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1. Introduction

Control problems with integral constraints on control arise in various problems of mathemat-
ical modeling. For example, the motion of flying apparatus with variable mass is described in
the form of controllable system, where the control function has integral constraints (see, e.g.,
[1–3]). One of the important constructions of the control systems theory is the attainable set
notion. Attainable set is the set of all points to which the system can be steered at the instant
of given time. Attainable sets of control systems are very useful tools in the study of various
problems of optimization, dynamical systems and differential game theory.

In [4–10], topological properties and numerical construction methods of the attainable
sets of linear control systems with integral constraint on control functions are investigated. The
attainable sets of affine control systems, that is, the attainable sets of control systems which are
nonlinear with respect to the phase-state vector, but are linear with respect to the control vector
have been considered in [11–14]. The properties of the attainable sets of the nonlinear control
systems have been studied in [15–18].

Approximation method for the construction of attainable sets of affine control systems
with integral constraints on the control is given in [11, 13]. In [14], using the topological
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properties of attainable sets of affine control systems, the continuity properties of minimum
time and minimum energy functions are discussed.

The dependence of the attainable set on p is studied in [8, 12, 15]. In [15], it is proved that
attainable set of affine control system depends on p continuously. In [15], the same property is
shown for nonlinear control systems.

In [17], if the control resource is sufficiently small, then under some suitable assumptions
on the right-hand side of the system, it is proved that the attainable set of the nonlinear control
system with integral constraints on control is convex.

The value function of nonlinear optimal control problem with generalized integral con-
straints on control and phase-state vectors is investigated in [16, 18].

In this article, we consider the attainable sets of the control systems the behavior of
which is described by nonlinear differential equations. It is assumed that the admissible
control functions are chosen from the closed ball centered at the origin with radius μ0 in
Lp

([
t0, θ

]
;Rm

) (
p ∈ (1,+∞)

)
.

In Section 2, it is illustrated that, in general, the attainable set is not closed (Example
2.5) and it is shown that the set of solutions generated by all possible admissible con-
trol functions is precompact in the space of continuous functions (Corollary 2.4). In
Section 3, the diameter of the attainable set is evaluated (Proposition 3.1) and it is proved
that the attainable set is Hölder continuous with respect to time variable (Proposition
3.3). In Section 4, it is shown that the attainable set of the control system is continuous with
respect to initial condition (Proposition 4.1). In Section 5, it is proved that the attainable set is
Lipschitz continuous with respect to a parameter of the system which define the resource of
the control effort (Proposition 5.1).

Consider the control system the behavior of which is described by the differential equa-
tion

ẋ(t) = f
(
t, x(t), u(t)

)
, x(t0) ∈ X0, (1.1)

where x ∈ R
n is the phase-state vector of the system, u ∈ R

m is the control vector, t ∈ [t0, θ] is
the time, and X0 ⊂ R

n is a compact set.
For p ∈ (1,∞) and μ0 > 0, we set

U
μ0
p =

{
u(·) ∈ Lp

([
t0, θ

]
,Rm

)
:
∥∥u(·)∥∥p ≤ μ0

}
, (1.2)

where ‖u(·)‖p = (
∫θ
t0
‖u(t)‖pdt)1/p and ‖·‖ denotes the Euclidian norm.

A function u(·) ∈ U
μ0
p is said to be an admissible control function. It is obvious that the set

of all admissible control functions U
μ0
p is the closed ball centered at the origin with the radius

μ0 in Lp([t0, θ];Rm).
It is assumed that the right-hand side of the system (1.1) satisfies the following condi-

tions.

(a) The function f(·) : [t0, θ] × R
n × R

m → R
n is continuous.

(b) For any bounded setD ⊂ [t0, θ]×R
n, there exist constants L1 = L1(D) > 0, L2 = L2(D) > 0,

and L3 = L3(D) > 0 such that
∥∥f

(
t, x1, u1

) − f
(
t, x2, u2

)∥∥ ≤ (
L1 + L2

∥∥u2
∥∥)∥∥x1 − x2

∥∥ + L3
∥∥u1 − u2

∥∥ (1.3)

for any (t, x1) ∈ D, (t, x2) ∈ D, u1 ∈ R
m, and u2 ∈ R

m.
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(c) There exists a constant c > 0 such that
∥
∥f(t, x, u)

∥
∥ ≤ c

(
1 + ‖x‖) (1 + ‖u‖) (1.4)

for every (t, x, u) ∈ [t0, θ] × R
n × R

m.

If the right-hand side of the system (1.1) is affine, that is, if f(t, x, u) = ϕ(t, x) + B(t, x)u
and the functions ϕ(·) : [t0, θ]×R

n → R
n, B(·) : [t0, θ]×R

n → R
m satisfy the assumptions given

in [11–14], then, under these assumptions, the conditions (a), (b), and (c) are also fulfilled.
Let u∗(·) ∈ U

μ0
p . The absolutely continuous function x∗(·) : [t0, θ] → R

n, which satisfies
the equation ẋ∗(t) = f(t, x∗(t), u∗(t)) a.e. in [t0, θ], and the initial condition x∗(t0) = x0 ∈ X0

is said to be a solution of the system (1.1) with initial condition x∗(t0) = x0, generated by
the admissible control function u∗(·). By the symbol x(·; t0, x0, u(·)), we denote the solution
of the system (1.1) with initial condition x(t0) = x0, which is generated by the admissible
control function u(·).Note that the conditions (a)–(c) guarantee the existence, uniqueness, and
extendability of the solutions up to the instant of time θ for every given u∗(·) ∈ U

μ0
p and x0 ∈ X0.

Let us define the sets

Xp

(
t0, X0, μ0

)
=
{
x
(·; t0, x0, u(·)

)
: [t0, θ] −→ R

n | x0 ∈ X0, u(·) ∈ U
μ0
p

}
,

Xp

(
t; t0, X0, μ0

)
=
{
x(t) ∈ R

n : x(·) ∈ Xp

(
t0, X0, μ0

)}
,

(1.5)

where t ∈ [t0, θ].
The setXp(t; t0, X0, μ0) is called the attainable set of the system (1.1) at the instant of time

t. It is obvious that the set Xp(t; t0, X0, μ0) consists of all x ∈ R
n to which the system (1.1) can

be steered at the instant of time t ∈ [t0, θ].
The Hausdorff distance between the sets A ⊂ R

n and E ⊂ R
n is denoted by h(A,E) and

is defined as

h(A,E) = max

{

sup
x∈A

d(x, E), sup
y∈E

d(y,A)

}

, (1.6)

where d(x, E) = inf {‖x − y‖ : y ∈ E}.
By C([t0, θ];Rn), we denote the space of continuous functions x(·) : [t0, θ] → R

n with
norm

∥∥x(·)∥∥C = max
t∈[t0,θ]

∥∥x(t)
∥∥. (1.7)

Also, hC(U,V ) denotes the Hausdorff distance between the sets U ⊂ C([t0, θ];Rn) and
V ⊂ C([t0, θ];Rn).

2. Precompactness of the set of solutions

The following proposition asserts that the set of solutions and the attainable sets of the control
system (1.1)with constraint (1.2) are bounded.

Proposition 2.1. Let p ∈ (1,∞), μ∗ ∈ (0, μ0 + 1), h(X0, X∗) ≤ 1. Then for any x∗(·) ∈ Xp(t0, X∗, μ∗),
the inequality

∥
∥x∗(·)

∥
∥
C ≤ r∗ (2.1)
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holds, where

r∗ = d1 exp (k), (2.2)

d1 = 1 + d∗ + k,

d∗ = max
{‖x‖ : x ∈ X0

}
,

k = c
[(
θ − t0

)
+ l∗

(
μ0 + 1

)]
,

(2.3)

l∗ = max
{(

θ − t0
)
, 1
}
, (2.4)

and c > 0 is the constant given in condition (c).

The proof of the proposition follows from condition (c) and Gronwall’s inequality.
For given γ > 0, we set

D(γ) =
{
(t, x) ∈ [

t0, θ
] × R

n : ‖x‖ ≤ γ
}
,

Bn(γ) =
{
x ∈ R

n : ‖x‖ ≤ γ
}
.

(2.5)

We get from Proposition 2.1 that (t, x(t)) ∈ D(r∗) for every p ∈ (1,∞), x(·) ∈ Xp(t0,
X∗, μ∗), t ∈ [t0, θ], μ∗ ∈ (0, μ0 + 1), and compact X∗ ⊂ R

n such that h(X0, X∗) ≤ 1. So, we have
the validity of the following corollary.

Corollary 2.2. The set Xp(t0, X0, μ0) is uniformly bounded, and consequently Xp(t; t0, X0,
μ0) ⊂ Bn(r∗) for every t ∈ [t0, θ], where r∗ is defined by (2.2).

Here and henceforth, we will have in mind the cylinder D(r∗) as the set D in condition
(b). We set also

k∗ = c
(
1 + r∗

)(
l∗ + μ0

)
, (2.6)

where r∗ is defined by (2.2), l∗ is defined by (2.4).

Proposition 2.3. The set Xp(t0, X0, μ0) is equicontinuous.

Proof. Let ε > 0 be an arbitrarily given number. Now, let us choose an arbitrary x(·) ∈
Xp(t0, X0, μ0) and t1, t2 ∈ [t0, θ]. Without loss of generality, we assume that t1 ≤ t2. Then from
condition (c), we have

∥∥x
(
t1
) − x

(
t2
)∥∥ ≤

∫ t2

t1

c
(
1 +

∥∥x(τ)
∥∥) (1 +

∥∥u(τ)
∥∥)dτ. (2.7)

According to Proposition 2.1, ‖x(·)‖C ≤ r∗, where r∗ is defined by (2.2). Then we get
from (2.4), (2.6), (2.7), and Hölder’s inequality that

‖x(t1
) − x(t2

)‖ ≤ c
(
1 + r∗

) (∣∣t2 − t1
∣∣ + μ0

∣∣t2 − t1
∣∣(p−1)/p)

≤ ∣∣t2 − t1
∣∣(p−1)/pc

(
1 + r∗

) ((
θ − t0

)1/p + μ0

)

≤ ∣
∣t2 − t1

∣
∣(p−1)/pc

(
1 + r∗

) (
l∗ + μ0

)
= k∗

∣
∣t2 − t1

∣
∣(p−1)/p.

(2.8)
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Thus for given ε > 0, setting δ(ε) = (ε/k∗)
p/(p−1), we obtain ‖x(t1) − x(t2)‖ < ε for

|t1 − t2| < δ(ε). Since x(·) ∈ Xp(t0, X0, μ0) is arbitrarily chosen, the equicontinuity of the set
Xp(t0, X0, μ0) follows.

From Corollary 2.2 and Proposition 2.3, we get the validity of the following corollary.

Corollary 2.4. The set Xp(t0, X0, μ0) is a precompact subset of the space C([t0, θ],Rn).

Note that if the right-hand side of the system (1.1) is affine with respect to the control
vector u, then the weak compactness of the set of admissible control functions U

μ0
p guaranties

the closeness of the attainable sets; but the attainable sets of the control system (1.1) with con-
straint (1.2), in general, are not closed. In [19, 20], the example is given which illustrates that
the attainable set of nonlinear control systemwith geometric constraint on control is not closed.
We use that example to show that the attainable set of nonlinear control system with integral
constraint on control is not also closed.

Example 2.5. Let us consider the control system

ẋ = −y2 + u2, x(0) = 0,

ẏ = u, y(0) = 0,
(2.9)

where (x, y) ∈ R
2 is the phase-state vector of the system, u ∈ R is the control vector, t ∈ [0, 1]. It

is assumed that μ0 = 1 and the control function u(·) ∈ L2([0, 1];R) of the system (2.9) satisfies
the integral constraint

∫1

0
u2(t)dt ≤ 1, (2.10)

that is, u(·) ∈ U1
2. Let us denote

X2
(
0, (0, 0), 1

)
=
{(

x
(·; 0, (0, 0), u(·)), y(·; 0, (0, 0), u(·))) : u(·) ∈ U1

2
}
,

X2
(
t; 0, (0, 0), 1

)
=
{(

x(t), y(t)
) ∈ R

2 :
(
x(·), y(·)) ∈ X2

(
0, (0, 0), 1

)}
.

(2.11)

Thus X2(0, (0, 0), 1) is the set of solutions, X2(t; 0, (0, 0), 1) is the attainable set of the con-
trol system (2.9) at the instant of time t ∈ [0, 1], generated by control functions u(·) ∈ U1

2.
Now, let us prove that the solution set X2(0, (0, 0), 1) is bounded. Let (x(·), y(·)) ∈

X2(0, (0, 0), 1) be an arbitrarily chosen solution of the system (2.9) with integral constraint
(2.10). Then there exists u(·) ∈ U1

2 such that

x(t) =
∫ t

0
−y2(τ)dτ +

∫ t

0
u2(τ)dτ, (2.12)

y(t) =
∫ t

0
u(τ)dτ (2.13)

for any t ∈ [0, 1]. From (2.10), (2.13), and Hölder’s inequality, the inequality

∣∣y(t)
∣∣ ≤

∫ t

0

∣∣u(τ)
∣∣dτ ≤

(∫ t

0
12dτ

)1/2(∫ t

0

∣∣u(τ)
∣∣2dτ

)1/2

≤
√
t ≤ 1 (2.14)
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holds for all t ∈ [0, 1]. Then we get from (2.10), (2.12), and (2.14) that

∣∣x(t)
∣∣ ≤

∫ t

0

∣∣y(τ)
∣∣2dτ +

∫ t

0

∣∣u(τ)
∣∣2dτ ≤

∫ t

0
τdτ + 1 = 1 +

t2

2
≤ 3
2

(2.15)

for all t ∈ [0, 1].
However, (2.14) and (2.15) imply that

∥∥(x(·), y(·))∥∥C = max
t∈[0,1]

∥∥(x(t), y(t))
∥∥ = max

t∈[0,1]

√
x2(t) + y2(t) ≤

√

1 +
9
4
< 2. (2.16)

Since (x(·), y(·)) ∈ X2(0, (0, 0), 1) is arbitrarily chosen, we get that the set X2(0, (0, 0), 1) is
bounded.

Nowwe prove that (1, 0) /∈X2(1; 0, (0, 0), 1). Let us assume the contrary, that is, let (1, 0) ∈
X2(1; 0, (0, 0), 1). Then there exists (x∗(·), y∗(·)) ∈ X2(0, (0, 0), 1) such that

x∗(1) = 1, y∗(1) = 0. (2.17)

Since (x∗(·), y∗(·)) ∈ X2(0, (0, 0), 1), then there exists u∗(·) ∈ U1
2 such that

x∗(t) =
∫ t

0
−y2

∗(τ)dτ +
∫ t

0
u2
∗(τ)dτ , (2.18)

y∗(t) =
∫ t

0
u∗(τ)dτ (2.19)

for all t ∈ [0, 1].
From (2.17), (2.18), and (2.19), it follows that

x∗(1) =
∫1

0
u2
∗(τ)dτ −

∫1

0

(∫ τ

0
u∗(s)ds

)2

dτ = 1. (2.20)

Since u∗(·) ∈ U1
2, then it follows from (2.20) that u∗(t) = 0 for almost all t ∈ [0, 1]. Then

we have from (2.18) and (2.19) that x∗(t) = 0, y∗(t) = 0 for every t ∈ [0, 1], which contradicts
(2.17). Thus

(1, 0) /∈ X2
(
1; 0, (0, 0), 1

)
. (2.21)

Let us show that (1, 0) ∈ cl(X2(1; 0, (0, 0)), 1).
Let Γk = {0, 1/2k, 2/2k, . . . , (2k − 1)/2k, 1} be a uniform partition of the closed interval

[0, 1], where k = 1, 2, . . . . Now we define a sequence of functions {uk(·)}∞k=1, setting

uk(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, t ∈
[
2i
2k

,
2i + 1
2k

)
,

−1, t ∈
[
2i + 1
2k

,
2i + 2
2k

)
,

(2.22)

where i = 0, 1, . . . , k − 1.
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It is obvious that uk(·) ∈ U1
2 for all k = 1, 2, . . . . Let (xk(·), yk(·)) ∈ X2(0, (0, 0), 1) be the

solution of the system (2.9) generated by the admissible control function uk(·) ∈ U1
2. Then it

follows from (2.9) that

xk(t) =
∫ t

0
−y2

k(τ)dτ +
∫ t

0
u2
k(τ)dτ , (2.23)

yk(t) =
∫ t

0
uk(τ)dτ (2.24)

for every t ∈ [0, 1].
We get from (2.22) and (2.24) that

yk(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − 2i
2k

, t ∈
[
2i
2k

,
2i + 1
2k

)

−t + 2i + 2
2k

, t ∈
[
2i + 1
2k

,
2i + 2
2k

) (2.25)

for every t ∈ [0, 1]where i = 0, 1, . . . , k − 1.
Then, from (2.25)we have

0 ≤ yk(t) ≤ 1
2k

(2.26)

for every t ∈ [0, 1], and consequently

0 ≤ y2
k
(t) ≤ 1

4k2
(2.27)

for every t ∈ [0, 1].
According to (2.22), u2

k
(t) = 1 for all t ∈ [0, 1]. Then, from (2.23) and (2.27) we obtain

that

1 − 1
4k2

≤ ẋk(t) ≤ 1 (2.28)

for almost all t ∈ [0, 1], and consequently
(
1 − 1

4k2

)
t ≤ xk(t) ≤ t (2.29)

for every t ∈ [0, 1], where k = 1, 2, . . . .
We conclude from the last inequality that

(
1 − 1

4k2

)
≤ xk(1) ≤ 1 (2.30)

for every k = 1, 2, . . . .
It follows from (2.26) and (2.30) that

(
xk(1), yk(1)

) −→ (1, 0) as k −→ ∞. (2.31)

Since (xk(1), yk(1)) ∈ X2(1; 0, (0, 0), 1) for every k = 1, 2, . . . , from (2.31) we obtain that

(1, 0) ∈ cl
(
X2

(
1; 0, (0, 0), 1

))
. (2.32)

However, (2.21) and (2.32) imply that X2(1; 0, (0, 0), 1) is not a closed set.
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3. Diameter of the attainable set and continuity with respect to t

In this section we will give an upper estimation for the diameter of the attainable set
Xp(t; t0, X0, μ0) and will show that the set-valued map t → Xp(t; t0, X0, μ0) is Hölder contin-
uous with respect to t.

We denote the diameter of a set A ⊂ R
n by diam(A) and define it as

diamA = sup
x,y∈A

∥∥x − y
∥∥. (3.1)

The following proposition characterizes the diameter of the attainable set Xp(t; t0, X0,
μ0).

Proposition 3.1. For every p ∈ (1,+∞), the inequality

diamXp

(
t; t0, X0, μ0

) ≤ [
d0 + r1(t, p)

]
exp

(
r0(t, p)

)
(3.2)

holds for any t ∈ [t0, θ], where

d0 = diamX0, (3.3)

r0(t, p) = L1
(
t − t0

)
+ L2

(
t − t0

)(p−1)/p
, (3.4)

r1(t, p) = 2L3μ0

(
t − t0

)(p−1)/p
. (3.5)

Proof. Let t ∈ [t0, θ] and x1(t) ∈ Xp(t; t0, X0, μ0), x2(t) ∈ Xp(t; t0, X0, μ0) be arbitrarily
chosen. Then there exist x1 ∈ X0, x1(·) ∈ Xp(t0, x0, μ0), u1(·) ∈ U

μ0
p , x2 ∈ X0, x2(·) ∈

Xp(t0, x0, μ0), u2(·) ∈ U
μ0
p such that

x1(t) = x1 +
∫ t

t0

f
(
τ, x1(τ), u1(τ)

)
dτ,

x2(t) = x2 +
∫ t

t0

f
(
τ, x2(τ), u2(τ)

)
dτ.

(3.6)

Since ‖x1 − x2‖ ≤ d0, then from (3.6), and the condition (b), we get

∥∥x1(t) − x2(t)
∥∥ ≤ d0 +

∫ t

t0

(
L1 + L2

∥∥u2(τ)
∥∥)∥∥x1(τ) − x2(τ)

∥∥dτ

+
∫ t

t0

L3‖u1(τ) − u2(τ)‖dτ.
(3.7)

Since u1(·), u2(·) ∈ U
μ0
p , then the Hölder and Minkowski inequalities imply that

L3

∫ t

t0

∥∥u1(τ) − u2(τ)
∥∥dτ ≤ 2L3μ0

(
t − t0

)(p−1)/p = r1(t, p), (3.8)
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where r1(t, p) is defined by (3.5). Since t ∈ [t0, θ] is arbitrarily chosen, we obtain from (3.7),
(3.8), and Gronwall’s inequality that

∥
∥x1(t) − x2(t)

∥
∥ ≤ [

d0 + r1(t, p)
]
exp

(∫ t

t0

(
L1 + L2

∥
∥u2(τ)

∥
∥)dτ

)

≤ [
d0 + r1(t, p)

]
exp

(
L1

(
t − t0

)
+ L2

(
t − t0

)(p−1)/p
μ0

)

=
[
d0 + r1(t, p)

]
exp

(
r0(t, p)

)
,

(3.9)

where r0(t, p) is defined by (3.4).

Note that an estimation for diameter of the attainable set can be obtained from Propo-
sition 2.1; but the estimation given by Proposition 3.1 is more precise.

Corollary 3.2. diamXp(t; t0, X0, μ0) → diamX0 as t → t0.

The following proposition asserts that the attainable set Xp(t; t0, X0, μ0) is Hölder contin-
uous with respect to t.

Proposition 3.3. Let t1 ∈ [t0, θ], t2 ∈ [t0, θ]. Then

h
(
Xp

(
t1; t0, X0, μ0

)
, Xp

(
t2; t0, X0, μ0

)) ≤ k∗
∣∣t1 − t2

∣∣(p−1)/p, (3.10)

where k∗ > 0 is defined by (2.6).

Proof. Without loss of generality, let us assume that t1 < t2. Let y1 ∈ Xp(t1; t0, X0, μ0) be arbitrar-
ily chosen. Then there exist x0 ∈ X0, x0(·) ∈ Xp(t0, X0, μ0) and u0(·) ∈ U

μ0
p such that

y1 = x0
(
t1
)
= x0 +

∫ t1

t0

f
(
τ, x0(τ), u0(τ)

)
dτ. (3.11)

Let

y2 = x0
(
t2
)
= x0 +

∫ t2

t0

f
(
τ, x0(τ), u0(τ)

)
dτ. (3.12)

It is obvious that y2 ∈ Xp(t2; t0, X0, μ0). From Proposition 2.1, relations (2.4), (2.6), (3.11),
(3.12), and the condition (c), we have

∥∥y1 − y2
∥∥ ≤

∫ t2

t1

c
(
1 +

∥∥x0(τ)
∥∥) (1 +

∥∥u0(τ)
∥∥)dτ

≤ c
(
1 + r∗

)
∫ t2

t1

(
1 +

∥∥u0(τ)
∥∥)dτ

≤ c
(
1 + r∗

) (∣∣t2 − t1
∣∣ + μ0

∣∣t2 − t1
∣∣(p−1)/p)

≤ c
(
1 + r∗

) (
l∗ + μ0

)∣∣t2 − t1
∣∣(p−1)/p) = k∗|t2 − t1|(p−1)/p,

(3.13)

where c > 0 is the constant given in condition (c).
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Since y1 ∈ Xp(t1, t0, X0, μ0) is arbitrarily chosen, then (3.13) implies that

Xp

(
t1; t0, X0, μ0

) ⊂ Xp

(
t2; t0, X0, μ0

)
+ k∗

∣
∣t2 − t1

∣
∣(p−1)/pBn(1). (3.14)

Analogously, it is possible to show that

Xp

(
t2; t0, X0, μ0

) ⊂ Xp

(
t1; t0, X0, μ0

)
+ k∗

∣
∣t2 − t1

∣
∣(p−1)/pBn(1). (3.15)

In fact, (3.14) and (3.15) yield the proof.

From Proposition 3.3, we obtain the following corollary.

Corollary 3.4. The set-valued map t → Xp(t; t0, X0, μ0), t ∈ [t0, θ], is (p − 1)/p-Hölder continuous.

4. Dependence of the attainable sets on parameters t0 and X0

The following proposition characterizes the continuity of the set-valued map (t0, X0) →
Xp(t; t0, X0, μ0) in the Hausdorff metric.

Let us denote

ω∗ =
(
L1 + L2μ0

)
l∗, (4.1)

where l∗ is defined by (2.4), L1 and L2 are the constants given in condition (b).

Proposition 4.1. Let t1 ≥ t0 and X0, X1 ⊂ R
n be compact sets. Then the inequality

h
(
Xp

(
t; t0, X0, μ0

)
, Xp

(
t; t1, X1, μ0

)) ≤ [
h
(
X0, X1

)
+
(
t1 − t0

)(p−1)/p
k∗
]
exp

(
ω∗

)
(4.2)

holds for all t ∈ [t1, θ], where k∗ is defined by (2.6), ω∗ is defined by (4.1).

Proof. Let us choose arbitrary t ∈ [t1, θ] and x0(t) ∈ Xp(t; t0, X0, μ0), where x0(·) ∈
Xp(t0, X0, μ0). Then there exist x0 ∈ X0 and u0(·) ∈ U

μ0
p such that

x0(t) = x0 +
∫ t

t0

f
(
τ, x0(τ), u0(τ)

)
dτ (4.3)

holds. According to the definition of Hausdorff distance, there exists x1 ∈ X1 such that ‖x1 −
x0‖ ≤ h(X0, X1). Let x1(·) be a solution of the control system (1.1), generated by the admissible
control function u0(·) with initial condition x1(t1) = x1 ∈ X1. Then

x1(t) = x1 +
∫ t

t1

f
(
τ, x1(τ), u0(τ)

)
dτ (4.4)

and x1(t) ∈ Xp(t; t1, X1, μ0).
From (4.3), (4.4), and conditions (b) and (c), we have

∥∥x0(t) − x1(t)
∥∥ ≤ h

(
X0, X1

)
+ c

∫ t1

t0

(
1 +

∥∥u0(τ)
∥∥) (1 +

∥∥x0(τ)
∥∥)dτ

+
∫ t

t1

(
L1 + L2

∥∥u0(τ)
∥∥) (∥∥x0(τ) − x1(τ)

∥∥)dτ.

(4.5)
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Proposition 2.1 implies that

c

∫ t1

t0

(
1 +

∥
∥u0(τ)

∥
∥) (1 +

∥
∥x0(τ)

∥
∥)dτ ≤ (

t1 − t0
)(p−1)/p

k∗, (4.6)

where k∗ is defined by (2.6). Since t ∈ [t1, θ] is arbitrarily chosen, from (4.5), (4.6), and Gron-
wall’s inequality, we get

∥∥x0(t) − x1(t)
∥∥ ≤ [

h
(
X0, X1

)
+
(
t1 − t0

)(p−1)/p
k∗
]
exp

(∫ t

t1

(
L1 + L2

∥∥u0(τ)
∥∥)dτ

)

≤ [
h
(
X0, X1

)
+
(
t1 − t0

)(p−1)/p
k∗
]
exp (ω∗).

(4.7)

Hence, we obtain from (4.7) that

Xp

(
t; t0, X0, μ0

) ⊂ Xp

(
t; t1, X1, μ0

)
+
[
h
(
X0, X1

)
+
(
t1 − t0

)(p−1)/p
k∗
]
exp

(
ω∗

)
Bn(1). (4.8)

Similarly, one can prove that

Xp

(
t; t1, X1, μ0

) ⊂ Xp

(
t; t0, X0, μ0

)
+
[
h
(
X0, X1

)
+
(
t1 − t0

)(p−1)/p
k∗
]
exp

(
ω∗

)
Bn(1). (4.9)

Finally, (4.8) and (4.9) complete the proof.

From Proposition 4.1, the validity of the following corollaries follow.

Corollary 4.2. The inequality

h
(
Xp

(
t; t0, X0, μ0

)
, Xp

(
t; t0, X1, μ0

)) ≤ h
(
X0, X1

)
exp

(
ω∗

)
(4.10)

holds for all t ∈ [t0, θ], where ω∗ > 0 is defined by (4.1).

Corollary 4.3. The inequality

hC

(
Xp

(
t0, X0, μ0

)
, Xp

(
t0, X1, μ0

)) ≤ h
(
X0, X1

)
exp

(
ω∗

)
(4.11)

holds.

Corollary 4.4. Let X0 ⊂ R
n and Xn ⊂ R

n be compact sets for all n = 1, 2, . . . . Assume that
h(Xn,X0) → 0 and tn → t0 + 0 as n → ∞. Then for all t ∈ (t0, θ],

h
(
Xp

(
t; tn, Xn, μ0

)
, Xp

(
t; t0, X0, μ0

)) −→ 0 as n −→ ∞. (4.12)

5. Dependence of the attainable sets on μ0

In this section we specify dependence of the set Xp(t0, X0, μ0) on the constraint parameter μ0.
Let

r1 = L3l∗ exp
(
ω∗

)
, (5.1)

where ω∗ is defined by (4.1).
The following proposition characterizes the relation between the solutions sets Xp(t0,

X0, μ∗) and Xp(t0, X0, μ0).
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Proposition 5.1. The inequality

hC(Xp(t0, X0, μ∗), Xp(t0, X0, μ0)) ≤ r1|μ∗ − μ0| (5.2)

is satisfied, where r1 is defined by (5.1).

Proof. Let x0(·) ∈ Xp(t0, X0, μ0) be an arbitrarily chosen solution. Then there exist x0 ∈ X0 and
u0(·) ∈ U

μ0
p such that

x0(t) = x0 +
∫ t

t0

f
(
τ, x0(τ), u0(τ)

)
dτ (5.3)

for every t ∈ [t0, θ].
We define a new control function u∗(·) : [t0, θ] → R

m, setting

u∗(t) =
μ∗
μ0

u0(t), t ∈ [
t0, θ

]
. (5.4)

It is not difficult to verify that u∗(·) ∈ U
μ∗
p . Let x∗(·) be a solution of the control sys-

tem (1.1), generated by u∗(·) ∈ U
μ∗
p from the initial point (t0, x0). Then x∗(·) ∈ Xp(t0, X0,

μ∗) and

x∗(t) = x0 +
∫ t

t0

f
(
τ, x∗(τ), u∗(τ)

)
dτ (5.5)

for every t ∈ [t0, θ]. From (5.3), (5.4), (5.5), and condition (b), we get

∥∥x∗(t) − x0(t)
∥∥ ≤ L3

∣
∣∣∣
μ∗
μ0

− 1
∣
∣∣∣

∫ t

t0

∥∥u0(τ)
∥∥dτ +

∫ t

t0

(
L1 + L2

∥∥u0(τ)
∥∥)∥∥x∗(τ) − x0(τ)

∥∥dτ

≤ L3l∗
∣∣μ∗ − μ0

∣∣ +
∫ t

t0

(
L1 + L2

∥∥u0(τ)
∥∥)∥∥x∗(τ) − x0(τ)

∥∥dτ

(5.6)

for every t ∈ [t0, θ], where l∗ is defined by (2.4).
The Gronwall inequality, (5.1), and (5.6) yield that

∥∥x∗(t) − x0(t)
∥∥ ≤ L3l∗

∣∣μ∗ − μ0

∣∣ exp
(
L1(θ − t0

)
+ L2μ0

(
θ − t0

)(p−1)/p)

≤ L3l∗ exp
(
ω∗

)∣∣μ∗ − μ0

∣∣ = r1
∣∣μ∗ − μ0

∣∣
(5.7)

for all t ∈ [t0, θ].
Thus from (5.7) we get that for any fixed x0(·) ∈ Xp(t0, X0, μ0) there exists x1(·) ∈

Xp(t0, X0, μ∗) such that
∥∥x0(·) − x∗(·)

∥∥
C ≤ r1

∣∣μ∗ − μ0

∣∣, (5.8)

and consequently

Xp

(
t0, X0, μ0

) ⊂ Xp

(
t0, X0, μ∗

)
+ r1

∣∣μ∗ − μ0

∣∣BC, (5.9)

where BC is the closed unit ball centered at the origin in the space C([t0, θ],Rn).
Analogously, it is possible to prove that

Xp

(
t0, X0, μ∗

) ⊂ Xp

(
t0, X0, μ0

)
+ r1

∣∣μ∗ − μ0

∣∣BC. (5.10)

Hence, from (5.9) and (5.10), we obtain the proof of the proposition.
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From Proposition 5.1, it follows that the following corollaries are satisfied.

Corollary 5.2. The inequality

h
(
Xp

(
t; t0, X0, μ∗

)
, Xp

(
t; t0, X0, μ0

)) ≤ r1
∣∣μ∗ − μ0

∣∣ (5.11)

is satisfied for any t ∈ [t0, θ], where r1 > 0 is defined by (5.1).

Corollary 5.3. Let μn → μ0 as n → ∞. Then

hC

(
Xp

(
t0, X0, μn

)
, Xp

(
t0, X0, μ0

)) −→ 0 as n −→ ∞,

h
(
Xp

(
t; t0, X0, μn

)
, Xp

(
t; t0, X0, μ0

)) −→ 0 as n −→ ∞
(5.12)

for every t ∈ [t0, θ].
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