

∞∑

m=0

(
Em,q − qn(−1)nEm,q(n)

) tm

m!
=
∞∑

m=0

(
(q + 1)

n−1∑

l=0

ql(−1)llm
)
tm

m!
. (2.15)
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By comparing the coefficients of tn on both sides of (2.15), we obtain the following alternating
sums of powers of consecutive q-integers as follows.

Theorem 2.3 (see [14]). Let n ∈ Z+. Then

Em,q − qn(−1)nEm,q(n)
q + 1

=
n−1∑

l=0

ql(−1)llm. (2.16)

Remark 2.4. Proof of Theorem 2.3 is similar to that of [14]. If we take q → 1 in (2.16), we have

Em − (−1)nEm(n)
2

=
n−1∑

l=0

(−1)llm. (2.17)

The above formula is well known in the number theory and its applications.

Remark 2.5. Generating function of the q-Euler numbers in this paper is different than that
in [29, 31]. It is same as in [8]. Consequently, all these generating functions in [8, 16, 29, 31]
produce different-type q-Euler numbers. But we observe that all these generating functions
were obtained by the same fermionic p-adic q-measures on Zp and the fermionic p-adic q-
integral on Zp; for applications of this integral and measure see for detail [2, 4, 8, 14–19, 23, 25,
29–31].

Now, we consider q-Euler numbers and polynomials of higher order as follows:
(

q + 1
qet + 1

)(
q + 1
qet + 1

)
· · ·

(
q + 1
qet + 1

)

︸ ︷︷ ︸
r times

=
(

q + 1
qet + 1

)r

=
∞∑

n=0

E
(r)
n,q

tn

n!
, (2.18)

where E(r)
n,q are called q-Euler numbers of order r.We also consider q-Euler polynomials of order

r as follows:
(

q + 1
qet + 1

)(
q + 1
qet + 1

)
· · ·

(
q + 1
qet + 1

)
etx =

(q + 1)retx
(
qet + 1

)r =
∞∑

n=0

E
(r)
n,q(x)

tn

n!
, (2.19)

where |t + log q| < π. From these generating functions of q-Euler numbers and polynomials of
higher order, we construct multiple q-Euler zeta functions. First, we investigate the properties
of generating function of q-Euler polynomials of higher order as follows:

F
(r)
q (t, x) =

q + 1
qet + 1

q + 1
qet + 1

. . .
q + 1
qet + 1

︸ ︷︷ ︸
r times

etx

=
r∑

j=0

(
r
j

)
qjetx

∞∑

n1=0

(−1)n1qn1en1t . . .
∞∑

nr=0

(−1)nr qnr enrt

=
∞∑

n1,n2,...,nr=0

r∑

j=0

(
r
j

)
(−1)n1+···+nr qj+n1+···+nr e(n1+···+nr+x)t

=
∞∑

n=0

E
(r)
n,q(x)

tn

n!
.

(2.20)
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By applying Mellin transformation to (2.20), we have

1
Γ(s)

∫∞

0
ts−1F(r)

q (t, x)dt =
∞∑

n1,n2,...,nr=0

r∑

j=0

(
r
j

)
1

Γ(s)

∫∞

0
ts(−1)n1+···+nrq

j+n1+···+nr e(n1+···+nr+x)tdt. (2.21)

After some elementary calculations, we obtain

1
Γ(s)

∫∞

0
ts−1F(r)

q (−t, x)dt =
r∑

j=0

(
r

j

)
qj

∞∑

n1,n2,...,nr=0

∞∑

n1,n2,...,nr=0

(−1)n1+···+nrqn1+···+nr

(n1 + · · · + nr + x)s

=
∞∑

n1,n2,...,nr=0

r∑

j=0

(
r

j

)
(−1)n1+···+nrqj+n1+···+nr

(n1 + · · · + nr + x)s
.

(2.22)

From (2.22), we define the analytic function which interpolates higher-order q-Euler
numbers at negative integers as follows.

Definition 2.6. For s ∈ C, x ∈ R (0 < x ≤ 1), one defines

ζ
(r)
q,E(s, x) =

∞∑

n1,n2,...,nr=0

r∑

j=0

(
r
j

)
(−1)n1+···+nrqj+n1+···+nr

(n1 + · · · + nr + x)s
. (2.23)

ζ
(r)
q,E(s, x) is called Barnes-type Hurwitz q-Euler zeta function.

Remark 2.7. By applying the kth derivative operator dk/dtk|t=0 on both sides of (2.20), we have

E
(r)
n,q(x) =

dk

dtk
Fr
q(t, x)|t=0 =

∞∑

n1,n2,...,nr=0

r∑

j=0

(
r
j

)
(−1)n1+···+nrqj+n1+···+nr

(
n1 + · · · + nr + x

)k
. (2.24)

By using the above equation, Ryoo et al. [14] and Simsek [23] also define (2.23).

By substituting s = −k, k ∈ Z+ into (2.23) and using (2.24), after some calculations, we
arrive at the following theorem.

Theorem 2.8. Let k ∈ Z+. Then

ζ
(r)
q,E(−k, x) = E

(r)
n,q(x). (2.25)

Observe that the function ζ
(r)
q,E(s, x) interpolates E

(r)
n,q(x) polynomial at negative integers.

By using the complex integral representation of generating function of the polynomials E(r)
n,q(x),

we have

1
Γ(s)

∮

C

ts−1F(r)
q (−t, x)dt =

∞∑

n=0

(−1)nE(r)
n,q(x)

n!
1

Γ(s)

∮

C

tn+s−1dt, (2.26)

where C is Hankel’s contour along the cut joining the points z = 0 and z = ∞ on the real axis,
which starts from the point at ∞, encircles the origin (z = 0) once in the positive (counter-
clockwise) direction, and returns to the point at ∞ (see for detail [13, 17, 25, 28]). By using
(2.26) and Cauchy-Residue theorem, then we arrive at (2.25).
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Remark 2.9. ζ(r)q,E(s, 1) = ζ
(r)
q,E(s) is called Barnes-type q-Euler zeta function; see for detail [14].

ζ
(r)
q,E(s, x) is an analytic function in whole complex s-plane. For s ∈ C,

ζrE(s, x) = lim
q→1

ζrq,E(s, x) = 2r
∞∑

n1,n2,...,nr=0

(−1)n1+···+nr

(
n1 + · · · + nr + x

)s . (2.27)

If r = 1 in the above equation, we have

ζE(s, x) = 2
∞∑

n=0

(−1)n
(n + x)s

. (2.28)

The function ζE(s, x) is known as classical Hurwitz-type zeta function which interpolates clas-
sical Euler numbers at negative integers, cf. [28].

Let χ be Dirichlet’s character with conductor d ∈ Z
+. The generalized q-Euler numbers

attached to χ of higher order are defined by

Fq,χ(t) =
(q + 1)

∑d
a=1(−1)aqaχ(a)eta
qdedt + 1

=
∞∑

n=0

En,χ
tn

n!
(2.29)

(cf. [8]), where |t + logd| < π. The q-Euler numbers attached to χ of higher order are defined
by

F
(r)
q,χ(t) =

(
(q + 1)

∑d
a=1(−1)aqaχ(a)eta
qdedt + 1

)r

=
∞∑

n=0

E
(r)
n,q,χ

tn

n!
.

(2.30)

From (2.30), we obtain

F
(r)
q,χ(t) =

∞∑

n1,n2,...,nr=1

r∑

j=0

(
r
j

)
(−1)n1+···+nrqj+n1+···+nr e(n1+···+nr)t

r∏

k=1

χ(nk)

=
∞∑

n=0

E
(r)
n,q,χ

tn

n!
.

(2.31)

By applying the kth derivative operator dk/dtk|t=0 in (2.31), we have

E
(r)
k,q,χ

=
dk

dtk
F
(r)
q,χ(t)|t=0

∞
=
∑

n1,n2,...,nr=1

r∑

j=0

(
r
j

)
(−1)n1+···+nrqj+n1+···+nr (n1 + · · · + nr)

k
r∏

k=1
χ(nk).

(2.32)

By using (2.32), we define Dirichlet-type multiple Euler q- l-function as follows.

Definition 2.10. Let s ∈ C;

l
(r)
E,q(s, χ) =

∞∑

n1,n2,...,nr=1

r∑

j=0

(
r
j

)
(−1)n1+···+nrqj+n1+···+nr

∏r
k=1χ(nk)

(n1 + · · · + nr)
s . (2.33)
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Remark 2.11. l(r)E,q(s, χ) is an analytic function in the whole complex s-plane. From the above
definition,

l
(r)
E (s, χ) = lim

q→1
l
(r)
E,q(s, χ) =

∞∑

n1,n2,...,nr=1

2(−1)n1+···+nr
∏r

k=1χ(nk)
(n1 + · · · + nr)

s . (2.34)

For r = 1 in the above equation, we have

lE(s, χ) =
∞∑

n=1

2(−1)nχ(n)
ns

. (2.35)

This function is called Euler l-function.
Here, we observe that by applying Mellin transformation to (2.31), we obtain

1
Γ(s)

∫∞

0
ts−1F(r)

q,χ(−t)dt = l
(r)
E,q(s, χ). (2.36)

This gives us another definition of (2.32).

By substituting s = −k, k ∈ Z+ into (2.33) and using (2.32), we arrive at the following
theorem.

Theorem 2.12. Let k ∈ Z+. Then

l
(r)
E,q(−k, χ) = E

(r)
k,q,χ

. (2.37)

We note that

lim
q→1

l
(r)
E,q(−k, χ) = l

(r)
E (−k, χ) = E

(r)
n,χ, (2.38)

where En,χ are called classical Euler numbers attached to χ of higher order, cf. [28]. By using
(2.26), (2.36), we obtain another proof of (2.37).

3. Relation between l
(r)
E,q(s, χ) and ζ

(r)
q,E(s, x)

Substituting nj = aj +mjf, where mj = 0, 1, 2, 3, . . . ,∞ and aj = 1, 2, . . . , f, where χ(aj +mjf) =
χ(aj) and f is odd conductor of χ, 1 ≤ j ≤ r , into (2.33), we have

l
(r)
E,q(s, χ) = (1 + q)r

f∑

a1,a2,...,ar=1

∞∑

m1,m2,...,mr=0

(−1)a1+m1f+···+ar+mrfqa1+m1f+···+ar+mrf
∏r

k=1χ(ak +mkf)
(a1 +m1f + · · · + ar +mrf)

s

=
(1 + q)rf−s

(1 + qf)r
f∑

a1,a2,...,ar=1

(−1)a1+···+ar qa1+···+ar
r∏

k=1

χ(ak)

× (1 + qf
)r ∞∑

m1,m2,...,mr=0

(−1)m1+···+mrqfv+m1f+···+mrf

(a1 + · · · + ar

f
+m1 + · · · +mr

)s .

(3.1)

By substituting (2.23) into the above equation, we arrive at the following theorem.
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Theorem 3.1. Let χ be a Dirichlet character with conductor f(= odd). Then

l
(r)
E,q(s, χ) =

(1 + q)rf−s

(1 + qf)r
f∑

a1,a2,...,ar=1

(−1)a1+···+ar qa1+···+ar
r∏

k=1

χ(ak)ζ
(r)
qf ,E

(
s,

a1 + · · · + ar

f

)
. (3.2)

By substituting s = −k, k ∈ Z, into (3.2), we obtain

l
(r)
E,q(−k, χ) =

(1 + q)rfk

(1 + qf)r
f∑

a1,a2,...,ar=1

(−1)a1+···+ar qa1+···+ar
r∏

k=1

χ(ak)ζ
(r)
qf ,E

(
− k, a1 + · · · + ar

f

)
. (3.3)

By using (2.25) and (2.37) in the above equation, we obtain distribution relation of the q-Euler
numbers attached to χ of higher order, E(r)

k,q,χ
, which is given as follows.

Theorem 3.2. The following holds:

E
(r)
k,q,χ

=
(1 + q)rfk

(1 + qf)r
f∑

a1,a2,...,ar=1

(−1)a1+···+ar qa1+···+ar
r∏

k=1

χ(ak)E
(r)
n,qf

(a1 + · · · + ar

f

)
. (3.4)

4. Multivariate p-adic fermionic q-integral on Zp associated with
higher-order q-Euler numbers

In [14], Ryoo et al. defined q-extension of Euler numbers and polynomials of higher order.
They studied Barnes-type q-Euler zeta functions. They also derived sums of products of q-Euler
numbers and polynomials by using fermionic p-adic q-integral. In this section, we assume that
q ∈ Cp with |1 − q|p < 1. By using (1.4), the p-adic fermionic q-integral on Zp is defined by

I−q(f) =
∫

Zp

f(x)dμ−q(x)

= lim
N→∞

1
[
pN

]
−q

pN−1∑

x=0

f(x)(−q)x.
(4.1)

From this integral equation, we have (see [1, 2, 4])

qI−q(f1) + I−q(f) = (q + 1)f(0), (4.2)

where f1(x) = f(x + 1). If we take f(x) = etx in (4.2), we have

I−q(etx) =
∫

Zp

etxdμ−q(x) =
q + 1
qet + 1

=
∞∑

n=0

En,q
tn

n!
(4.3)

(cf. [8]).



12 Abstract and Applied Analysis

Now we are ready to give multivariate p-adic fermionic q-integral on Zp as follows (see
for detail [14]). Let

∫

Z
r
p

=
∫

Zp

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
r times

∫

Z
r
p

et(x1+···+xr)dμ−q(x1) · · ·dμ−q(xr) =
(

q + 1
qet + 1

)
· · ·

(
q + 1
qet + 1

)

︸ ︷︷ ︸
r times

=
∞∑

n=0

E
(r)
n,q

tn

n!
.

(4.4)

From (4.4), we obtain Witt’s formula for q-Euler numbers of higher order as follows.

Theorem 4.1 (see [14]). Let k ∈ Z+. Then
∫

Z
r
p

(x1 + · · · + xr)
ndμ−q(x1) · · ·dμ−q(xr) = E

(r)
n,q. (4.5)

By (4.4), we obtain

∫

Z
r
p

et(x1+···+xr+x)dμ−q(x1) · · ·dμ−q(xr) =
ext(q + 1)r

(qet + 1) · · · (qet + 1)
︸ ︷︷ ︸

r times

=
∞∑

n=0

E
(r)
n,q(x)

tn

n!
. (4.6)

Theorem 4.2 (multinomial theorem). The following holds:

( v∑

j=1

xj

)n

=
∑

l1,l2,...,lv≥0
l1+l2+···+lv=n

(
n

l1, l2, . . . , lv

)
v∏

a=1

xla
a , (4.7)

where ( n
l1,l2,...,lv ) are the multinomial coefficients, which are defined by

(
n

l1, l2, . . . , lv

)
=

n!
l1!l2! . . . lv!

(4.8)

(cf. [32, 33]).

Now we give a main theorem of this section, which is called complete sums of products
of q-Euler polynomials of higher order.

Theorem 4.3. For positive integers n, r, one has

E
(r)
n,q

(
y1 + y2 + · · · + yr

)
=

∑

l1,l2,...,lr≥0
l1+l2+···+lr=n

(
n

l1, l2, . . . , lr

)
r∏

j=1

Elj ,q(yj), (4.9)

where ( n
l1,l2,...,lr ) is the multinomial coefficient.
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Proof. The proof of this theorem is similar to that of [23]. By using Taylor series of etx into (4.6),
and x by y1 + y2 + · · · + yr, then we have

E
(r)
n,q

(
y1 + y2 + · · · + yr

)
=
∫

Zp

· · ·
∫

Zp

(
r∑

j=1

(yj + xj)

)n r∏

j=1

dμ−q
(
xj

)
. (4.10)

By using (4.7) in the above equation, and after some elementary calculations, we get

E
(r)
n,q

(
y1 + y2 + · · · + yr

)
=

∑

l1,l2,...,lr≥0
l1+l2+···+lr=n

(
n

l1, l2, . . . , lv

)
r∏

j=1

∫

Zp

(
yj + xj

)lj dμ−q
(
xj

)
. (4.11)

By substituting (2.25) into the above equation, we arrive at the desired result.

By substituting (2.8) into (4.9), then Theorem 4.3 reduces to the following theorem.

Theorem 4.4. For positive integers n, r, one has

E
(r)
n,q

(
y1 + y2 + · · · + yr

)
=

∑

l1,l2,...,lr≥0
l1+l2+···+lr=n

(
n

l1, l2, . . . , lr

)
r∏

j=1

lj∑

k=0

(
lj
k

)
y
lj−k
j Elj ,q. (4.12)

In (4.10), if we replace y1 + y2 + · · · + yr by x, then we obtain the following corollary.

Corollary 4.5. For n ≥ 0, one has

E
(r)
n,q(x) =

∫

Z
r
p

(
x1 + · · · + xr + x

)m
dμ−q(x1) · · ·dμ−q(xr)

=
∑

l1+···+lr+lr+1=m

(
m

l1 · · · lr+1

)∫

Zp

xl1
1 dμ−q(x1) · · ·

∫

Zp

xlr
r dμ−q(xr)xlr+1

=
∑

l1+···+lr+lr+1=m

(
m

l1 · · · lr+1

)
El1,qEl2,q · · ·Elr ,qx

lr+1 .

(4.13)

Remark 4.6. By using (4.5)–(4.7), complete sums of products of q-Euler polynomials of higher
order are also obtained. Proof of Corollary 4.5 was also given by Ryoo et al. [14], which is given
by

E
(r)
n,q(x) =

n∑

k=0

∑

l1+···+lr+lr+1=m

(
n
k

)(
k

l1 · · · lr+1

)
xn−kEl1,qEl2,q · · ·Elr ,q. (4.14)

In (4.13), if we take q → 1, we have

E
(r)
n (x) =

∑

l1+···+lr+lr+1=m

(
m

l1 · · · lr+1

)
El1El2 · · ·Elrx

lr+1 . (4.15)

For more detailed information about complete sums of products of Euler polynomials and
Bernoulli polynomials, see also [11, 14, 20–24, 34, 35].
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Let χ be a Dirichlet character with conductor d ∈ Z
+. Then

∫

X

χ(x)etxdμ−q(x) = (q + 1)
∑d−1

l=0 (−1)d−1−lqletlχ(x)
edtqd + 1

=
∞∑

n=0

En,χ,q
tn

n!
.

(4.16)

By using Taylor expansion of etx and then comparing coefficients of tn on both sides, we
arrive at

∫

X

χ(x)xndμ−q(x) = En,χ,q (4.17)

(cf. [8]).
By (4.16), we have

∫

Xr

r∏

i=1

χ(xi)et(x1+···+xr)dμ−q(x1) · · ·dμ−q(xr) =
∫

Xr

r∏

i=1

χ(xi)et(x1+···+xr)dμ−q(x1) · · ·dμ−q(xr)

=
(∑d−1

a=0(−1)d−1−aqaetaχ(a)
edtqd + 1

)r r∑

j=0

(
r
j

)
qj

=
∞∑

n=0

E
(r)
n,χ,q

tn

n!
.

(4.18)

Thus we give Witt-type formula of E(r)
n,χ,q as follows.

Theorem 4.7. Let χ be a Dirichlet character with conductor d ∈ N and letm ≥ 0. Then

E
(r)
n,χ,q =

∫

Xr

(
x1 + · · · + xr

)m r∏

i=1

χ(xi)dμ−q(x1) · · ·dμ−q(xr). (4.19)

By using (3.2), (2.8), we obtain

E
(r)
n,q,χ = fn (1 + q)r

(1 + qf)r
f−1∑

a1,a2,...,ar=0

(−1)a1+···+ar qa1+···+ar
r∏

k=1

χ(ak)
n∑

k=0

(
n
k

)(a1 + · · · + ar

f

)n−k
E
(r)
k,qf

.

(4.20)

By using (4.7) in the above equation, we have

E
(r)
n,q,χ =

(1 + q)r

(1 + qf)r
f−1∑

a1,a2,...,ar=0

(−1)a1+···+ar qa1+···+ar
r∏

k=1

χ(ak)

×
n∑

k=0

∑

l1,l2,...,lv≥0
l1+l2+···+lv=n−k

(
n − k

l1, l2, . . . , lv

)(
n
k

)
v∏

y=1

a
ly
y f

kE
(r)
k,qf

.
(4.21)
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