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1. Introduction and notations

Let (Ω,A, μ) be a probability space and let M = M(Ω,A, μ) be the set of all A-measurable
real-valued functions defined on Ω. Given a C1 convex function φ : [0,∞) → [0,∞) such that
φ(0) = 0, φ(t) > 0, when t > 0, let Lφ = Lφ(Ω,A, μ) be the space of all functions f ∈ M such
that ∫

Ω
φ(λ|f |)dμ < ∞, (1.1)

for some λ > 0. Since we only deal with a Δ2 function φ, that is, there exists a constant K > 0
such that φ(2x) ≤ Kφ(x) for all x ≥ 0, the space Lφ can be defined as the space of all function
f ∈ M, where (1.1) holds for every positive number λ. The space Lφ′

is analogously defined,
where φ′ is the derivative of the function φ. Besides, observe that for a Δ2 function φ it holds
the next inequality

φ(x) ≤ xφ′(x) ≤ φ(2x) ≤ Kφ(x) (1.2)

for all x ≥ 0, and therefore Lφ ⊂ Lφ′
. Moreover ϕ is a Δ2 function if and only if ϕ′ is a Δ2

function.

mailto:sfavier@unsl.edu.ar


2 Abstract and Applied Analysis

We say, according to [1], that a collection L of sets in A is a σ-lattice if it is closed under
countable unions and intersections and contains ∅ andΩ. Given a σ-lattice L, we denote by L
the σ-lattice of all the complementary sets of L, that is, L = {Ac : A ∈ L}. Denote by Lφ(L) all
L-measurable functions in Lφ.

A set C ⊂ Lφ is called φ-closed if and only if fn ∈ C and fn ↗ f ∈ Lφ or (fn ↘ f ∈ Lφ)
then f ∈ C. Then Lφ(L) is a φ-closed convex set and a lattice, that is closed for the maximum
and minimum of functions.

We will use the notation f ∧ g = min(f, g) and f ∨ g = max(f, g). A set C ⊂ Lφ is called
a σ-complete lattice if and only if

∧
n∈N

fn = infn∈Nfn ∈ C and
∨

n∈N
fn = supn∈N

fn ∈ C for all
sequence {fn}n∈N

⊂ C.
It is well known, see [1], that for every f ∈ Lφ there exists an element g ∈ Lφ(L) such

that ∫
Ω
φ(|f − g|)dμ = inf

h∈Lφ(L)

∫
Ω
φ(|f − h|)dμ. (1.3)

Denote by μL
φ
(f) the set of all g ∈ Lφ(L) satisfying (1.3). Each element of μL

φ
(f) will be called

a best φ-approximation of f given Lφ(L), and we will refer to the mapping f → μL
φ
(f) defined

on Lϕ as the best approximation operator.
It is showed in [1] that for f ∈ Lφ the set μL

φ
(f) is a nonvoid σ-complete lattice. Also it

was proved that if f ≤ g, both in Lφ, f1 ∈ μL
φ
(f) and g1 ∈ μL

φ
(g) then we have f1 ∧ f2 ∈ μL

φ
(f)

and f1 ∨ f2 ∈ μL
φ
(g). In this case, we say that the multivalued operator μL

φ
(f) is a monotone

operator.
The main purpose of this paper is to extend the best approximation operator to the set

Lϕ′
. The case ϕ(t) = tp, p > 1, was extensively treated in [2] and the best L1 approximation op-

erator is extended to all measurable functions in [3]. The extension from Lϕ to Lϕ′
is considered

in [4] for a C1 function ϕwhich is strictly convex and ϕ′(0) = 0.
Now in this paper we consider a C1 convex function φ, φ′(0) = 0, but not necessarily

a strictly convex function. Extension of best approximation operator when the approximation
classes are the constants is treated in [5–7].

The extension of the best approximation operator is μL
φ
(f); for f ∈ Lφ′

, we will be

denoted by μ̃L
φ
(f). In Theorem 2.12, we prove that μ̃L

φ
(f)/=∅ for every f ∈ Lφ′

, while in

Theorem 2.16 it is proved that it is indeed an extension, that is, μ̃L
φ
(f) = μL

φ
(f) for f ∈ Lφ.

Additional properties are obtained for the set μ̃L
φ
(f) when the σ-lattice L is a σ-algebra (see

Theorem 2.17) and similar results hold when L is the class of monotone functions in Lφ′
(see

Theorem 3.2). A martingale-type result is given in Theorem 4.1 which generalizes [8, Theorem
2.8] for the particular family of measures considered in this paper.

2. Extension of the best φ-approximation operator

We begin with some definitions and auxiliary results. The proof of the next two lemmas can be
found in [4].

Lemma 2.1. A necessary and sufficient condition for a continuously differentiable and convex function
φ to satisfy the Δ2 condition is that there exists a constant α > 1 such that

uφ′(u) ≤ αφ(u) ∀u ≥ 0. (2.1)
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Lemma 2.2. Let f, g be in Lφ. Then φ′(|f |)g is an integrable function.

According to Brunk and Johansen [8], we set the following definitions.

Definition 2.3. Let ν be a signed measure onA and let L be a σ-lattice contained inA. Say that
P ∈ L is a ν-positive set, if for all D ∈ L, then ν(P ∩D) ≥ 0. A set N ∈ L is called ν-negative if
for all C ∈ L one has ν(N ∩ C) ≤ 0.

Definition 2.4. Let {νa}a∈R be a family of measures on A, and let L be a σ-lattice contained in
A.AnL-measurable function g is called a Lebesgue-Radon-Nikodym function (LRN function)
for {νa} given L if and only if the set {g > a} is νa-positive for all a ∈ R and the set {g < a} is
νa-negative for all a ∈ R.

Remark 2.5. We note that in Definition 2.4 it is sufficient to impose the conditions for all a in a
dense set in R, see [8, page 588].

For f ∈ Lφ, g ∈ Lφ(L), and a ∈ R, we define the following measures onA:

μg(A) =
∫
A

φ′(f − g)dμ, μa(A) =
∫
A

φ′(f − a)dμ, (2.2)

where φ′(x) = φ′(|x|)sign(x). Note that when f ∈ Lφ′
and g ∈ Lφ′

(L), the measure μg and μa

are well defined.
The next theorem is a characterization of μL

φ
(f), see [9, Theorem 3.2].

Theorem 2.6. Let f ∈ Lφ, L ⊂ A be a σ-lattice and g ∈ Lφ(L). Then the following statement are
equivalent.

(1) g ∈ μL
φ
(f).

(2) (a) a set {g > a} is μg-positive for all a ∈ R; and

(b) a set {g < a} is μg-negative for all a ∈ R.

(3) g is an LRN function for the family {μa}a∈R
given L.

Now we extend the operator μL
φ
(·) to the space Lφ′

.

Definition 2.7. Let L be a σ-lattice and let f ∈ Lφ′
. Then g is an extended best φ-approximation

if and only if g ∈ Lφ′
(L) and

(i) the set {g > a} is μg-positive for all a ∈ R;

(ii) the set {g < a} is μg-negative for all a ∈ R.

For f ∈ Lφ′
we denote by μ̃L

φ
(f) the set of all extended best φ-approximation functions.

Remark 2.8. Let f ∈ Lφ′
and let g be a function in Lφ′

(L) such that the set {g > a} is μg-positive
and the set {g < a} is μg-negative for all a ∈ R. Then we have the following.

(i) For all h ∈ L∞(L) and h ≥ 0,∫
{g>a}

φ′(f − g)hdμ ≥ 0. (2.3)
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For all h ∈ L∞(L) and h ≥ 0,

∫
{g<a}

φ′(f − g)hdμ ≤ 0. (2.4)

(ii)

∫
φ′(f − g)dμ = 0. (2.5)

Proof. We prove inequality (2.3). Since the set {g > a} is μg-positive, that is, for eachD ∈ L and
a ∈ R, we have

∫
{g >a}∩D

φ′(f − g)dμ ≥ 0. (2.6)

For h =
∑N

k=1ckXDk
, where Dk ∈ L and ck ≥ 0, k = 1, . . . ,N, then by (2.6), we have

∫
{g >a}

φ′(f − g)h dμ =
N∑
k=1

ck

∫
{g >a}∩Dk

φ′(f − g)dμ ≥ 0. (2.7)

All nonnegative h ∈ L∞(L) can be obtained as a limit of functions of the above type. The proof
of inequality (2.4) is similar.

The equality (2.5) is obtained using Lebesgue’s theorem when a → ∞with h = 1 in (2.4)
and if a → −∞ consider in (2.3) also h = 1.

As a reference, we note that (2) is equivalent to (3) in Theorem 2.6 for f ∈ Lφ′
, g ∈ Lφ′

.
We have the next remark.

Remark 2.9. For f ∈ Lφ′
and g ∈ Lφ′

(L), the following statements are equivalent:

(1) g ∈ μ̃L
φ
(f);

(2) g is an LRN function for the family {μa}a∈R
given L.

The next lemma is a particular case of [8, Theorem 1.8].

Lemma 2.10. Let f ∈ Lφ′
and g ∈ Lφ′

(L). Then the following statements are equivalent.

(1) g is an LRN function for the family {μa}a∈R
given L.

(2) There exists a countable set D such that {g ≤ a} is μa-negative for all a ∈ Dc and the set
{g ≥ a} is μa-positive for all a ∈ Dc.

We need the following auxiliary result.

Lemma 2.11. Let fn ∈ Lφ′
be a sequence of functions such that fn ↗ f(fn ↘ f), where f ∈ Lφ′

. Let
gn ∈ μ̃L

φ
(fn) be such that gn ↗ g(gn ↘ g). Then g ∈ μ̃L

φ
(f).



Ivana Carrizo et al. 5

Proof. We will prove the result just for the increasing case, the proof for the decreasing case
follows the same pattern. The function g = limn→∞gn is obviously L-measurable function.
Now, we prove that g ∈ Lφ′

, and it satisfies (i) and (ii) of Definition 2.7. We have that

fn − gn ≤ f − gn ≤ f − g1. (2.8)

Using (2.5),

∫
Ω
φ′(fn − gn

)
dμ = 0 for each n ∈ N. (2.9)

According to (2.8) and (2.9), we have, since φ′(x) is an increasing function,

∫
Ω
φ′(f − gn

)
dμ ≥ 0. (2.10)

Since φ′ is a continuous function and φ′(0) = 0,we have by (2.8) and Lebesgue’s theorem

∫
Ω
(φ′(f − g) ∨ 0)dμ ≤

∫
Ω
(φ′(f − g1

) ∨ 0)dμ. (2.11)

Now by (2.10) it holds

∫
Ω

( − φ′(f − gn
) ∨ 0

)
dμ ≤

∫
Ω

(
φ′(f − gn

) ∨ 0
)
dμ. (2.12)

Using Fatou in (2.12), we have

∫
Ω

( − φ′(f − g
) ∨ 0

)
dμ ≤

∫
Ω

(
φ′(f − g

) ∨ 0
)
dμ. (2.13)

Therefore, using (2.11) and (2.12), we get g ∈ Lφ′
(Ω) and

∫
Ω φ′(f − g)dμ ≥ 0.

Let a ∈ R, D ∈ L, and C ∈ Lwe know for each n

∫
{gn>a}∩D

φ′(fn − gn
)
dμ ≥ 0,

∫
{gn<a}∩C

φ′(fn − gn
)
dμ ≤ 0. (2.14)

Since {gn}n∈N
is an increasing sequence, we get

⋃
n∈N

{gn > a} = {g > a}, and by (2.14), we have

∫
{g>a}∩D

φ′(f − g)dμ ≥ 0. (2.15)

Hence, the set {g > a} is μg-positive for all a ∈ R.
Now, for a ∈ R and k, n ∈ N, we define Bn = {gn < a} and Bn,k = {gn < a− 1/k}.We have

that, for n → ∞, Bn,k ↘ Ak for some A-measurable set such that

{
g < a − 1

k

}
⊂ Ak ⊂

{
g ≤ a − 1

k

}
. (2.16)
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We observe that XAk
→ X{g<a}, a.e. Then taking limit as k → ∞, n → ∞ and using Lebesgue’s

theorem, we obtain∫
{g<a}∩C

φ′(f − g)dμ = lim
k→∞

∫
φ′(f − g)XAk∩C dμ = lim

k→∞
lim
n→∞

∫
Bn,k∩C

φ′(f − g)dμ ≤ 0. (2.17)

Theorem 2.12. Let L be a σ-lattice and f ∈ Lφ′
, then μ̃L

φ
(f)/=∅.

Proof. For f ∈ Lφ′
we can define the following sequences. For eachm ∈ N, let fm = f ∨(−m) and

whenm → ∞we have fm ↘ f. Set fn
m = (f ∨(−m))∧n for all n,m in N, then we have fmn ↗ fm,

when n → ∞. Since for each m,n ∈ N we have fn
m ∈ Lφ, there exist gn

m ∈ μL
φ
(fn

m). As μL
φ
(·) is a

mono-tone operator over Lφ we can take a new sequence that we call again gn
m ∈ μL

φ
(fn

m), such
that gn

m ≤ gn+1
m for all n ∈ N.

Since fn
m ≥ fn

m+1 and using again that μL
φ
(·) is a monotone operator, we have g̃n

m+1 ≤ g̃n
m,

where g̃n
m ∈ μL

φ
(fn

m) is the sequence defined by g̃n
1 = gn

1 and g̃n
m+1 = g̃n

m ∧ gn
m+1. Furthermore, it is

easy to check that g̃n
m ≤ g̃n+1

m .
Then, we have that for each m ∈ N that fn

m ↗ fm, when n → ∞, and since μL
φ
(fn

m) ⊂
μ̃L
φ
(fn

m) we have g̃n
m ∈ μ̃L

φ
(fn

m) and if we define gm = limn→∞g̃n
m by Lemma 2.11 we obtain

gm ∈ μ̃L
φ
(fm) and gm ≥ gm+1 for all m ∈ N. If we take m → ∞, we have fm ↘ f and by

Lemma 2.11 we get g ∈ μ̃L
φ
(f), where g = limm→∞gm.

To see that the extended best φ-approximation is an extension of the best φ-approx-
imation operator, we must prove μ̃L

φ
(f) = μL

φ
(f) for every f ∈ Lφ. First, we need to prove

the following lemmas.

Lemma 2.13. Let φ be a C1 convex function and assume that it satisfies the Δ2-condition. Then

φ(a) +
K

2
aφ′(x − a) ≤ K + 2

2
φ(x), (2.18)

for a, x ≥ 0, where K is the constant for the Δ2 condition.

Proof. We consider two cases. First, we assume 0 < x ≤ a. Since φ is Δ2-convex function, we
have that φ(a) = φ(a − x + x) ≤ (K/2)(φ(a − x) + φ(x)). Using xφ′(x) ≥ φ(x) for all x, we get

φ(x) + aφ′(a − x) = φ(x) + (a − x + x)φ′(a − x)

≥ φ(x) + φ(a − x) + xφ′(a − x)

≥ 2
K
φ(a) + xφ′(a − x) ≥ 2

K
φ(a).

(2.19)

Then we obtain

φ(a) − K

2
aφ′(a − x) ≤ K

2
φ(x). (2.20)

For 0 ≤ a < x, we have

φ(a) + a
K

2
φ′(x − a) ≤ φ(a) +

K

2

∫x

x−a
φ′(t)dt ≤ φ(x) +

K

2
φ(x) =

K + 2
2

φ(x). (2.21)
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Lemma 2.14. Let f ∈ Lφ and g ∈ μ̃L
φ
(f), then

∫
{g>0}

φ′(f − g)g dμ ≥ 0. (2.22)

Proof. Since {g > a} is μg-positive for all a ∈ R, then for all D ∈ L, we have that
∫
{g>a}∩D

φ′(f − g)dμ ≥ 0. (2.23)

In particular, it holds that for all a ∈ R,
∫
{g>a}

φ′(f − g)dμ ≥ 0, (2.24)

that is,
∫
{g>a}∩{f>g}

φ′(|f − g|)dμ ≥
∫
{g>a}∩{f≤g}

φ′(|f − g|)dμ. (2.25)

Now, we have
∫∞

0

∫
{g>a}∩{f>g}

φ′(|f − g|)dμda ≥
∫∞

0

∫
{g>a}∩{f≤g}

φ′(|f − g|)dμda. (2.26)

By the Fubini’s theorem, we get
∫
{g>0}

∫g

0
φ′(|f − g|)X{f>g} dadμ ≥

∫
{g>0}

∫g

0
φ′(|f − g|)X{f≤g} dadμ. (2.27)

Thus ∫
{g>0}

φ′(|f − g|)X{f>g}g dμ ≥
∫
{g>0}

φ′(|f − g|)X{f≤g}g dμ. (2.28)

To see that inequality (2.22) is equivalent to (2.28)wewill prove that φ′(f−g)X{f>g}g ∈ L1({g >
0}). In fact

∫
{g>0}

φ′(f − g)X{f>g}g dμ ≤
∫
{g>0}

φ′(f − g)X{f>g}f dμ ≤
∫
{g>0}

φ′(f)f. (2.29)

Since f ∈ Lφ by Lemma 2.2, the last integral is finite.

The following properties of the set μ̃L
φ
(f) can be easily proved.

Proposition 2.15. Let f ∈ Lφ′
, then

(1) −μ̃L
φ
(−f) = μ̃L

φ
(f),

(2) μ̃L
φ
(f + t) = μ̃L

φ
(f) + t for all h ∈ R.

Now we prove that the operator μ̃L
φ
(f) is in fact an extension of the operator μL

φ
(f).
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Theorem 2.16. Let f ∈ Lφ, then μ̃L
φ
(f) = μL

φ
(f).

Proof. For f ∈ Lφ, we will prove only that μ̃L
φ
(f) ⊂ μL

φ
(f). The other inclusion follows from

Theorem 2.6. Let g ∈ μ̃L
φ
(f) and again using Theorem 2.6 it remains to prove that g ∈ Lφ.

Recall that φ(0) = 0, then

∫
Ω
φ(|g|)dμ =

∫
{g>0}

φ(g)dμ +
∫
{g<0}

φ(−g)dμ. (2.30)

By Lemma 2.13 we obtain the following inequality:

∫
{g>0}

φ(g)dμ +
K

2

∫
{g>0}

φ′(|f | − g)g dμ ≤ K + 2
2

∫
{g>0}

φ(|f |)dμ. (2.31)

Applying Lemma 2.14 and taking into account that φ′(x) is an increasing function, we get

0 ≤
∫
{g>0}

φ′(f − g)g dμ ≤
∫
{g>0}

φ′(|f | − g)g dμ. (2.32)

Thus using (2.32) in (2.31), we have

∫
{g>0}

φ(g)dμ ≤ K + 2
2

∫
Ω
φ(|f |)dμ. (2.33)

For the set {g < 0}, again by Lemma 2.13, we obtain

∫
{g<0}

φ(−g)dμ +
K

2

∫
{g<0}

φ′(|f | + g)(−g)dμ ≤ K + 2
2

∫
{g<0}

φ(|f |)dμ. (2.34)

Since −f + g ≤ |f | + g, we have φ′(−f + g) ≤ φ′(|f | + g). Thus

∫
{g<0}

φ′(−f + g)(−g)dμ ≤
∫
{g<0}

φ′(|f | + g)(−g)dμ. (2.35)

By (1) in Proposition 2.15, −g ∈ μ̃L
φ
(−f), and by Lemma 2.14, we have that

∫
{g<0}

φ′(−f + g)(−g)dμ ≥ 0. (2.36)

Therefore,
∫
{g<0} φ(−g)dμ ≤ ((K + 2)/2 )

∫
φ(|f |)dμ. By (2.33), we have

∫
Ω
φ(|g|)dμ ≤ K + 2

2

∫
Ω
φ(|f |)dμ, (2.37)

and therefore g ∈ Lφ.
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Now, if consider a σ-subalgebra B instead of a σ-lattice L, the extended best φ-approx-
imation operator has the following properties.

Theorem 2.17. Let f, f1, and f2 be in Lφ′
, if B is a sub-σ-algebra of the σ-algebraA, then the follow-

ing hold.

(1) The set-valued function μ̃B
φ
(f) is a monotone operator.

(2) The set μ̃B
φ
(f) is a σ-complete lattice, and there existUB, VB ∈ μ̃B

φ
(f) such thatUB ≤ g ≤ VB

a.e. for every g ∈ μ̃B
φ
(f).

Proof. To prove (1), recall that this set-valued operator is monotone if f1 ≤ f2; then if g1 ∈ μ̃B
φ
(f1)

and g2 ∈ μ̃B
φ
(f2), we have that g1 ∧ g2 ∈ μ̃B

φ
(f1) and g1 ∨ g2 ∈ μ̃B

φ
(f2). Since Lφ(B) is a lattice,

we know g1 ∧ g2 ∈ Lφ(B) and g1 ∨ g2 ∈ Lφ(B). We will prove first that g1 ∧ g2 ∈ μ̃B
φ
(f1). Set

μ
fi
a (A) =

∫
A φ′(fi − a)dμ, where a ∈ R and i = 1, 2. We will see that g1 ∧ g2 is an LRN function

for the family of measures {μf1
a }a∈R

given B. First, we will see that for each a ∈ R and for all
B ∈ B, we have

μ
f1
a

({
g1 ∧ g2 > a

} ∩ B
) ≥ 0. (2.38)

Since {g1 ∧ g2 > a} ∩ B = {g1 > a} ∩ {g2 > a} ∩ B and {g2 > a} ∩ B ∈ B and using that g1 is an
LRN function of the family {μf1

a }a∈R
, we obtain that for all B ∈ B∫

{g1∧g2>a}∩B
φ′(f1 − a

)
dμ =

∫
{g1>a}∩{g2>a}∩B

φ′(f1 − a
)
dμ ≥ 0. (2.39)

Now, we see that {g1 ∧ g2 < a} is μf1
a -negative for all a ∈ R. For B ∈ B, we have

{
g1 ∧ g2 < a

} ∩ B =
({

g1 < a
} ∩ B

) ∪ ({
g1 ≥ a

} ∩ {
g2 < a

} ∩ B
)
. (2.40)

Using f1 ≤ f2 and that φ′(·) is a nondecreasing function, we obtain
∫
{g1∧g2<a}∩B

φ′(f1 − a
)
dμ =

∫
{g1<a}∩B

φ′(f1 − a
)
dμ +

∫
{g1≥a}∩{g2<a}∩B

φ′(f1 − a
)
dμ

≤
∫
{g1<a}∩B

φ′(f1 − a
)
dμ +

∫
{g1≥a}∩{g2<a}∩B

φ′(f2 − a
)
dμ ≤ 0.

(2.41)

Thus ∫
{g1∧g2<a}∩B

φ′(f1 − a
)
dμ ≤ 0. (2.42)

By (2.39) and (2.42), we have g1 ∧ g2 ∈ μ̃B
φ
(f1).

Now we show g1 ∨ g2 ∈ μ̃B
φ
(f2). Since f1 ≤ f2 and {g1 > a} is a μ

f1
a -positive for all a ∈ R

and for all B ∈ B, we have∫
{g1∨g2>a}∩B

φ′(f2 − a
)
dμ =

∫
{g2>a}∩B

φ′(f2 − a
)
dμ +

∫
{g1>a}∩{g2≤a}∩B

φ′(f2 − a
)
dμ

≥
∫
{g2>a}∩B

φ′(f2 − a
)
dμ +

∫
{g1>a}∩{g2≤a}∩B

φ′(f1 − a
)
dμ ≥ 0.

(2.43)
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Since ∫
{g1∨g2<a}∩B

φ′(f2 − a
)
dμ =

∫
{g1<a}∩{g2<a}∩B

φ′(f2 − a
)
dμ ≤ 0, (2.44)

the inequalities (2.43) and (2.44) prove that g1 ∨ g2 ∈ μ̃B
φ
(f2).

As the statement (1) proves in particular that μ̃B
φ
(f) is a lattice, we will see that the set

is a σ-complete lattice. Given a sequence {gn}n∈N
in μ̃B

φ
(f), we have that

∨n
1gk ∈ μ̃B

φ
(f); then,

from Lemma 2.11 we obtain that
∨

n∈N
gn = limn→∞

∨n
1gn ∈ μ̃B

φ
(f). The proof

∧
n∈N

gn ∈ μ̃B
φ
(f) is

similar.
By [10, Proposition II.4.1] there exists a sequence gn ∈ μ̃B

φ
(f) such that inf gn ≤ g ≤

sup gn, for every g ∈ μ̃B
φ
(f). SetUB = inf gn and VB = sup gn, thenUB and VB are in μ̃B

φ
(f) since

this set is a σ-complete lattice.

3. Extended best φ-approximation with nondecreasing functions

When the approximation class is the monotone functions defined on [0, 1]we can obtain simi-
lar results as those of Theorem 2.17. NowΩ = [0, 1], μ is Lebesgue measure on the measurable
sets, and L = {(a, 1), [a, 1),∅,R}a∈R. Therefore, L

φ′
(L) is the set of nondecreasing functions in

Lφ′
[0, 1].

Remark 3.1. Let g be a nondecreasing function on [0, 1].Given a ∈ R, the set {g < a} is one of the
intervals [0, αa) or [0, αa] and similarly the set {g > a} is (βa, 1] or [βa, 1] with 0 ≤ αa ≤ βa ≤ 1.
ThenHg = {a ∈ R : αa = βa} is a dense set in R. In fact, the complement set ofHg is a countable
set.

Note that each C ∈ L is of the form (c, 1] or [c, 1] and D ∈ L is D = [0, d) or [0, d]. Thus
∫
{g>a}∩D

φ′(f − a)dμ =
∫d

βa

φ′(f − a)dμ,
∫
{g<a}∩C

φ′(f − a)dμ =
∫αa

c

φ′(f − a)dμ. (�)

Theorem 3.2. Let Lφ(L) be the class of the φ′-integrable nondecreasing functions in [0, 1]. Then the
following hold.

(1) The set mapping μ̃L
φ
(f) is a monotone operator.

(2) For every f ∈ Lφ′
, the set μ̃L

φ
(f) is a σ-complete lattice.

Proof. First we prove (1), that is given f1, f2 in Lφ′
with f1 ≤ f2, for each gi ∈ μ̃L

φ
(fi), i = 1, 2

we will see that g1 ∧ g2 ∈ μ̃L
φ
(f1) and g1 ∨ g2 ∈ μ̃L

φ
(f2). Let H be Hg1 ∩Hg2 , where Hgi is the set

given in Remark 3.1. Recall that g1 ∧ g2 ∈ μ̃L
φ
(f1) if and only if for each a ∈ H and c, d ∈ R

∫
{g1∧g2>a}∩(0,d)

φ′(f1 − a
)
dx ≥ 0,

∫
{g1∧g2<a}∩(c,1)

φ′(f1 − a
)
dx ≤ 0. (3.1)

Also g1 ∨ g2 ∈ μ̃L
φ
(f2) if and only if for each a ∈ H, and c, d ∈ R,

∫
{g1∨g2>a}∩(0,d)

φ′(f2 − a
)
dx ≥ 0,

∫
{g1∨g2<a}∩(c,1)

φ′(f2 − a
)
dx ≤ 0. (3.2)
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First we prove (3.1). Now we see that
∫
{g1∧g2>a}∩(0,d)

φ′(f1 − a
)
dx ≥ 0, (3.3)

with {g1 ∧ g2 > a} = (βa1 , 1] ∩ (βa2 , 1]. Since
∫
(βa1 ,d)

φ′(f1 − a)dx ≥ 0 to prove (3.3), we have to see
that ∫

(βa2 ,d)
φ′(f1 − a

)
dx ≥ 0, (3.4)

where βa1 ≤ βa2 . Indeed by (�), we get

0 ≤
∫
βa1

adφ′(f1 − a
)
dx =

∫βa2

βa1

φ′(f1 − a
)
dx +

∫d

βa2

φ′(f1 − a
)
dx. (3.5)

Since φ′(·) is a nondecreasing function, we have

0 ≤
∫βa2

βa1

φ′(f2 − a
)
dx +

∫d

βa2

φ′(f1 − a
)
dx. (3.6)

As
∫βa2
βa1

φ′(f2 − a)dx ≤ 0 (βa2 = αa
2), we have

∫d
βa2
φ′(f1 − a)dx ≥ 0, that is (3.4).

Now we will prove that
∫
{g1∧g2<a}∩(c,1)

φ′(f1 − a
)
dx ≤ 0. (3.7)

In fact∫
{g1∧g2<a}∩(c,1)

φ′(f1 − a
)
dx =

∫
{g1<a}∩(c,1)

φ′(f1 − a
)
dx +

∫
{g1≥a}∩{g2<a}∩(c,1)

φ′(f1 − a
)
dx

≤
∫
{g1<a}∩(c,1)

φ′(f1 − a
)
dx +

∫
{g2<a}∩[{g1≥a}∩(c,1)]

φ′(f2 − a
)
dx.

(3.8)

The last two integrals in (3.8) are less or equal than zero, so (3.7) holds. A similar argument
shows that g1 ∨ g2 ∈ μ̃L

φ
(f2). Therefore, the extended best φ-approximation operator is a

monotone operator. By (1), we have that μ̃L
φ
(f) is a lattice, just setting f = f1 = f2. Now by

Lemma 2.11 we obtain that μ̃L
φ
(f) is a σ-complete lattice.

4. A limit theorem for extended best φ-approximations

Given a sequence {Bn}n∈N of σ-algebras contained in the σ-algebra A, we consider two cases,
Bn ⊂ Bn+1 for all n ∈ N and we set B∞ for the σ-algebra generated by

⋃
nBn, and if Bn ⊇ Bn+1 for

all n ∈ N, we set B∞ =
⋂

n∈N
Bn.

The next result is a particular case of [8, Theorem 2.8] when φ is a strictly convex func-
tion. This assumption on the function φ assures that the family of measures {μa}a∈R

decreases
at zero as required by Brunk and Johansen in that theorem.
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Theorem 4.1. Let {Bn}n∈N be an increasing or decreasing sequence of σ-algebras in A, and let
B∞ be the limit of the sequence. If f ∈ Lφ′

, then we have for all gn ∈ μ̃Bn

φ
(f), n ∈ N, that

lim infn→∞gn, and lim supn→∞gn are in μ̃B∞
φ

(f).

Proof. Define g = lim supn→∞gn and g = lim infn→∞gn, then we only prove that g, g ∈ μ̃B∞
φ

(f),
when {Bn}n∈N is an increasing sequence of σ-algebras, the proof for the decreasing case is
similar.

First, we prove for each f ∈ Lφ′
that the set {g ≥ a} is μa-positive for all a ∈ R. Let B ∈ Bm,

and for Hn =
⋃

k≥n{gk > a − εn}, where εn decreases to zero, we have that {g ≥ a} =
⋂

n≥1Hn,
and for all n ∈ N,Hn+1 ⊂ Hn. Now for each n ∈ N, we define the following disjoint sets. For
p ≥ n, set Hn,n = {gn > a − εn}, . . . , Hn,p = {gp > a − εn} ∩ {gp−1 ≤ a − εn} ∩ · · · ∩ {gn ≤ a − εn}.
Thus,Hn =

⋃
p≥nHn,p, and then

∫
Hn∩B

φ′(f − (
a − εn

))
dμ =

∞∑
p=n

∫
Hn,p∩B

φ′(f − (
a − εn

))
dμ. (4.1)

As Bn ⊂ Bn+1, and for p ≥ n, we have that {gp−1 ≤ a − εn} ∩ · · · ∩ {gn ≤ a − εn} ∈ Bp. As B ∈ Bm

then B ∈ Bp and
∫
Hn,p∩B φ

′(f − (a − εn))dμ ≥ 0 for m ≤ n ≤ p. Thus
∫
Hn∩B φ

′(f − (a − εn))dμ ≥ 0,
and by Lebesgue’s theorem, we get

∫
{g≥a}∩B

φ′(f − a)dμ = lim
n→∞

∫
Hn∩B

φ′(f − (
a − εn

))
dμ ≥ 0 (4.2)

for all B ∈ ⋃
n∈N

Bn. Now we have (4.2) for all B ∈ B∞. In fact, the set D = {B ∈ A :∫
{g≥a}∩B φ

′(f − a)dμ ≥ 0} is a monotone class, that is, the set D is closed for increasing and
decreasing sequences of sets. As

⋃
n∈N

Bn ⊂ D and this union is an algebra of sets, the mono-
tone class generated by it is B∞, that is, B∞ ⊂ D.

Now let us prove that the set {g ≤ a} is μa-negative for all a ∈ R. As {g ≤ a} =
⋂

n∈N
{g <

a + 1/n} and
∫
{g≤a}∩B

φ′(f − a)dμ = lim
n→∞

∫
{g<a+1/n}∩B

φ′(f − a)dμ, (4.3)

then we have to prove that for all a ∈ R, the set {g < a} is μa-negative. Since {g < a} =⋃
n≥1

⋂
k≥n{gk < a − εn} =

⋃
n≥1Hn, where Hn =

⋂
k≥n{gk < a − εn} and εn ↘ 0, we have for all

n ∈ N thatHn ⊂ Hn+1. Then∫
{g<a}∩B

φ′(f − a)dμ = lim
n→∞

∫
Hn∩B

φ′(f − (
a − εn

))
dμ, (4.4)

for a fixed set B ∈ Bm.
Set Gn =

⋂
k≥n+1{gk < a − εn} and note that Hn = Gn ∩ {gn < a − εn}. Then for m ≤ n, we

have ∫
{gn<a−εn}∩B∩Gn

φ′(f − (
a − εn

))
dμ +

∫
{gn<a−εn}∩B∩Gc

n

φ′(f − (
a − εn

))
dμ

=
∫
{gn<a−εn}∩B

φ′(f − (
a − εn

))
dμ ≤ 0.

(4.5)
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Now, we prove the following inequality:

∫
{gn<a−εn}∩B∩Gc

n

φ′(f − (
a − εn

))
dμ ≥ 0. (4.6)

We can see that

{
gn < a − εn

} ∩ B ∩Gc
n =

⋃
k≥n+1

Ak, (4.7)

where Ak are the following disjoint sets

An+1 =
{
gn+1 ≥ a − εn

} ∩ B ∩ {
gn < a − εn

}
,

...

Ak =
{
gk ≥ a − εn

} ∩ k−1⋂
i=n+1

{
gi < a − εn

} ∩ {
gn < a − εn

} ∩ B.

(4.8)

Then
∫
{gn<a−εn}∩B∩Gc

n

φ′(f − (
a − εn

))
dμ =

∑
k≥n+1

∫
Ak

φ′(f − (
a − εn

))
dμ. (4.9)

Since Ak = {gk ≥ a − εn} ∩ Bk, where Bk ∈ Bk, we have (4.6). Therefore by (4.5), we have

∫
Hn∩B

φ′(f − (
a + εn

))
dμ ≤ 0, (4.10)

for all B ∈ ⋃
n∈N

Bn. Thus by (4.10), (4.4), and (4.3), we get

∫
{g≤a}∩B

φ′(f − a)dμ ≤ 0 (4.11)

for all B ∈ ⋃
n∈N

Bn. Therefore, the result is satisfied for all B ∈ B∞. Thus g ∈ μ̃B∞
φ

(f).
We have {g ≤ a} =

⋂
n≥1Hn, where Hn =

⋃
k≥n{gk < a + εn} and εn ↘ 0, then Hn+1 ⊂ Hn

for all n ∈ N. Since f ∈ Lφ′
we have for all B ∈ B∞ that

∫
{g≤a}∩B

φ′(f − a)dμ = lim
n→∞

∫
Hn∩B

φ′(f − (
a + εn

))
dμ. (4.12)

For p > n define the following disjoint setsHn,n = {gn < a+εn} andHn,p = {gp < a+εn}∩{gp−1 ≥
a + εn} ∩ · · · ∩ {gn ≥ a + εn}. Then for B ∈ Bm we have

∫
Hn∩B

φ′(f − (
a + εn

))
dμ =

∑
p≥n

∫
Hn,p∩B

φ′(f − (
a + εn

))
dμ. (4.13)
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Now if m ≤ n ≤ p,Hn,p ∩ B = {gk < a + εn} ∩ B
,where B
 ∈ Bp. Thus
∫
Hn,p∩B

φ′(f − (
a + εn

))
dμ ≤ 0. (4.14)

Then by (4.12) and (4.14), we have for all B ∈ ⋃
n∈N

Bn that
∫
{g≤a}∩B

φ′(f − a)dμ ≤ 0. (4.15)

Therefore, we have (4.15) for all B ∈ B∞.
Let us see now that ∫

{g≥a}∩B
φ′(f − a)dμ ≥ 0 (4.16)

for all B ∈ ⋃
n∈N

Bn.
As {g ≥ a} =

⋂
n∈N

{g > a − 1/n}, we have to prove that for all a ∈ R, the set {g > a}
is μa-positive. We have that {g > a} =

⋃
n≥1

⋂
k≥n{gk ≥ a + εn} =

⋃
n≥1Hn, where Hn is the

increasing sequenceHn =
⋂

k≥n{gk ≥ a + εn} and εn ↘ 0. Then we have
∫
{g>a}∩B

φ′(f − a)dμ = lim
n→∞

∫
Hn∩B

φ′(f − (
a + εn

))
dμ. (4.17)

Set Gn =
⋂

k≥n+1{gk ≥ a + εn} and note that Hn = Gn ∩ {gn ≥ a + εn}. Then for B ∈ Bm, m ≤ n,
we have

0 ≤
∫
{gn≥a+εn}∩B

φ′(f − (
a + εn

))
dμ

=
∫
{gn≥a+εn}∩B∩Gn

φ′(f − (
a + εn

))
dμ +

∫
{gn≥a+εn}∩B∩Gc

n

φ′(f − (
a + εn

))
dμ.

(4.18)

Now, we prove
∫
{gn≥a+εn}∩B∩Gc

n

φ′(f − (
a + εn

))
dμ ≤ 0. (4.19)

We can see that
{
gn ≥ a + εn

} ∩ B ∩Gc
n =

⋃
k≥n+1

Ak, (4.20)

where Ak are the following disjoint sets:

An+1 =
{
gn+1 < a + εn

} ∩ B ∩ {
gn ≥ a + εn

}
,

...

Ak =
{
gk < a + εn

} ∩ k−1⋂
i=n+1

{
gi ≥ a + εn

} ∩ {
gn ≥ a + εn

} ∩ B.

(4.21)
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Then
∫
{
gn≥a+εn

}
∩B∩Gc

n

φ′(f − (
a + εn

))
dμ =

∑
k≥n+1

∫
Ak

φ′(f − (
a + εn

))
dμ. (4.22)

Since Ak = {gk < a + εn} ∩ Bk, where Bk ∈ Bk, we have (4.19). Therefore by (4.18), we have

∫
Hn∩B

φ′(f − (
a + εn

))
dμ ≥ 0 (4.23)

for all B ∈ ⋃
n∈N

Bn. Thus by (4.23) and (4.17), we get

∫
{g≥a}∩B

φ′(f − a)dμ ≥ 0 (4.24)

for all B ∈ ⋃
n∈N

Bn. Therefore, the result is satisfied for all B ∈ B∞. Thus g ∈ μ̃B∞
φ

(f).
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