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1. Introduction

The aim of this paper is to investigate the permanence of the following periodic stage-struc-
ture predator-prey system with Beddington-DeAngelis and Holling II functional response:

x′
1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2

1(t) −
p1(t)x1(t)

k1(t) +m(t)y1(t) + n(t)x1(t)
y1(t),

x′
2(t) = c(t)x1(t) − f(t)x2

2(t) −
p2(t)x2(t)
k2(t) + x2(t)

y2(t),

y′
1(t) = y1(t)

[
− g1(t) + h1(t)x1(t)

k1(t) +m(t)y1(t) + n(t)x1(t)
− q1(t)y1(t)

]
,

y′
2(t) = y2(t)

[
− g2(t) + h2(t)x2(t)

k2(t) + x2(t)
− q2(t)y2(t)

]
,

(1.1)

where a(t), b(t), c(t), d(t), f(t), gi(t), hi(t), ki(t), m(t), n(t), pi(t), and qi(t) (i = 1, 2) are
all continuous positive ω-periodic functions. Here, x1(t) and x2(t) denote the density of
immature and mature prey species at time t, respectively, y1(t) represents the density of the
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predator that preys on immature prey, and y2(t) represents the density of the other predator
that preys on mature prey at time t.

The birth rate into the immature population is given by a(t)x2(t), that is, it is assumed
to be proportional to the existing mature population, with a proportionality coefficient
a(t). The death rate of the immature population is proportional to the existing immature
population and to its square with coefficients b(t) and d(t), respectively. The death rate of
the mature population is of a logistic nature, that is, it is proportional to the square of the
population with a proportionality f(t). The transition rate from the immature individuals to
the mature individuals is assumed to be proportional to the existing immature population,
with a proportionality coefficient c(t). Similarly, −g1(t)y1(t) − q1(t)y2

1(t) and −g2(t)y2(t) −
q2(t)y2

2(t) give the density dependent death rate of the two predators, respectively. p1(t) and
p2(t) are the capturing rate of the two predators, respectively. h1(t)/p1(t) and h2(t)/p2(t)
are the rate of conversion of nutrients into the reproduction of the two mature predators,
respectively.

The functional response of predator species y1(t) to immature prey species takes the
Beddington-DeAngelis form, that is, x1(t)/(k1(t) + m(t)y1(t) + n(t)x1(t)). It was introduced
by Beddington [1] and DeAngelis et al. [2] independently in 1975. It is similar to the well-
knownHolling type II functional response but has an extra termm(t)y1(t) in the denominator
which models mutual interference between predators. The Beddington-DeAngelis form of
functional response has some of the same qualitative features as the ratio-dependent models
form but avoids some of the same behaviors of ratio-dependent models at low densities
which have been the source of controversy. The function x2(t)/(k2(t) + x2(t)) represents the
functional response of predator y2(t) to mature prey, which is called Holling type II function
or Michaelis-Menten function. Holling type II is the second function that Holling proposed
three kinds of functional response of the predator to prey based on numerous experiments for
different species. The Holling type form of functional response is intituled prey-dependent
model form. It is applied to almost invertebrate that is one of the most extensive applied
functional responses.

Cui and Song [3] proposed the following predator-prey model with stage structure for
prey:

x′
1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2

1(t) − p(t)x1(t)y(t),
x′
2(t) = c(t)x1(t) − f(t)x2

2(t),

y′(t) = y(t)
( − g(t) + h(t)x1(t) − q(t)y(t)).

(1.2)

They obtained a set of sufficient and necessary conditions which guarantee the permanence
of the system. For more back ground and the relevant work on system (1.2), one could refer
to [3–6] and the references cited therein. Recently, Chen [7, 8] and Yang [9] consider the
functional response of the predator to immature prey species. Lin and Hong [10] consider a
biological model for two predators and one prey with periodic delays.

In reality, mature prey was also consumed by some predators. Different predator
usually consumes prey in different stage structure. Some predators only prey on immature
prey, and some predators only prey on mature prey. There is different functional response in
different predator. So, we add a predator species which consumes mature prey to the model
(1.2). By assuming that one predator consumes immature prey according to the Beddington-
DeAngelis functional response while the other predator consumes mature prey according
to Holling II functional response, we get model (1.1). In the resource limited environment,
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could the wild animals be coexistence for long-term under the animals’ law of the jungle? To
keep the biology’s variety of the nature, the permanence of biotic population is a significant
and comprehensive problem in biomathematics. So, it is meaningful to investigate the
permanence of the model (1.1).

The aim of this paper is, by further developing the analysis technique of Cui [3, 11], to
derive a set of sufficient and necessary conditions which ensure the permanence of the system
(1.1). The rest of the paper is arranged as follows. In Section 2, we introduce some lemmas
and then state the main result of this paper. The result is proved in Section 3. In Section 4, we
give an example which shows the feasibility of our result. The last section is devoted to make
some explanation on the biological meaning of our result.

Throughout this paper, for a continuous ω-periodic function f(t),we set

Aω(f) =
1
ω

∫ω

0
f(t)dt. (1.3)

2. Main result

In this section, we introduce a definition and some lemmaswhichwill be useful in subsequent
sections and state the main result.

Definition 2.1. System (1.1) is said to be permanent if there exist positive constants m, M,
and T0, such that each positive solution (x1(t), x2(t), y1(t), y2(t)) of the system (1.1) with any
positive initial value ϕ fulfills m ≤ xi(t) ≤ M, m ≤ yi(t) ≤ M, i = 1, 2 for all t ≥ T0, where T0
may depend on ϕ.

Lemma 2.2 (see [12]). If a(t), b(t), c(t), d(t), and f(t) are all ω-periodic, then system

x′
1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2

1(t),

x′
2(t) = c(t)x1(t) − f(t)x2

2(t)
(2.1)

has a positive ω-periodic solution (x∗
1(t), x

∗
2(t)) which is globally asymptotically stable with respect to

R2
+ = {(x1, x2) : x1 > 0, x2 > 0}.

Lemma 2.3 (see [13]). If b(t) and a(t) are all ω-periodic, and if Aω(b) > 0 and Aω(a) > 0 for all
t ∈ R, then the system

x′ = x
(
b(t) − a(t)x) (2.2)

has a positive ω-periodic solution which is globally asymptotically stable.

Now, we state the main result of this paper.

Theorem 2.4. System (1.1) is permanent if and only if

Aω

(
− g1(t) +

h1(t)x∗
1(t)

k1(t) + n(t)x∗
1(t)

)
> 0, Aω

(
− g2(t) +

h2(t)x∗
2(t)

k2(t) + x∗
2(t)

)
> 0, (2.3)

where (x∗
1(t), x

∗
2(t)) is the unique positive periodic solution of system (2.1) given by Lemma 2.2.
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3. Proof of the main result

We need the following propositions to prove Theorem 2.4. The hypothesis of the lemmas and
theorem of the preceding section is assumed to hold in what follows.

Proposition 3.1. There exist positive constantsMx andMy such that

lim
t→+∞

supxi(t) ≤Mx, lim
t→+∞

supyi(t) ≤My, i = 1, 2 (3.1)

for all solution of system (1.1) with positive initial values.

Proof. Obviously, R4
+ = {(x1, x2, y1, y2) | xi > 0, yi > 0} is a positively invariant set of system

(1.1). Given any solution (x1, x2, y1, y2) of system (1.1), we have

x′
1(t) ≤ a(t)x2(t) − b(t)x1(t) − d(t)x2

1(t),

x′
2(t) ≤ c(t)x1(t) − f(t)x2

2(t).
(3.2)

By Lemma 2.2, the following auxiliary equation:

u′1(t) = a(t)u2(t) − b(t)u1(t) − d(t)u21(t),

u′2(t) = c(t)u1(t) − f(t)u22(t)
(3.3)

has a globally asymptotically stable positive ω-periodic solution (x∗
1(t), x

∗
2(t)). Let (u1(t),

u2(t)) be the solution of (3.3) with (u1(0), u2(0)) = (x1(0), x2(0)). By comparison theorem,
we then have

xi(t) ≤ ui(t), i = 1, 2, (3.4)

for t � 0. By (2.3), we can choose positive ε > 0 small enough such that

Aω

(
− gi(t) +

hi(t)
(
x∗
i (t) + ε

)
ki(t)

)
> 0. (3.5)

Thus, from the global attractivity of (x∗
1(t), x

∗
2(t)), for the above given ε > 0, there exists a

T0 > 0, such that

∣∣ui(t) − x∗
i (t)

∣∣ < ε, t ≥ T0. (3.6)

Inequality (3.4) combined with (3.6) leads to

xi(t) < x∗
i (t) + ε, t > T0. (3.7)
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LetMx = max0≤t≤ω{x∗
i (t) + ε, i = 1, 2}, we have

lim
t→+∞

supxi(t) ≤Mx. (3.8)

In addition, for t ≥ T0, from the third and fourth equations of (1.1) and (3.7) we get

y′
i(t) ≤ yi(t)

[
− gi(t) + hi(t)xi(t)

ki(t)
− qi(t)yi(t)

]

≤ yi(t)
[
− gi(t) +

hi(t)
(
x∗
i (t) + ε

)
ki(t)

− qi(t)yi(t)
]
.

(3.9)

Consider the following auxiliary equation:

v′
i(t) = vi(t)

[
− gi(t) +

hi(t)
(
x∗
i (t) + ε

)
ki(t)

− qi(t)vi(t)
]
. (3.10)

It follows from (3.5) and Lemma 2.3 that (3.10) has a unique positive ω-periodic solution
y∗
i (t) > 0 which is globally asymptotically stable. Similar to the above analysis, there exists a
T1 > T0 such that for the above ε, one has

yi(t) < y∗
i (t) + ε, t ≥ T1. (3.11)

LetMy = max0≤t≤ω{y∗
i (t) + ε, i = 1, 2}, then we have

lim
t→+∞

supyi(t) ≤My, i = 1, 2. (3.12)

This completes the proof of Proposition 3.1.

Proposition 3.2. There exist positive constants δix < Mx, i = 1, 2, such that

lim
t→+∞

inf xi(t) ≥ δix, i = 1, 2. (3.13)

Proof. By Proposition 3.1, there exists T1 > 0 such that

0 < xi(t) ≤Mx, 0 < yi(t) ≤My, t ≥ T1. (3.14)

Hence, from the first and second equations of system (1.1), we have

x′
1(t) ≥ a(t)x2(t) −

(
b(t) +

p1(t)
k1(t)

My

)
x1(t) − d(t)x2

1(t),

x′
2(t) ≥ c(t)x1(t) −

(
f(t) +

p2(t)
k2(t)

My

)
x2
2(t),

(3.15)
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for t ≥ T1. By Lemma 2.2, the following auxiliary equation:

u′1(t) = a(t)u2(t) −
(
b(t) +

p1(t)
k1(t)

My

)
u1(t) − d(t)u21(t),

u′2(t) = c(t)u1(t) −
(
f(t) +

p2(t)
k2(t)

My

)
u22(t)

(3.16)

has a globally asymptotically stable positive ω-periodic solution (
∼
x
∗
1(t),

∼
x
∗
2(t)). Let

(u1(t), u2(t)) be the solution of (3.16) with (u1(T1), u2(T2)) = (x1(T1), x2(T2)), by comparison
theorem, we have

xi(t) ≥ ui(t) (i = 1, 2), t > T1. (3.17)

Thus, from the global attractivity of (
∼
x
∗
1(t),

∼
x
∗
2(t)), there exists a T2 > T1, such that

∣∣ui(t) − ∼
x
∗
i (t)

∣∣ <
∼
x
∗
i (t)
2

(i = 1, 2), t > T2. (3.18)

Inequality (3.18) combined with (3.17) leads to

xi(t) > δix = min
0≤t≤ω

{ ∼
x
∗
i (t)
2

}
(i = 1, 2), t > T2. (3.19)

And so

lim
t→+∞

inf xi(t) ≥ δix, i = 1, 2. (3.20)

The proof of Proposition 3.2 is complete.

Proposition 3.3. Suppose that (2.3) holds, then there exist positive constants δiy, i = 1, 2, such that
any solution (x1(t), x2(t), y1(t), y2(t)) of system (1.1) with positive initial value satisfies

lim
t→+∞

supyi(t) ≥ δiy, i = 1, 2. (3.21)

Proof. ByAssumption (2.3), we can choose constant ε0 > 0 (without loss of generality, wemay
assume that ε0 < (1/2)min0≤t≤ω{x∗

i (t)}, where (x∗
1(t), x

∗
2(t)) is the unique positive periodic

solution of system (2.1)) such that

Aω

(
ϕε0(t)

)
> 0, Aω

(
ψε0(t)

)
> 0, (3.22)



Can-Yun Huang et al. 7

where

ϕε0(t) = −g1(t) +
h1(t)

(
x∗
1(t) − ε0

)
k1(t) +m(t)ε0 + n(t)

(
x∗
1(t) − ε0

) − q1(t)ε0,

ψε0(t) = −g2(t) +
h2(t)

(
x∗
2(t) − ε0

)
k2(t) +

(
x∗
2(t) − ε0

) − q2(t)ε0.
(3.23)

Consider the following equations with a parameter β > 0:

x′
1(t) = a(t)x2(t) −

(
b(t) + 2β

p1(t)
k1(t)

)
x1(t) − d(t)x2

1(t),

x′
2(t) = c(t)x1(t) −

(
f(t) + 2β

p2(t)
k2(t)

)
x2
2(t).

(3.24)

By Lemma 2.2, the system (3.24) has a unique positive ω-periodic solution (x∗
1β(t), x

∗
2β(t)),

which is globally attractive. Let (x1β(t), x2β(t)) be the solution of (3.24) with initial condition
xiβ(0) = x∗

i (0), i = 1, 2. Hence, for above ε0, there exists a sufficiently large T3 > T2 such that

∣∣xiβ(t) − x∗
iβ(t)

∣∣ < ε0
4

(i = 1, 2), t > T3. (3.25)

By the continuity of the solution in the parameter, we have xiβ(t)→x∗
i (t) uniformly in [T3, T3+

ω] as β→ 0. Hence, for ε0 > 0, there exists a β0 = β0(ε0) > 0 such that

∣∣xiβ(t) − x∗
i (t)

∣∣ < ε0
4

(i = 1, 2), t ∈ [T3, T3 +ω], 0 < β < β0. (3.26)

So, we have

∣∣x∗
iβ(t) − x∗

i (t)
∣∣ ≤ ∣∣xiβ(t) − x∗

iβ(t)
∣∣ + ∣∣xiβ(t) − x∗

i (t)
∣∣ < ε0

2
, t ∈ [T3, T3 +ω]. (3.27)

Since x∗
iβ
(t) and x∗

i (t) are all ω-periodic, we have

∣∣x∗
iβ(t) − x∗

i (t)
∣∣ < ε0

2
(i = 1, 2), t ≥ 0, 0 < β < β0. (3.28)

Choosing a constant β1 (0 < β1 < β0, 2β1 < ε0), we have

x∗
iβ1
(t) ≥ x∗

i (t) −
ε0
2

(i = 1, 2), t ≥ 0. (3.29)
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Suppose that Conclusion (3.21) is not true. Then, there exists F ∈ R4
+ such that, for the positive

solution (x1(t), x2(t), y1(t), y2(t)) of (1.1)with an initial condition (x1(0), x2(0), y1(0), y2(0)) =
F,we have

lim
t→+∞

supyi(t) < β1, i = 1, 2. (3.30)

So, there exists T4 > T3 such that

yi(t) < 2β1 < ε0, t ≥ T4. (3.31)

By applying (3.31), from the first and second equations of system (1.1) it follows that for all
t ≥ T4,

x′
1(t) ≥ a(t)x2(t) −

(
b(t) + 2β1

p1(t)
k1(t)

)
x1(t) − d(t)x2

1(t),

x′
2(t) ≥ c(t)x1(t) −

(
f(t) + 2β1

p2(t)
k2(t)

)
x2
2(t).

(3.32)

Let (u1(t), u2(t)) be the solution of (3.24)with β = β1 and ui(T4) = xi(T4), i = 1, 2, then

xi(t) ≥ ui(t) (i = 1, 2), t ≥ T4. (3.33)

By the global asymptotic stability of (x∗
1β1

(t), x∗
2β2

(t)), for the given ε = ε0/2, there exists T5 ≥
T4, such that

∣∣ui(t) − x∗
iβ1
(t)

∣∣ < ε0
2

(i = 1, 2), t ≥ T5. (3.34)

So,

xi(t) ≥ ui(t) > x∗
iβ1
(t) − ε0

2
(i = 1, 2), t ≥ T5, (3.35)

and hence, by using (3.29), we get

xi(t) > x∗
i (t) − ε0 (i = 1, 2), t ≥ T5. (3.36)

Therefore, by (3.31) and (3.36), we have

y′
1(t) ≥ y1(t)

(
− g1(t) +

h1(t)
(
x∗
1(t) − ε0

)
k1(t) +m(t)ε0 + n(t)

(
x∗
1(t) − ε0

) − q1(t)ε0
)

= ϕε0(t)y1(t),

y′
2(t) ≥ y2(t)

(
− g2(t) +

h2(t)
(
x∗
2(t) − ε0

)
k2(t) +

(
x∗
2(t) − ε0

) − q2(t)ε0
)

= ψε0(t)y2(t),

(3.37)
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for t ≥ T5. Integrating (3.37) from T5 to t yields

y1(t) ≥ y1
(
T5
)
exp

{∫ t

T5

ϕε0(t)dt
}
,

y2(t) ≥ y2
(
T5
)
exp

{∫ t

T5

ψε0(t)dt
}
.

(3.38)

Thus, from (3.22)we know that ϕε0(t) > 0, ψε0(t) > 0. It follows that y1(t)→ +∞, y2(t)→ +∞
as t→ +∞. It is a contradiction. This completes the proof.

Proposition 3.4. Suppose that (2.3) holds, then there exist positive constants ηiy, i = 1, 2, such that
any solution (x1(t), x2(t), y1(t), y2(t)) of system (1.1) with positive initial value satisfies

lim
t→+∞

infyi(t) > ηiy, i = 1, 2. (3.39)

Proof. Suppose that (3.39) is not true, then there exists a sequence {ξm} ∈ R4
+, such that

lim
t→+∞

infyi
(
t, ξm

)
<

δiy

(m + 1)2
, m = 1, 2, . . . . (3.40)

On the other hand, by Proposition 3.3, we have

lim
t→+∞

supyi
(
t, ξm

)
> δiy, m = 1, 2, . . . . (3.41)

Hence, there are time sequences {s(m)
q } and {t(m)

q } satisfying

0 < s(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 < · · · < s(m)

q < t
(m)
q < · · · ,

s
(m)
q −→ +∞, t

(m)
q −→ +∞ as q −→ +∞,

yi
(
s
(m)
q , ξm

)
=

δiy

m + 1
, yi

(
t
(m)
q , ξm

)
=

δiy

(m + 1)2
,

δiy

(m + 1)2
< yi

(
t, ξm

)
<

δiy

m + 1
, t ∈ (

s
(m)
q , t

(m)
q

)
.

(3.42)

By Proposition 3.1, for a given positive integerm, there is a T (m)
1 > 0, such that for all t > T (m)

1

xi
(
t, ξm

)
< Mx, yi

(
t, ξm

)
< My, i = 1, 2. (3.43)

Because of s(m)
q → + ∞ as q→ + ∞, there is a positive integer Z(m), such that s(m)

q > T
(m)
1 as

q ≥ Z(m), hence

y′
i

(
t, ξm

) ≥ yi
(
t, ξm

)( − gi(t) − qi(t)My

)
(3.44)



10 Abstract and Applied Analysis

for t ∈ [s(m)
q , t

(m)
q ], q ≥ Z(m). Integrating (3.44) from s

(m)
q to t(m)

q yields

yi
(
t
(m)
q , ξm

) ≥ yi
(
s
(m)
q , ξm

)
exp

{∫ t
(m)
q

s
(m)
q

( − gi(t) − qi(t)My

)
dt

}
, (3.45)

or

∫ t
(m)
q

s
(m)
q

(
gi(t) + qi(t)My

)
dt ≥ ln(m + 1) for q ≥ Z(m). (3.46)

Thus, from the boundedness of gi(t) + qi(t)My,we have

t
(m)
q − s(m)

q −→ +∞ as m −→ +∞, q ≥ Z(m). (3.47)

By (3.22) and (3.47), there are constants P > 0 andN0 > 0, such that

δiy

m + 1
< β1 < ε0, t

(m)
q − s(m)

q > 2P, (3.48)

∫a

0
ϕε0(t)dt > 0,

∫a

0
ψε0(t)dt > 0, (3.49)

form ≥N0, q ≥ Z(m), and a ≥ P. Inequality (3.48) implies that

yi
(
t, ξm

)
< β1 < ε0, t ∈ [

s
(m)
q , t

(m)
q

]
, (3.50)

form ≥N0, q ≥ Z(m). In addition, from (3.43) and (3.50) we have

x′
1

(
t, ξm

) ≥ a(t)x2
(
t, ξm

) −
(
b(t) +

2p1(t)β1
k1(t)

)
x1
(
t, ξm

) − d(t)x2
1

(
t, ξm

)
,

x′
2
(
t, ξm

) ≥ c(t)x1
(
t, ξm

) −
(
f(t) +

2p2(t)β1
k2(t)

)
x2
2
(
t, ξm

)
,

(3.51)

for t ∈ [s(m)
q , t

(m)
q ]. Let (u1(t), u2(t)) be the solution of (3.24) with β = β1 and ui(s

(m)
q ) =

xi(s
(m)
q , ξm), then by applying comparison theorem, we have

xi
(
t, ξm

) ≥ ui(t), t ∈ [
s
(m)
q , t

(m)
q

]
. (3.52)

Further, by using Propositions 3.1 and 3.2, there exists an enough large Z(m)
1 > Z(m) such that

ηix < xi
(
s
(m)
q , ξm

)
< Mx, (3.53)
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for q ≥ Z
(m)
1 . For β = β1, (3.24) has a unique positive ω-periodic solution (x∗

1β1
(t), x∗

2β1
(t))

which is globally asymptotically stable. In addition, by the periodicity of (3.24), the periodic
solution (x∗

1β1
(t), x∗

2β1
(t)) is uniformly asymptotically stable with respect to the compact set

Ω = {x | ηix < x < Mx}. Hence, for given ε0 in Proposition 3.3, there exists T0 > P, which is
independent ofm and q, such that

ui(t) > x∗
iβ1
(t) − ε0

2
, i = 1, 2 as t > T0 + s

(m)
q . (3.54)

Thus, by using (3.29), we get

ui(t) > x∗
i (t) − ε0, i = 1, 2 as t > T0 + s

(m)
q . (3.55)

By (3.47), there exists a positive integer N1 ≥ N0 such that t(m)
q > s

(m)
q + 2T0 > s

(m)
q + 2P for

m ≥N1 and q ≥ Z(m)
1 . So, we have

xi
(
t, ξm

) ≥ x∗
i (t) − ε0, i = 1, 2 as t ∈ [

T0 + s
(m)
q , t

(m)
q

]
, (3.56)

where m ≥ N1 and q ≥ Z
(m)
1 . Hence, by using (3.50) and (3.56), from the third and fourth

equations of system (1.1), we have

y′
1

(
t, ξm

) ≥ ϕε0(t)y1
(
t, ξm

)
, y′

2
(
t, ξm

) ≥ ψε0(t)y2
(
t, ξm

)
, t ∈ [

T0 + s
(m)
q , t

(m)
q

]
. (3.57)

Integrating the above inequalities from T0 + s
(m)
q to t(m)

q , we have

y1
(
t
(m)
q , ξm

) ≥ y1
(
T0 + s

(m)
q , ξm

)
exp

{∫ t
(m)
q

T0+s
(m)
q

ϕε0(t)dt

}
,

y2
(
t
(m)
q , ξm

) ≥ y2
(
T0 + s

(m)
q , ξm

)
exp

{∫ t
(m)
q

T0+s
(m)
q

ψε0(t)dt

}
,

(3.58)

that is

δ1y

(m + 1)2
≥ δ1y

(m + 1)2
exp

{∫ t
(m)
q

T0+s
(m)
q

ϕε0(t)dt

}
>

δ1y

(m + 1)2
,

δ2y

(m + 1)2
≥ δ2y

(m + 1)2
exp

{∫ t
(m)
q

T0+s
(m)
q

ψε0(t)dt

}
>

δ2y

(m + 1)2
.

(3.59)

These are contradictions. This completes the proof of Proposition 3.4.
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Proof of Theorem 2.4. The sufficiency of Theorem 2.4 now follows from Propositions 3.1–3.4.
We thus only need to prove the necessity of Theorem 2.4. Suppose that

Aω

(
− g1(t) +

h1(t)x∗
1(t)

k1(t) + n(t)x∗
1(t)

)
≤ 0, Aω

(
− g2(t) +

h2(t)x∗
2(t)

k2(t) + x∗
2(t)

)
≤ 0. (3.60)

We will show that

lim
t→+∞

yi(t) = 0, i = 1, 2. (3.61)

In fact, by (3.60), we know that, for any given positive constant 0 < ε < 1, there exist ε1 > 0,
(0 < ε1 < ε), ε0 > 0 such that

Aω

(
− g1(t) +

h1(t)
(
x∗
1(t) + ε1

)
k1(t) + n(t)

(
x∗
1(t) + ε1

) − q1(t)ε
)

≤ −ε
2
Aω

(
q1(t)

)
< −ε0,

Aω

(
− g2(t) +

h2(t)
(
x∗
2(t) + ε1

)
k2(t) +

(
x∗
2(t) + ε1

) − q2(t)ε
)

≤ −ε
2
Aω

(
q2(t)

)
< −ε0.

(3.62)

Since

x′
1(t) ≤ a(t)x2(t) − b(t)x1(t) − d(t)x2

1(t),

x′
2(t) ≤ c(t)x1(t) − f(t)x2

2(t).
(3.63)

We know that, for above ε1 there exists a T (1) > 0 such that

xi(t) < x∗
i (t) + ε, t ≥ T (1). (3.64)

It follows from (3.62) and (3.64) that for t ≥ T (1),

Aω

(
− g1(t) + h1(t)x1(t)

k1(t) + n(t)x1(t)
− q1(t)ε

)
< −ε0,

Aω

(
− g2(t) + h2(t)x2(t)

k2(t) + x2(t)
− q2(t)ε

)
< −ε0.

(3.65)

First, we show that there exists a T (2) > T (1) such that yi(T (2)) < ε, i = 1, 2. Otherwise,
by (3.65), we have

ε ≤ y1(t)

≤ y1
(
T (1)) exp

{∫ t

T (1)

(
− g1(s) + h1(s)x1(s)

k1(s) + n(s)x1(s)
− q1(s)ε

)
ds

}

≤ y1
(
T (1)) exp { − ε0(t − T (1))} −→ 0

(3.66)
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as t→ +∞. Similarly, we have

ε ≤ y2(t) ≤ y2
(
T (1)) exp { − ε0(t − T (1))} −→ 0, t −→ +∞, (3.67)

which are contradictions.
Second, we now show that

yi(t) ≤ ε exp
{
M(ε)ω

}
, i = 1, 2, for t ≥ T (2), (3.68)

where

M(ε) = max
0≤t≤ω

{
g1(t) +

h1(t)
(
x∗
1(t) + ε

)
k1(t) + n(t)

(
x∗
1(t) + ε

) + q1(t)ε, g2(t) +
h2(t)

(
x∗
2(t) + ε

)
k2(t) +

(
x∗
2(t) + ε

) + q2(t)ε

}

(3.69)

is a bounded constant for 0 < ε < 1. Otherwise, there exists a T (3) > T (2) such that

yi
(
T (3)) > ε exp {

M(ε)ω
}
, i = 1, 2. (3.70)

By the continuity of yi(t), there must exist T (4) ∈ (T (2), T (3)) such that yi(T (4)) = ε and yi(t) > ε
for t ∈ (T (4), T (3)]. Let P1 be the nonnegative integer such that T (3) ∈ (T (4)+P1ω, T (4)+(P1+1)ω].
By the first inequality of (3.65), we have

ε exp
{
M(ε)ω

}
< y1

(
T (3))

< y1
(
T (4)) exp

{∫T (3)

T (4)

(
− g1(t) + h1(t)x1(t)

k1(t) + n(t)x1(t)
− q1(t)ε

)
dt

}

= ε exp

{∫T (4)+P1ω

T (4)
+
∫T (3)

T (4)+P1ω

}(
− g1(t) + h1(t)x1(t)

k1(t) + n(t)x1(t)
− q1(t)ε

)
dt

< ε exp

{∫T (3)

T (4)+P1ω

(
g1(t) +

h1(t)x1(t)
k1(t) + n(t)x1(t)

+ q1(t)ε
)
dt

}

< ε exp

{∫T (3)

T (4)+P1ω

(
g1(t) +

h1(t)
(
x∗
1(t) + ε

)
k1(t) + n(t)

(
x∗
1(t) + ε

) + q1(t)ε

)
dt

}

≤ ε exp {
M(ε)ω

}
.

(3.71)

Similarly, by the second inequality of (3.65), we have

ε exp
{
M(ε)ω

}
< y2

(
T (3)) ≤ ε exp {

M(ε)ω
}
, (3.72)
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which are contradictions. These imply that (3.68) holds. By the arbitrariness of ε, it
immediately follows that yi(t)→ 0 as t→ +∞. This completes the proof of Theorem 2.4.

4. Example

Consider the following predator-prey system:

x′
1(t) = 5x2(t) − 2x1(t) − x2

1(t) −
(
2 + sin(t)/200

)
x1(t)

5 + y1(t) + x1(t)
y1(t),

x′
2(t) = 3x1(t) − x2

2(t) −
(
2 + sin(t)/100

)
x2(t)

4 + x2(t)
,

y′
1(t) = y1(t)

[
− 1
3
− sin(t)

100
+

(
2 + sin(t)/200

)
x1(t)

5 + y1(t) + x1(t)
− (

4 + cos(t)
)
y1(t)

]
,

y′
2(t) = y2(t)

[
− 1
2
− sin(t)

100
+

(
2 + sin(t)/100

)
x2(t)

4 + x2(t)
− (

3 + cos(t)
)
y2(t)

]
.

(4.1)

In this case, corresponding to system (1.1), one has a(t) = 5, b(t) = 2, c(t) = 3, d(t) = 1,
f(t) = 1, g1(t) = 1/3 + sin(t)/100, g2(t) = 1/2 + sin(t)/100, h1(t) = p1(t) = 2 + sin(t)/200,
h2(t) = p2(t) = 2 + sin(t)/100, k1(t) = 5, k2(t) = 4, m(t) = n(t) = 1, q1(t) = 4 + cos(t),
q2(t) = 3 + cos(t).

One could easily see that

x′
1(t) = 5x2(t) − 2x1(t) − x2

1(t),

x′
2(t) = 3x1(t) − x2

2(t)
(4.2)

has a unique positive periodic solution (x∗
1(t), x

∗
2(t)) = (3, 3), that is, in this case, the positive

periodic solution is the positive equilibrium. By simple computation, one has

Aω

(
− g1(t) +

h1(t)x∗
1(t)

k1(t) + n(t)x∗
1(t)

)
=

5
12

> 0,

Aω

(
− g2(t) +

h2(t)x∗
2(t)

k2(t) + x∗
2(t)

)
=

5
14

> 0.

(4.3)

Hence, corresponding to Theorem 2.4, we know that system (4.1) is permanent.

5. Conclusion

In this paper, a model which describes the nonautonomous periodic predator-prey system
with Beddington-DeAngelis and Holling II functional response and stage structure for prey
is proposed. Under Assumption (2.3), sufficient and necessary conditions which guarantee
the predator and the prey species to be permanent are obtained.
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The results of this paper suggest the following biological implication. Note that
(x∗

1(t), x
∗
2(t)) is the globally asymptotically stable periodic solution of system (1.1) without

predation, which, as showed by Lemma 2.2, always exists. Hence, condition (2.3) implies that
if the death rate of the two predator species is all small enough and the growth by foraging
minus the death for the second predator is sufficiently high, the system is permanent.
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