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1. Introduction, definitions, and notations

Let p be an odd prime. Zp,Qp, and Cp will always denote, respectively, the ring of p-adic
integers, the field of p-adic numbers, and the completion of the algebraic closure of Qp. Let
vp : Cp→Q ∪ {∞} (Q is the field of rational numbers) denote the p-adic valuation of Cp

normalized so that vp(p) = 1. The absolute value on Cp will be denoted as |·|p, and |x|p = p−vp(x)

for x ∈ Cp. We let Z
×
p = {x ∈ Zp | 1/x ∈ Zp}. A p-adic integer in Z

×
p is sometimes called a p-adic

unit. For each integer N ≥ 0, CpN will denote the multiplicative group of the primitive pNth
roots of unity in C

×
p = Cp \ {0}. Set

Tp =
{
ω ∈ Cp | ωpN = 1 for some N ≥ 0

}
=

⋃

N≥0
CpN . (1.1)

The dual of Zp, in the sense of p-adic Pontrjagin duality, is Tp = Cp∞ , the direct limit (under
inclusion) of cyclic groups CpN of order pN(N ≥ 0), with the discrete topology.
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When one talks of q-extension, q is variously considered as an indeterminate, a complex
number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ Cp, thenwe normally assume |1−q|p < p−1/(p−1),
so that qx = exp(x log q) for |x|p ≤ 1. If q ∈ C, then we assume that |q| < 1.

Let

Zp = lim
←
N

(
Z

pNZ

)
, Z

×
p =

⋃

0<a<p

a + pZp,

a + pNZp =
{
x ∈ Zp | x ≡ a

(
mod pN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < pN .
We use the following notation:

[x]q =
1 − qx
1 − q . (1.3)

Hence

lim
q→1

[x]q = x (1.4)

for any x with |x|p ≤ 1 in the present p-adic case. The distribution μq(a + pNZp) is given as

μq

(
a + pNZp

)
=

qa
[
pN

]
q

(1.5)

(cf. [1–9]). For the ordinary p-adic distribution μ0 defined by

μ0
(
a + pNZp

)
=

1
pN

, (1.6)

we see

lim
q→1

μq = μ0. (1.7)

We say that f is a uniformly differentiable function at a point a ∈ Zp, we write f ∈ UD(Zp,Cp)
if the difference quotient

Ff(x, y) =
f(x) − f(y)

x − y (1.8)

has a limit f ′(a) as (x, y)→(a, a). Also we use the following notation:

[x]−q =
1 − (−q)x
1 + q

, (1.9)

(cf.[1–5]).
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In [1–3], Kim gave a detailed proof of fermionic p-adic q-measures on Zp. He treated
some interesting formulae-related q-extension of Euler numbers and polynomials; and he
defined fermionic p-adic q-measures on Zp as follows:

μ−q
(
a + pNZp

)
=

(−q)a
[
pN

]
−q
. (1.10)

By using the fermionic p-adic q-measures, he defined the fermionic p-adic q-integral on Zp as
follows:

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

pN−1∑

x=0

f(x)(−q)x (1.11)

for f ∈ UD(Zp,Cp) (cf. [1–3]). Observe that

I−1(f) = lim
q→1

I−q(f) =
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x. (1.12)

From (1.12), we obtain

I−1
(
f1
)
+ I−1(f) = 2f(0), (1.13)

where f1(x) = f(x + 1). By substituting f(x) = etx into (1.13), classical Euler numbers are
defined by means of the following generating function:

∫

Zp

etxdμ−1(x) =
2

et + 1
=
∞∑

n=0

En
tn

n!
. (1.14)

These numbers are interpolated by the Euler zeta function which is defined as follows:

ζE(s) =
∞∑

n=1

(−1)n
ns

, s ∈ C, (1.15)

(cf. [1–9]). From (1.12), we also obtain

qI−q
(
f1
)
+ I−q(f) = [2]qf(0), (1.16)

where f1(x) = f(x + 1). By substituting f(x) = etx into (1.13), q-Euler numbers are defined by
means of the following generating function:

∫

Zp

etxdμ−q(x) =
[2]q

qet + 1
=
∞∑

n=0

En,q
tn

n!
. (1.17)
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These numbers are interpolated by the Euler q-zeta function which is defined as follows:

ζq,E(s) = [2]q
∞∑

n=1

(−1)nqn
ns

, s ∈ C, (1.18)

(cf. [4]).
In [6], Ozden and Simsek defined generating function of q-Euler numbers by

2
q + 1

∫

Zp

etxdμ−q(x) =
2

qet + 1
, (1.19)

which are different from (1.17). But we observe that all these generating functions were
obtained by the same fermionic p-adic q-measures on Zp and the fermionic p-adic q-integrals
on Zp.

In this paper, we define a multiple twisted Carlitz’s type q-zeta functions, which
interpolated multiple twisted Carlitz’s type q-Euler polynomials at negative integers. This
result gave us a partial answer of the problem proposed by Jang et al. [10], which is given by:
“Are there analytic multiple twisted Carlitz’s type q-zeta functions which interpolate multiple twisted
Carlitz’s type q-Euler (Bernoulli) polynomials?”

2. Preliminaries

In [10], Jang and Ryoo defined q-extension of Euler numbers and polynomials of higher order
and studied multivariate q-Euler zeta functions. They also derived sums of products of q-Euler
numbers and polynomials by using ferminonic p-adic q-integral.

In [5, 7], Ozden et al. defined multivariate Barnes-type Hurwitz q-Euler zeta functions
and l-functions. They also gave relation between multivariate Barnes-type Hurwitz q-Euler
zeta functions and multivariate q-Euler l-functions.

In this section, we consider twisted q-extension of Euler numbers and polynomials of
higher order and study multivariate twisted Barnes-type Hurwitz q-Euler zeta functions and
l-functions.

Let UD(Zh
p,Cp) denote the space of all uniformly (or strictly) differentiable Cp-valued

functions on Z
h
p = Zp × · · · × Zp

︸ ︷︷ ︸
h-times

. For f ∈ UD(Zh
p,Cp), the p-adic q-integral on Z

h
p is defined by

I
(h)
−q (f) =

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

f
(
x1, . . . , xh

)
dμ−q

(
x1
) · · ·dμ−q

(
xh

)

= lim
N→∞

1
[
pN

]h
−q

pN−1∑

x1=0

· · ·
pN−1∑

xh=0

f
(
x1, . . . , xh

)
(−q)x1+···+xh

(2.1)

(cf. [3]). If q→1, then

I
(h)
−1 (f) = lim

q→1
I
(h)
−q (f) = lim

N→∞

pN−1∑

x1=0

· · ·
pN−1∑

xh=0

f
(
x1, . . . , xh

)
(−1)x1+···+xh . (2.2)
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For a fixed positive integer d with (d, p) = 1, we set

Xp = lim←−
N

(
Z

dpNZ

)
. (2.3)

For f ∈ UD(Zh
p,Cp),

I
(h)
−1 (f) =

∫

Xp

· · ·
∫

Xp︸ ︷︷ ︸
h-times

f
(
x1, . . . , xh

)
dμ−1

(
x1
) · · ·dμ−1

(
xh

)
, (2.4)

(cf. [2]).
We set f(x1, . . . , xh) = ωx1+···+xhe(x+x1+···+xh)t in (2.2) and (2.4). Then we have

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

ωx1+···+xhe(x+x1+···+xh)tdμ−1
(
x1
) · · ·dμ−1

(
xh

)
=
(

2
ωet + 1

)
· · ·

(
2

ωet + 1

)

︸ ︷︷ ︸
h-times

=
∞∑

n=0

E
(h)
n,ω(x)

tn

n!
,

(2.5)

where E(h)
n,ω(x) are the twisted Euler polynomials of order h. From (2.5), we note that

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

ωx1+···+xh
(
x + x1 + · · · + xh

)n
dμ−1

(
x1
) · · ·dμ−1

(
xh

)
= E

(h)
n,ω(x). (2.6)

We give an application of the multivariate q-deformed p-adic integral on Z
h
p in the

fermionic sense related to [3]. Let

∫

Z
h
p

=
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

. (2.7)

By substituting

f
(
x1, . . . , xh

)
= ωx1+···+xhe(x+x1+···+xh)t (2.8)

into (2.1), we define twisted q-extension of Euler numbers of higher order by means of the
following generating function:

∫

Z
h
p

ωx1+···+xhe(x1+···+xh)tdμ−q
(
x1
) · · ·dμ−q

(
xh

)
=
( [2]q
ωqet + 1

)
· · ·

( [2]q
ωqet + 1

)

︸ ︷︷ ︸
h-times

=
∞∑

n=0

E
(h)
n,q,ω

tn

n!
.

(2.9)
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Then we have
∫

Z
h
p

ωx1+···+xh
(
x1 + · · · + xh

)n
dμ−q

(
x1
) · · ·dμ−q

(
xh

)
= E

(h)
n,q,ω. (2.10)

From (2.9), we obtain

∫

Z
h
p

ωx1+···+xhe(x+x1+···+xh)tdμ−q
(
x1
) · · ·dμ−q

(
xh

)
=

[2]hqe
xt

(
ωqet + 1

) · · · (ωqet + 1
)

︸ ︷︷ ︸
h-times

=
∞∑

n=0

E
(h)
n,q,ω(x)

tn

n!
,

(2.11)

where E(h)
n,q,ω(x) is called twisted q-extension of Euler polynomials of higher order (cf. [11]). We

note that if ω = 1, then E
(h)
n,q,ω(x) = E

(h)
n,q(x) and E

(h)
n,q,ω = E

(h)
n,q (cf. [6]). We also note that

E
(h)
n,q,ω(x) =

n∑

k=0

(
n
k

)

E
(h)
k,q,ω

xn−k. (2.12)

The twisted q-extension of Euler polynomials of higher order, E(h)
n,q,ω(x), is defined by

means of the following generating function:

G
(h)
q,ω(x, t) =

[2]q
ωqet + 1

· · ·
[2]q

ωqet + 1
︸ ︷︷ ︸

h-times

ext

= [2]hqe
tx
∞∑

l1=0

(−ω)l1ql1el1t · · ·
∞∑

lh=0

(−ω)lhqlhelht

= [2]hq
∞∑

l1,...,lh=0

(−ω)l1+···+lhql1+···+lhe(l1+···+lh+x)t

=
∞∑

n=0

E
(h)
n,q,ω(x)

tn

n!
,

(2.13)

where |t + log(ωq)| < π. From these generating functions of twisted q-extension of Euler
polynomials of higher order, we construct twisted multiple q-Euler zeta functions as follows.

For s ∈ C and x ∈ R with 0 < x ≤ 1, we define

ζ
(h)
q,ω,E(s, x) = [2]hq

∞∑

l1,...,lh=0

(−ω)l1+···+lhql1+···+lh
(
l1 + · · · + lh + x

)s . (2.14)

By the mth differentiation on both sides of (2.13) at t = 0, we obtain the following

E
(h)
m,q,ω(x) =

(
d
dt

)m

G
(h)
q,ω(x, t)

∣∣∣∣
t=0

= [2]hq
∞∑

l1,...,lh=0

(−ω)l1+···+lhql1+···+lh(x + l1 + · · · + lh)
m (2.15)

for m = 0, 1, . . . .
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From (2.14) and (2.15), we arrive at the following

ζ
(h)
q,ω,E(−m,x) = E

(h)
m,q,ω(x), m = 0, 1, . . . . (2.16)

We set
∫

Xh
p

=
∫

Xp

· · ·
∫

Xp︸ ︷︷ ︸
h-times

. (2.17)

Let χ be Dirichlet’s character with odd conductor d. We define twisted q-extension of
generalized Euler polynomials of higher order by means of the following generating function
(cf. [11]):

∫

Xh
p

χ
(
x1 + · · · + xh

)
ωx1+···+xhe(x+x1+···+xh)tdμ−q

(
x1
) · · ·dμ−q

(
xh

)
=
∞∑

n=0

E
(h)
n,q,ω,χ(x)

tn

n!
. (2.18)

Note that
∞∑

n=0

E
(h)
n,q,ω,χ(x)

tn

n!

= ext
∫

Xp

· · ·
∫

Xp︸ ︷︷ ︸
h-times

χ
(
x1 + · · · + xh

)
ωx1+···+xhe(x1+···+xh)tdμ−q

(
x1
) · · ·dμ−q

(
xh

)

= ext
1

[d]h−q
lim
N→∞

1
[
pN

]
(−q)d

d−1∑

a1=0

pN−1∑

x1=0

· · ·
d−1∑

ah=0

pN−1∑

xh=0

χ
(
a1 + dx1 + · · · + ah + dxh

)

×ωa1+dx1+···+ah+dxhe(a1+dx1+···+ah+dxh)t(−q)a1+dx1+···+ah+dxh

= ext
1

[d]h−q

d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
ωa1+···+ah(−q)a1+···+ahe(a1+···+ah)t

× lim
N→∞

1 + qd

1 + qdp
N

1 +ωdpNqdp
N
edp

N

1 +ωdqdedt
· · · lim

N→∞
1 + qd

1 + qdp
N

1 +ωdpNqdp
N
edp

N

1 +ωdqdedt
︸ ︷︷ ︸

h−times

= ext
1

[d]h−q

d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
ωa1+···+ah(−q)a1+···+ahe(a1+···+ah)t

× 1 + qd

1 +ωdqdedt
· · · 1 + qd

1 +ωdqdedt
︸ ︷︷ ︸

h-times

(2.19)

since

lim
N→∞

qp
N

= 1 for |1 − q|p < 1. (2.20)
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This allows us to rewrite (2.18) as

∞∑

n=0

E
(h)
n,q,ω,χ(x)

tn

n!

= ext
1

[d]h−q

d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
ωa1+···+ah(−q)a1+···+ahe(a1+···+ah)t

× 1 + qd

1 +ωdqdedt
· · · 1 + qd

1 +ωdqdedt
︸ ︷︷ ︸

h-times

= [2]hqe
xt

d−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
ωa1+···+ah(−q)a1+···+ahe(a1+···+ah)t

×
∞∑

x1=0

( −ωdqdedt
)x1 · · ·

∞∑

xh=0

( −ωdqdedt
)xh

︸ ︷︷ ︸
h-times

= [2]hqe
xt

∞∑

x1,...,xh=0

d−1∑

a1,...,ah=0

χ
(
a1 + dx1 + · · · + ah + dxh

)

×ωa1+dx1+···+ah+dxh(−q)a1+dx1+···+ah+dxhe(a1+dx1+···+ah+dxh)t

= [2]hq
∞∑

l1,...,lh=0

(−1)l1+···+lhχ(l1 + · · · + lh
)
ωl1+···+lhql1+···+lhe(x+l1+···+lh)t.

(2.21)

By applying themth derivative operator (d/dt)m|t=0 in the above equation, we have

E
(h)
m,q,ω,χ(x)= [2]hq

∞∑

l1,...,lh=0

χ
(
l1 + · · · + lh

) h∏

i=1

(−1)liωliqli
(
x + l1 + · · · + lh

)m (2.22)

for m = 0, 1, . . . .
From these generating functions of twisted q-extension of generalized Euler polynomials

of higher order, we construct twisted multiple q-Euler l-functions as follows. For s ∈ C and
x ∈ R with 0 < x ≤ 1,we define

l
(h)
q,ω,E(s, x, χ) = [2]hq

∞∑

l1,...,lh=0

χ
(
l1 + · · · + lh

)∏h
i=1(−1)liωliqli

(
l1 + · · · + lh + x

)s . (2.23)

From (2.22) and (2.23), we arrive at the following

l
(h)
q,ω,E(−m,x, χ) = E

(h)
m,q,ω,χ(x), m = 0, 1, . . . . (2.24)
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Let s ∈ C and ai, F ∈ Z with F is an odd integer and 0 < ai < F, where i = 1, . . . , h. Then
twisted partial multiple q-Euler ζ-functions are as follows:

H
(h)
q,ω,E

(
s, a1, . . . , ah, x | F

)
= [2]hq

∞∑

l1,...,lh=0
li≡ai(modF), i=1,...,h

(−1)l1+···+lhωl1+···+lhql1+···+lh
(
l1 + · · · + lh + x

)s . (2.25)

For i = 1, . . . , h, substituting li = ai + niF with F is odd into (2.25), we have

H
(h)
q,ω,E

(
s, a1, . . . , ah, x | F

)

= [2]hq
∞∑

n1,...,nh=0

(−1)a1+n1F+···+ah+nhFωa1+n1F+···+ah+nhFqa1+n1F+···+ah+nhF

(
a1 + n1F + · · · + ah + nhF + x

)s

=
[2]hq

[2]hqF

(−ωq)a1+···+ah

Fs
[2]hqF

∞∑

n1,...,nh=0

(−1)n1+···+nh
(
ωF

)n1+···+nh
(
qF

)n1+···+nh

(
n1 + · · · + nh +

(
a1 + · · · + ah + x

)
/F

)s

=
[2]hq

[2]hqF

(−ωq)a1+···+ah

Fs
ζ
(h)
qF,ωF,E

(
s,

a1 + · · · + ah + x

F

)
.

(2.26)

Then we obtain

H
(h)
q,ω,E

(
s, a1, . . . , ah, x | F

)
=

[2]hq

[2]hqF

(−ωq)a1+···+ah

Fs
ζ
(h)
qF,ωF,E

(
s,

a1 + · · · + ah + x

F

)
. (2.27)

By using (2.12) and (2.27) and by substituting s = −m, m = 0, 1, . . . ,we get

H
(h)
q,ω,E

( −m,a1, . . . , ah, x | F
)
=

[2]hq

[2]hqF
(−ωq)a1+···+ah

(
a1 + · · · + ah + x

)m

×
m∑

k=0

(
m
k

)(
F

a1 + · · · + ah + x

)k

E
(h)
k,qF ,ωF .

(2.28)

Therefore, we modify twisted partial multiple q-Euler zeta functions as follows:

H
(h)
q,ω,E

(
s, a1, . . . , ah, x | F

)
=

[2]hq

[2]hqF
(−ωq)a1+···+ah

(
a1 + · · · + ah + x

)−s

×
∞∑

k=0

(
−s
k

)(
F

a1 + · · · + ah + x

)k

E
(h)
k,qF,ωF .

(2.29)

Let χ be a Dirichlet character with conductors d and d | F. From (2.23) and (2.27), we have

l
(h)
q,ω,E(s, x, χ) =

[2]hq

[2]hqF
F−s

F−1∑

a1,...,ah=0

(−ωq)a1+···+ah

× χ(a1 + · · · + ah

)
ζ
(h)
qF,ωF,E

(
s,

a1 + · · · + ah + x

F

)

=
F−1∑

a1,...,ah=0

χ
(
a1 + · · · + ah

)
H

(h)
q,ω,E

(
s, x, a1, . . . , ah, x | F

)
.

(2.30)
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3. The multiple twisted Carlitz’s type q-Euler polynomials and q-zeta functions

Let us consider the multiple twisted Carlitz’s type q-Euler polynomials as follows:

E
(z,h)
n,q,ω(x) =

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

[
x1 + · · · + xh + x

]n
qω

x1+···+xhqx1(z−1)+···+xh(z−h)dμq

(
x1
) · · ·dμq

(
xh

)

(3.1)

(cf. [1, 3]). These can be written as

E
(z,h)
n,q,ω(x) =

[2]hq
(1 − q)n

n∑

i=0

(
n
i

)

qix(−1)i 1
1 +ωqz+i

· · · 1
1 +ωqz+i−h+1

. (3.2)

We may now mention the following formulae which are easy to prove:

ωqzE
(z,h)
n,q,ω(x + 1) + E

(z,h)
n,q,ω(x) = [2]qE

(z−1,h−1)
n,q,ω (x). (3.3)

From (3.2), we can derive generating function for the multiple twisted Carlitz’s type q-Euler
polynomials as follows:

∞∑

n=0

E
(z,h)
n,q,ω(x)

tn

n!

=
∞∑

n=0

[2]hq
(1 − q)n

n∑

i=0

(
n
i

)

qix(−1)i 1
1 +ωqz+i

· · · 1
1 +ωqz+i−h+1

tn

n!

=
∞∑

n=0

[2]hq
(1 − q)n

n∑

i=0

(
n
i

)

qix(−1)i
∞∑

l1=0

( −ωqz+i
)l1 · · ·

∞∑

lh=0

( −ωqz+i−h+1
)lh tn

n!

=
∞∑

n=0

[2]hq
(1 − q)n

∞∑

l1,...,lh=0

(−1)l1+···+lh
n∑

i=0

(
n
i

)

q(x+l1+···+lh)i(−1)i

×ωl1+···+lhql1z+l2(z−1)+···+lh(z−h+1)
tn

n!

= [2]hq
∞∑

l1,...,lh=0

(−1)l1+···+lhωl1+···+lhql1z+l2(z−1)+···+lh(z−h+1)

×
∞∑

n=0

[
x + l1 + · · · + lh

]n
q

tn

n!

= [2]hq
∞∑

l1,...,lh=0

(−ω)l1+···+lhql1z+l2(z−1)+···+lh(z−h+1)e[x+l1+···+lh]qt.

(3.4)

Also, an obvious generating function for the multiple twisted Carlitz’s type q-Euler
polynomials is obtained, from (3.2), by

[2]hqe
t/(1−q)

n∑

j=0

(−1)jqjx
(

1
1 − q

)j 1
1 +ωqz+j

· · · 1
1 +ωqz+j−h+1

= E
(z,h)
n,q,ω(x). (3.5)
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From now on, we assume that q ∈ C with |q| < 1. From (3.2) and (3.4), we note that

G
(z,h)
q,ω (x, t)

= [2]hq
∞∑

l1,...,lh=0

(−ω)l1+···+lhql1z+l2(z−1)+···+lh(z−h+1)e[x+l1+···+lh]qt

=
∞∑

n=0

E
(z,h)
n,q,ω(x)

tn

n!
,

(3.6)

E
(z,h)
n,q,ω(x)

=
[2]hq

(1 − q)n
n∑

i=0

(
n
i

)

qix(−1)i 1
1 +ωqz+i

· · · 1
1 +ωqz+i−h+1

= [2]hq
∞∑

l1,...,lh=0

(−ω)l1+···+lhql1z+l2(z−1)+···+lh(z−h+1)
[
x + l1 + · · · + lh

]n
q .

(3.7)

Thus we can define the multiple twisted Carlitz’s type q-zeta functions as follows:

ζ
(z,h)
q,ω (s, x) = [2]hq

∞∑

l1,...,lh=0

(−ω)l1+···+lhql1z+l2(z−1)+···+lh(z−h+1)
[
x + l1 + · · · + lh

]s
q

. (3.8)

In [12, Proposition 3], Yamasaki showed that the series ζ(z,h)q,ω (s, x) converges absolutely
for Re (z) > h− 1, and it can be analytically continued to the whole complex plane C.Note that
if h = 1, then

ζ
(z,h)
q,ω (s, x) −→ ζ

(z)
q,ω(s, x) = [2]q

∞∑

l=0

(−ω)lqlz

[x + l]sq
. (3.9)

In [13], Wakayama and Yamasaki studied q-analogue of the Hurwitz zeta function

ζ(s, x) =
∞∑

n=0

1
(n + x)s

(3.10)

defined by the q-series with two complex variable s, z ∈ C:

ζ
(z)
q (s, x) =

∞∑

n=0

q(n+x)z

[x + n]sq
, Re(z) > 0, (3.11)

and special values at nonpositive integers of the q-analogue of the Hurwitz zeta function.
Therefore, by the mth differentiation on both sides of (3.6) at t = 0, we obtain the

following:

E
(z,h)
m,q,ω(x) =

(
d
dt

)m

G
(z,h)
q,ω (x, t)

∣∣∣∣
t=0

= [2]hq
∞∑

l1,...,lh=0

(−ω)l1+···+lhql1z+l2(z−1)+···+lh(z−h+1)
[
x + l1 + · · · + lh

]m
q

(3.12)

for m = 0, 1, . . . .
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From (3.7), (3.8), and (3.12), we have (3.13) which shows that the multiple twisted
Carlitz’s type q-zeta functions interpolate the multiple twisted Carlitz’s type q-Euler numbers
and polynomials. Form = 0, 1, . . . , we have

ζ
(z,h)
q,ω (−m,x) = E

(z,h)
m,q,ω(x), (3.13)

where x ∈ R and 0 < x ≤ 1.
Thus, we derive the analytic multiple twisted Carlitz’s type q-zeta functions which

interpolate multiple twisted Carlitz’s type q-Euler polynomials. This gives a part of the answer
to the question proposed in [10].

4. Remarks

For nonnegative integers m and n, we define the q-binomial coefficient
[
m
n

]
q by

[
m
n

]

q

=
(q; q)m

(q; q)n(q; q)m−n
, (4.1)

where (a; q)m =
∏m−1

k=0 (1 − aqk) for m ≥ 1 and (a; q)0 = 1. For h ∈ N, it holds that

∑

l1,...,lh≥0
l1+···+lh=l

q−(l1+2l2+···+hlh) = q−lh
[
l + h − 1
h − 1

]

q

(4.2)

(cf. [12, Lamma 2.3]). From (3.8), it is easy to see that

ζ
(z,h)
q,ω (s, x)= [2]hq

∞∑

l=0

∑

l1,...,lh≥0
l1+···+lh=l

(−ω)l1+···+lhq(z+1)(l1+···+lh)−(l1+2l2+···+hlh)
[
x + l1 + · · · + lh

]s
q

= [2]hq
∞∑

l=0

(−ω)lq(z+1)l

[l + x]sq

∑

l1,...,lh≥0
l1+···+lh=l

q−(l1+2l2+···+hlh)

= [2]hq
∞∑

l=0

[
l + h − 1
h − 1

]

q

(−ω)lq(z−h+1)l

[l + x]sq
.

(4.3)

We set [m]q! = [m]q[m − 1]q · · · [1]q form ∈ N. The following identity has been studied in [12]:

[
l + h − 1
h − 1

]

q

=
1

[h − 1]q!
h−1∏

j=1

(
[l + x]q − ql+j[x − j]q

)
=

h−1∑

k=0

ql(h−1−k)Pk
q,h(x)[l + x]kq , (4.4)

where Pk
q,h
(x), 0 ≤ k ≤ h − 1, is a function of x defined by

Pk
q,h(x) =

(−1)h−1−k
[h − 1]q!

∑

1≤m1<···<mh−1−k≤h−1
qm1+···+mh−1−k

[
x −m1

]
q · · ·

[
x −mh−1−k

]
q (4.5)
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for 0 ≤ k ≤ h − 2 and Ph−1
q,h

(x) = 1/[h − 1]q!. By using (3.9), (4.3), and (4.5), we have

ζ
(z,h)
q,ω (s, x)= [2]hq

h−1∑

k=0

Pk
q,h(x)

∞∑

l=0

(−ω)lq(z−k)l

[l + x]s−kq

= [2]h−1q

h−1∑

k=0

Pk
q,h(x)ζ

(z−k)
q,ω (s − k, x), (4.6)

and so

ζ
(z,h)
q,ω (−m,x) = [2]h−1q

h−1∑

k=0

Pk
q,h
(x)ζ(z−k)q,ω (−m − k, x). (4.7)

The values of ζ(z,h)q,ω (−m,x) at h = 2, 3 are given explicitly as follows:

ζ
(z,2)
q,ω (−m,x) = (1 + q)

(
ζ
(z−1)
q,ω (−m − 1, x) − q[x − 1]qζ(z)q,ω(−m,x)

)
,

ζ
(z,3)
q,ω (−m,x) = (1 + q)

{
ζ
(z−2)
q,ω (−m − 2, x)
− (q[x − 1]q + q2[x − 2]q

)
ζ
(z−1)
q,ω (−m − 1, x)

+ q3[x − 1]q[x − 2]qζ(z)q,ω(−m,x)
}
.

(4.8)
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