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numbers and Hurwitz’s type q-zeta function associated with Apostol’s type q-Euler polynomials
for negative integers.
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1. Introduction

Let p be a fixed odd prime. Throughout this paper, Zp, Qp and C and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field, and the completion of algebraic closure of Qp. Let N be the set of natural
numbers and Z+ = N ∪ {0}. Let vp be the normalized exponential valuation of Cp with |p|p =
p−vp(p) = p−1. When one talks of q-extension, q is variously considered as an indeterminate, a
complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally assumes |q| < 1. If
q ∈ Cp, then one assumes |q − 1|p < 1. We also use the notations

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

∀x ∈ Zp (1.1)

For a fixed odd positive integer d with (p, d) = 1, let

X = Xd = lim
←
N

Z

dpNZ

, X1 = Zp,
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X∗ =
⋃

0<a<dp

(a,p)=1

(a + dpZp),

a + dpNZp = {x ∈ X | x ≡ a(mod dpN)},
(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . The distribution is defined by

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

. (1.3)

We say that f is a uniformly differentiable function at a point a ∈ Zp and denote this
property by f ∈ UD(Zp), if the difference quotients Ff(x, y) = (f(x) − f(y))/(x − y) have a
limit l = f ′(a) as (x, y) → (a, a). For f ∈ UD(Zp), the p-adic invariant q-integral is defined as

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN
]
q

pN−1∑

x=0

f(x)qx. (1.4)

The fermionic p-adic q-measures on Zp are defined as

μ−q
(
a + dpNZp

)
=

(−q)a
[
dpN

]
−q
, (1.5)

and the fermionic p-adic invariant q-integral on Zp is defined as

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)(−q)x (1.6)

for f ∈ UD(Zp). For details see [1–10].
Classical Euler numbers are defined by the generating function

2
et + 1

=
∞∑

n=0

En
tn

n!
, (1.7)

and these numbers are interpolated by the Euler zeta function which is defined as

ζE(s) =
∞∑

n=0

(−1)n
ns

, s ∈ C. (1.8)

After Carlitz [11] gave q-extensions of the classical Bernoulli numbers and polynomi-
als, the q-extensions of Bernoulli and Euler numbers and polynomials have been studied by
several authors (cf. [1–16, 18–26, 34–39]).
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By using p-adic q-integral, the q-Euler numbers En,q are defined as

En,q =
∫

Zp

[t]nqdμ−q(t), for n ∈ N. (1.9)

The q-Euler numbers En,q are defined by means of the generating function

Fq(t) = [2]q
∞∑

n=0

(−1)nqne[n]qt (1.10)

(cf. [8, 26]). Kim [22] gave a new construction of the q-Euler numbers En,q which can be
uniquely determined by

E0,q =
[2]q
2

,

(qE + 1)n + En,q =

⎧
⎨

⎩
[2]q, if n = 0,

0, if n/= 0,

(1.11)

with the usual convention of replacing En by En,q.
The twisted q-Euler numbers and q-Euler polynomials are very important in several

fields of mathematics and physics, and so they have been studied by many authors. Simsek
[37, 38] constructed generating functions of q-generalized Euler numbers and polynomials
and twisted q-generalized Euler numbers and polynomials. Recently, Y. H. Kim et al. [27]
gave the twisted q-Euler zeta function associated with twisted q-Euler numbers and obtained
q-Euler’s identity. They also have a q-extension of the Euler zeta function for negative integers
and the q-analog of twisted Euler zeta function. Kim [24] defined twisted q-Euler numbers
and polynomials of higher order and studied multiple twisted q-Euler zeta functions.

The Apostol-Bernoulli and the Apostol-Euler polynomials and numbers have been
studied by several authors (cf. [15, 17, 32, 33, 40, 41]). Recently, q-extensions of the
Apostol-Bernoulli and the Apostol-Euler polynomials and numbers have been studied by
many authors with great interest. In [15], Cenkci and Can introduced and investigated q-
extensions of the Bernoulli polynomials. Choi et al. [16] have studied some q-extensions of the
Apostol-Bernoulli and the Apostol-Euler polynomials of order n and multiple Hurwitz zeta
function.

In this paper, we define Apostol’s type q-Euler numbers and q-Euler polynomials.
Then, we have the generating functions of Apostol’s type q-Euler numbers and q-Euler
polynomials and the distribution relation for Apostol’s type q-Euler polynomials. In
Section 2, we define Apostol’s type q-Euler numbers En,q,ξ and q-Euler polynomials En,q,ξ(x).
Then, we obtain the generating functions of En,q,ξ and En,q,ξ(x), respectively. We also have the
distribution relation for Apostol’s type q-Euler polynomials. In Section 3, we obtain q-zeta
function associated with Apostol’s type q-Euler numbers and Hurwitz’s type q-zeta function
associated with Apostol’s type q-Euler polynomials for negative integers.
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2. On the q-extensions of the Apostol-Euler numbers and polynomials

In this section, we will assume q ∈ Cp with |q − 1|p < 1. For n ∈ Z+, let Cpn = {ξ | ξpn = 1} be
the cyclic group of order pn, and let Tp be the space of locally constant space, that is,

Tp = lim
n→∞

Cpn =
⋃

n≥0
Cpn . (2.1)

Let ξ ∈ Tp. We define Apostol’s type q-Euler numbers by

En,q,ξ =
∫

Zp

q−xξx[x]nqdμ−q(x). (2.2)

Then, we have

En,q,ξ =
[2]q

(1 − q)n
n∑

l=0

(
n

l

)
(−1)l 1

1 + qlξ
, (2.3)

where ( n
l ) are the binomial coefficients.

Apostol’s type q-Euler polynomials are defined as

En,q,ξ(x) =
∫

Zp

q−yξy[x + y]nqdμ−q(y). (2.4)

Since

[x + y]nq =
(
[x]q + qx[y]q

)n =
n∑

l=0

(
n

l

)
[x]n−lq qlx[y]lq, (2.5)

we have from (2.4) that

En,q,ξ(x) =
n∑

l=0

(
n

l

)
[x]n−lq qlx

∫

Zp

q−yξy[y]lqdμ−q(y). (2.6)

By (2.2) and (2.6), we have

En,q,ξ(x) =
n∑

l=0

(
n

l

)
[x]n−lq qlxEl,q,ξ. (2.7)

Since

[x + y]nq =
1

(1 − q)n
n∑

l=0

(
n

l

)
(−1)lq(x+y)l = 1

(1 − q)n
n∑

l=0

(
n

l

)
(−1)lqlxqly, (2.8)
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we have

∫

Zp

q−yξy[x + y]nqdμ−q(y) =
1

(1 − q)n
n∑

l=0

(
n

l

)
(−1)lqlx

∫

Zp

q(l−1)yξydμ−q(y). (2.9)

Therefore, we also have

En,q,ξ(x) = [2]q
1

(1 − q)n
n∑

l=0

(
n

l

)
qlx(−1)l 1

1 + qlξ
. (2.10)

Note that (2.7) and (2.10) are two representations for En,q,ξ(x). Hence, we have the
following result.

Theorem 2.1. For n ∈ Z+ and ξ ∈ Tp, one has

En,q,ξ =
[2]q

(1 − q)n
n∑

l=0

(
n

l

)
(−1)l 1

1 + qlξ
,

En,q,ξ(x) =
[2]q

(1 − q)n
n∑

l=0

(
n

l

)
(−1)l qlx

1 + qlξ

=
n∑

l=0

(
n

l

)
[x]n−lq qlxEl,q,ξ.

(2.11)

Now, we will find the generating function of En,q,ξ and En,q,ξ(x), respectively. Let F(t)
be the generating function of En,q,ξ. Then, we have

F(t) =
∞∑

n=0

En,q,ξ
tn

n!

=
∞∑

n=0

(
[2]q

(1 − q)n
n∑

l=0

(
n

l

)
(−1)l 1

1 + qlξ

)
tn

n!

= [2]q
∞∑

n=0

1
(1 − q)n

n∑

l=0

(
n

l

)
(−1)l

( ∞∑

m=0

qlmξm(−1)m
)

tn

n!

= [2]q
∞∑

m=0

(−1)mξm
∞∑

n=0

1
(1 − q)n

(
n∑

l=0

(
n

l

)
(−1)lqlm

)
tn

n!

= [2]q
∞∑

m=0

(−1)mξm
∞∑

n=0

1
(1 − q)n (1 − q

m)n
tn

n!
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= [2]q
∞∑

m=0

(−1)mξm
∞∑

n=0

[m]nq
tn

n!

= [2]q
∞∑

m=0

(−1)mξme[m]qt.

(2.12)

Therefore, the generating function F(t) of En,q,ξ equals

F(t) =
∞∑

n=0

En,q,ξ
tn

n!
= [2]q

∞∑

m=0

(−1)mξme[m]qt. (2.13)

Note that

∫

Zp

q−xξxe[x]qt dμ−q(x) =
∞∑

n=0

∫

Zp

q−xξx[x]nq dμ−q(x)
tn

n!

=
∞∑

n=0

En,q,ξ
tn

n!
= F(t).

(2.14)

For the generating function of En,q,ξ(x), we have

∫

Zp

q−yξye[x+y]qt dμ−q(y) = [2]q
∞∑

m=0

(−1)mξme[m+x]qt. (2.15)

Hence, we obtain the following theorem.

Theorem 2.2. For ξ ∈ Tp, one has

∫

Zp

q−xξxe[x]qt dμ−q(x) = [2]q
∞∑

m=0

(−1)mξme[m]qt, (2.16)

∫

Zp

q−yξye[x+y]qt dμ−q(y) = [2]q
∞∑

m=0

(−1)mξme[m+x]qt. (2.17)

Since (2.16) equals to the generating functions (2.17) equals to the generating functions∑∞
n=0En,q,ξ(x)(tn/n!), we have the following result.

Corollary 2.3. For n ∈ Z+ and ξ ∈ Tp, one has

En,q,ξ = [2]q
∞∑

m=0

(−1)mξm[m]nq ,

En,q,ξ(x) = [2]q
∞∑

m=0

(−1)mξm[m + x]nq .

(2.18)
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Now, we will find the distribution relation for En,q,ξ(x). By (2.4), we have

En,q,ξ(x) =
∫

X

q−yξy[x + y]nq dμ−q(y)

= lim
N→∞

1
[
dpN

]
−q

dpN−1∑

y=0

ξy(−1)y[x + y]nq

= lim
N→∞

1
[
dpN

]
−q

d−1∑

a=0

pN−1∑

y=0

ξa+dy(−1)a+dy[x + a + dy]nq .

(2.19)

Note that for odd numbers d and p,

[dpN]−q = [d]−q[p
N]−qd ,

[x + a + dy]q = [d]q

[
x + a

d
+ y

]

qd
.

(2.20)

By (2.19), we have

En,q,ξ(x) =
1

[d]−q

d−1∑

a=0

ξa(−1)a lim
N→∞

1
[pN]−qd

pN−1∑

y=0

(ξd)
y
(−1)y[d]nq

[
x + a

d
+ y

]n

qd

=
[d]nq
[d]−q

d−1∑

a=0

ξa(−1)a
∫

Zp

(ξd)
y
(qd)

−y
[
x + a

d
+ y

]n

qd
dμ−qd(y).

(2.21)

Therefore, we obtain the distribution relation for En,q,ξ(x) as follows.

Theorem 2.4. For n ∈ Z+, ξ ∈ Tp, and d ∈ Z+ with d ≡ 1(mod 2), one has

En,q,ξ(x) =
[d]nq
[d]−q

d−1∑

a=0

ξa(−1)aEn,qd,ξd

(
x + a

d

)
. (2.22)

3. Further remark on the basic q-zeta functions associated with
Apostol’s type q-Euler numbers and polynomials

In this section, we assume that q ∈ C with |q| < 1. Let ξ ∈ Tp. For s ∈ C, q-zeta function
associated with Apostol’s type q-Euler numbers is defined as

ζq,ξ(s) = [2]q
∞∑

n=1

ξn(−1)n
[n]sq

, (3.1)
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which is analytic in whole complex s-plane. Substituting s = −k with k ∈ Z+ into ζq,ξ(s) and
using Corollary 2.3, then we arrive at

ζq,ξ(−k) = [2]q
∞∑

n=1

ξn(−1)n[n]kq = Ek,q,ξ. (3.2)

Now, we also consider Hurwitz’s type q-zeta function associated with the Apostol’s
type q-Euler polynomials as follows:

ζq,ξ(s, x) = [2]q
∞∑

n=0

ξn(−1)n
[n + x]sq

. (3.3)

Substituting s = −k with k ∈ Z+ into ζq,ξ(s, x) and using Corollary 2.3, then we arrive at

ζq,ξ(−k, x) = [2]q
∞∑

n=0

ξn(−1)n[n + x]kq = Ek,q,ξ(x). (3.4)

Hence, we obtain q-zeta function associated with Apostol’s type q-Euler numbers and
Hurwitz’s type q-zeta function associated with Apostol’s type q-Euler polynomials for
negative integers.
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