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1. Introduction

The theory of mixtures is used to develop a mathematical model that governs the interactions
of macrophages, tumor cells, and blood vessels within a vascular tumor, focusing on the
ability of macrophages to both lyse tumor cells and stimulate angiogenesis. In recent years,
a variety of macroscopic continuum models have been derived by [1–6]. In their wake, we
present hereafter a simplified model.

The vascular tumor is viewed as a mixture of three constituents: tumor cells,
tumor-associated macrophages (abbreviated by TAMs), and blood vessels. We denote their
respective volume fractions by α, β, and γ , and we assume that the mixture is saturated, so
we take

α + β + γ = 1. (1.1)

We suppose that the tumor undergoes one dimensional and one side growth, parallel to the
x-axis, by occupying the region 0 ≤ x ≤ L(t). Each phase is associated with velocity, pressure,
and spatial stress denoted, respectively, by v1, P1, σ1 for the tumor cells, v2, P2, σ2 for the
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TAMs and v3, P3, σ3 for the blood vessels. Formulating conservation of mass for the three
volume fractions, under the assumption that each phase has the same constant density, we
get

αt +
(
αv1
)
x = q1, βt +

(
βv2
)
x = q2, γt +

(
γv3
)
x = q3, (1.2)

where the indices t and x are set for partial derivatives and q1, q2, and q3 are the rates of
production related to each phase, satisfying q1 + q2 + q3 = 0. We suppose that the volume
fraction of tumor cells increase by proliferation and decrease by apoptosis, necrosis or lysis,
the volume fraction of TAMs increase by proliferation and by influx from capillaries and
decrease by natural death or after lysing tumor cells. Thus, we write

q1(α, β, γ) = k1αγ − k2α − k3(1 − γ)α − k4αβ, (1.3)

q2(α, β, γ) = k5β
(
1 − σ(α + γ)

) − k6β(1 − α) − k7αβ, (1.4)

where σ and ki, i = 1, . . . , 7 are nonnegative constants. Assuming that the momentum is
conserved and the motions of cells and blood vessels are so slow that inertial terms can be
neglected, we can write

(
ασ1
)
x + F1 = 0,

(
βσ2
)
x + F2 = 0,

(
γσ3
)
x + F3 = 0, (1.5)

where

F1 = Pαx + dαβ
(
v2 − v1

)
+ dαγ

(
v3 − v1

)
, (1.6)

F2 = Pβx − dαβ
(
v2 − v1

)
+ dβγ

(
v3 − v2

)
, (1.7)

F3 = Pγx − dαγ
(
v3 − v1

) − dβγ
(
v3 − v2

)
, (1.8)

represent the momentum supply related to each phase, d is a positive constant and P is
assumed to be a common pressure. When neglecting viscous effect, the partial stress tensors
are given by

σi = −Pi = −(P + Σi

)
, i = 1, 2, 3, (1.9)

where

Σ1 = λα, Σ2 = μβ(1 + θα), Σ3 = P0 (1.10)

represent the pressures due to cell-cell interactions exerted on tumor cells, macrophages and
blood vessels respectively. λ, μ and θ are nonnegative constants and P0 > 0 is constant.

The following initial and boundary conditions are considered:

L = l > 0, α = α0 ≥ 0, β = β0 ≥ 0, α0 + β0 ≤ 1 at t = 0, (1.11)

α = αb ≥ 0, β = βb ≥ 0, αb + βb ≤ 1 at x = 0. (1.12)
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We impose the no flux boundary condition at the free boundary that we suppose moving at
the same velocity as the tumor cells, so

v1 = v2 = v3 = 0 at x = L(t), (1.13)

dL

dt
= v1

∣
∣
∣
∣
x=L(t)

= 0 that is L(t) = l ∀t ≥ 0. (1.14)

Adding the three continuity equations (1.2) and the three momentum equations (1.5), we get
using (1.13)

αv1 + βv2 + γv3 = 0,
(
ασ1
)
x +
(
βσ2
)
x +
(
γσ3
)
x = 0. (1.15)

The last equality and (1.9) imply

Px = −(αΣ1 + βΣ2 + γΣ3
)
x. (1.16)

Using (1.6), (1.9), and the first relation in (1.15), the first equation of (1.5) reduces to give
either α = 0, which we reject because it can be only transient, or

Px +
1
α

(
αΣ1
)
x = −dv1, (1.17)

which together with (1.16) gives

v1 =
1
d

(
(
αΣ1 + βΣ2 + γΣ3

)
x −

1
α

(
αΣ1
)
x

)
. (1.18)

Using (1.10) and the fact that P0 is constant, (1.18) can be rewritten as follows:

v1 =
1
d

(
αx

(
2λα + μθβ2 − P0 − 2λ

)
+ βx

(
2μβ(1 + θα) − P0

))
. (1.19)

Similarly, the second equation of (1.5) simplifies into

v2 =
1
d

(
αx

(
2λα + μθβ2 − P0 − μθβ

)
+ βx

(
2μ(β − 1)(1 + θα) − P0

))
. (1.20)

Thus, substituting the relations (1.19)-(1.20) into (1.2), the equations of α and β become

αt − 1
d

((
2λα(1 − α) − μθαβ2 + P0α

)
αx +

( − 2μβα(1 + θα) + P0α
)
βx
)
x = q1,

βt − 1
d

(( − 2λαβ + μθβ2(1 − β) + P0β
)
αx +

(
2μβ(1 − β)(1 + θα) + P0β

)
βx
)
x = q2.

(1.21)
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Having regard to the saturation condition (1.1), we omit the equation of γ . The resulting
problem (1.21) is strongly coupled with full diffusion matrix which is generally not positive
definite. To simplify it, we reduce the number of biological parameters by setting

λ = μ = P0, θ = 0. (1.22)

In this case, (1.13), (1.14), (1.19) and (1.20) reduce the boundary condition at x = l to

αx = βx = 0. (1.23)

Without loss of generality, we set l = 1, 2λ/d = 1 and for technical reasons, to get the
maximum principle (see Lemma 3.7), we need to take σ = 1 in (1.4) and

k5 ≤ k6. (1.24)

In summary, denoting u = (α, β), u0 = (α0, β0), ub = (αb, βb) and q = (q1, q2), the problem
(1.21) simplifies into

ut −
(
A(u)ux

)
x = q(u), (1.25)

with A and q given by

A(α, β) =

⎛

⎜⎜⎜
⎝

α

(
3
2
− α

)
α

(
1
2
− β

)

β

(
1
2
− α

)
β

(
3
2
− β

)

⎞

⎟⎟⎟
⎠

,

q1(α, β) = k1α(1 − α − β) − k2α − k3α(α + β) − k4αβ,

q2(α, β) = k5β
2 − k6β(1 − α) − k7αβ.

(1.26)

The system (1.25) is complemented with the boundary and initial conditions

u(t, 0) = ub(t), ux(t, 1) = 0,

u(0, x) = u0(x),
(1.27)

and has to be solved in R+ × (0, 1).
In recent years, cross-diffusion systems have drawn a great deal attention. For example

in [7], the global existence was established, as well as the existence of a global attractor
in a case of triangular positive definite diffusion matrix. In [8], the well-posedness and
the properties of steady states for a degenerate parabolic system with triangular positive
(semi) definite matrix, modeling the chemotaxis movement of cells, were investigated. In
[9, 10], the existence of global weak solution was shown for a nonlinear problem with full
diffusion matrix. The proof was based on a symmetrization of the problem via an exponential
transformation of variables, backward Euler approximation of the time derivative and
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an entropy functional. Here, we use analogous arguments, but in our case, after the
transformation of variables the resulting matrix B is not positive definite. To overcome
this difficulty, we approximate B by positive definite matrices Bτ which tend towards B as
τ → 0, if the condition 0 ≤ α, β, α + β ≤ 1 is satisfied. This needs to prove that the set
{(α, β) ∈ L∞(Ω) × L∞(Ω), 0 ≤ α, β, α + β ≤ 1} is time invariant.

Throughout this paper, we use the following notations: let T, τ be positive real
numbers, we will denote by C all the positive constants which are independent of τ . We set
Ω = (0, 1), QT = (0, T) ×Ω and s+ = max(s, 0) the positive part of the real number s. We write
ux := ∂xu and ut := ∂tu for partial derivatives of a real-valued function u = u(t, x). Moreover
we will use the Sobolev space H1

D(Ω) = {u ∈ H1(Ω); u(0) = 0} equipped with the norm of
H1 and we denote as usual, by (H1)′ the dual of H1. In the case of vectorial functions, we
designate the corresponding Lebesgue and Sobolev spaces, respectively, by L

2, L
∞, H

1, H
1
D.

Finally we set ln(r, s) = (ln r, ln s) for r, s > 0 and e(r,s) = (er, es) for r, s ∈ R.
The remainder of this paper is organized as follows. In Section 2, we introduce the

weak formulation of the problem and state our main existence result in Theorem 2.2. In
proving this theorem, we define and solve in Section 3 an auxiliary problem which will be
useful further. Then, in Section 4, we formulate a semidiscrete version in time of the problem,
using a backward Euler approximation, combinedwith a perturbation of the diffusionmatrix.
This leads to a recursive sequence of elliptic problems depending on the small parameter τ .
Performing the limit as τ → 0, with the help of Aubin compactness lemma and the Sobolev
embeddingH1(0, 1) ↪→ L∞(0, 1), we get a weak solution to our problem. Finally, an appendix
is devoted to the proof of a technical lemma.

2. Main result

We set the following assumptions:

(H1) α0, β0 ∈ H1(Ω), 0 < α0, β0, α0 + β0 ≤ 1, lnα0, ln β0 ∈ L∞(Ω),

(H2) αb, βb ∈ R, 0 < αb, βb, αb + βb ≤ 1.

The matrix A(α, β) is not positive even if 0 ≤ α, β, α + β ≤ 1, so the problem (1.25)–(1.27) has
no classical solution in general. A weak solution is defined as follows.

Definition 2.1. Let (H1)-(H2) be satisfied ant let T > 0. u = (α, β) is said to be a weak solution
of problem (1.25)–(1.27) on QT if

(1) u ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′) ∩ L
∞(QT ) with 0 ≤ α, β, α + β ≤ 1,

(2) u(0, x) = u0(x) a.e. in Ω, u(t, 0) = ub a.e. in (0, T),

(3)
∫T
0 〈ut, ϕ〉dt +

∫
QT
A(u)ux ·ϕx dx dt =

∫
QT
q(u) ·ϕdx dt, for all ϕ ∈ L2(0, T ;H1

D(Ω)),

where 〈·, ·〉 is the dual product between (H1(Ω))′ and H
1(Ω).

Our main result is the following.

Theorem 2.2. Assume (H1)-(H2) are satisfied. Then for every T > 0, there exists (at least) a weak
solution u = (α, β) on QT to the system (1.25)–(1.27), satisfying the entropy inequality

∫

Ω

(
G1
(
α(t)
)
+G2

(
β(t)
))
dx +

1
4

∫ t

0

∫

Ω

(∣∣αx

∣∣2 +
∣∣βx
∣∣2)dx ds ≤

∫

Ω

(
G1
(
α0
)
+G2

(
β0
))
dx + C,

(2.1)
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where C > 0 depends on T, αb, βb, ki, i = 1, . . . , 7, G1, G2 being positive functions defined on R+ by

G1(s) = s(ln s − lnαb − 1) + αb, G2(s) = s(ln s − ln βb − 1) + βb. (2.2)

The proof of this existence result is based on the entropy inequality (2.1), which is
formally obtained by testing (1.25) with (ln(α/αb), ln(β/βb)), and integrating by parts (see
Section 3.3 for details).

This estimate suggests to use the change of unknown U = ln(α, β), which transforms
the problems (1.25)–(1.27) into the following one

(
eU
)
t −
(
B(U)Ux

)
x = Q(U) in QT,

U(t, 0) = Ub(t), Ux(t, 1) = 0 in (0, T),

U(0, x) = U0(x) in Ω,

(2.3)

with Ub = ln(αb, βb), U0 = ln(α0, β0), Q(U) = q(eU) and the new diffusion matrix is B(U) =
A(eU)diag(eU1 , eU2) and takes the form

B(r, s) =

⎛

⎜⎜⎜
⎝

e2r
(
3
2
− er
)

er+s
(
1
2
− es
)

er+s
(
1
2
− er
)

e2s
(
3
2
− es
)

⎞

⎟⎟⎟
⎠

. (2.4)

The matrix B(r, s) resulting of this transformation is still not positive definite. Nevertheless,
in the case er+es ≤ 1 which is under interest, B(r, s) is positive definite. Moreover, this change
of variables leads to nonnegative solutions, without using maximum principle, since α = eU1

and β = eU2 .

3. Auxiliary problems

We will use a time discretization scheme to study (1.25)–(1.27). In order to prove global
existence for the resulting stationary problem, it may be useful to introduce an artificial
perturbation of the diffusion matrixA of type εI, where ε > 0 and I is the identity matrix (see
the proof of Proposition 3.3 below and Lemma 3.6). Nevertheless, the choice of the parameter
ε is technical and cannot be done independently of the time discretization parameter τ . Here,
we take ε = τ , this choice being dictated by the sake of coherency of the discretization scheme
proposed in Section 4. Indeed, in the case where ε is independent of τ , this procedure is
seriously compromised. More details on this question are given in Remark 3.8, at the end of
this section. In summary, we need to solve the following problem:

1
τ
(u − ũ) − ((A(u) + τI

)
ux

)
x = q(u) in Ω,

u(0) = ub, ux(1) = 0,
(3.1)

where τ > 0 is a small parameter and ũ = ũ(x) is a fixed function. Before giving the existence
result for this problem, let us define the solutions we deal with.
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Definition 3.1. u = (α, β) ∈ H
1(Ω) is said to be a weak solution of problem (3.1) if u(0) =

ub, 0 ≤ α, β, α + β ≤ 1 inΩ and if for every ϕ ∈ H
1
D(Ω), it holds

1
τ

∫

Ω
(u − ũ) ·ϕ dx +

∫

Ω

(
A(u) + τI

)
ux ·ϕxdx =

∫

Ω
q(u)·ϕdx. (3.2)

We have the following result.

Theorem 3.2. Let ub = (αb, βb) ∈ R
2 satisfy assumption (H2), ũ = (α̃, β̃) ∈ L

∞(Ω) such that
0 < α̃, β̃, α̃ + β̃ ≤ 1 a.e. in Ω and ln ũ ∈ L

∞(Ω). Then for all 0 < τ < 1, there exists a weak solution
uτ = (ατ , βτ) ∈ H

1(Ω) of the problem (3.1). Moreover, ln uτ ∈ H
1(Ω) and it holds

∫

Ω

(
G1
(
ατ) +G2

(
βτ
))
dx +

τ

4

∫

Ω

(∣∣ατx

∣
∣2 +

∣
∣βτx
∣
∣2)dx ≤

∫

Ω

(
G1(α̃) +G2(β̃)

)
dx + Cτ, (3.3)

where G1 and G2 are defined by (2.2).

For the proof, according to the change of unknown introduced in Section 2, we will
consider the following stationary problem

1
τ

(
eU − eŨ

) − (Bτ(U)Ux

)
x = Q+(U) in Ω,

U(0) = Ub, Ux(1) = 0,
(3.4)

where Ũ = ln ũ, Bτ is the matrix defined by

Bτ = B+ +Dτ, (3.5)

B+ is given by

B+(r, s) =

⎛

⎜⎜⎜
⎝

e2r
(
3
2
−min

(
er, 1 − es

)
)

er+s
(
1
2
− es
)

er+s
(
1
2
− er
)

e2s
(
3
2
−min

(
es, 1 − er

)
)

⎞

⎟⎟⎟
⎠

, (3.6)

and Dτ is a diagonal matrix with

Dτ
11(r, s) = Dτ

22(s, r) =
(
e2r+s + 5er

(
er + es

))(
er + es − 1

)+ + τer. (3.7)

The vector field Q+ is defined by its components

Q+
1 (r, s) = k1e

r
(
1 − er − es

)+ −min
(
er, 1
)(
k2 + k3 min

(
er + es, 1

)
+ k4 min

(
es, 1
))
,

Q+
2 (r, s) = min

(
es, 1
)(
k5 min

(
es,
(
1 − er

)+) − k6
(
1 − er

)+ − k7 min
(
er, 1
))
.

(3.8)
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Clearly if er + es ≤ 1, then B+(r, s) = B(r, s), Dτ
11(r, s) = Dτ

22(s, r) = τer → 0 when τ → 0 and
Q+(r, s) = Q(r, s). In addition, we have for i = 1, 2 that

∣
∣Q+

i

(
r1, r2

)∣∣ ≤ C,
∣
∣Q+

i

(
r1, r2

)∣∣ ≤ Ceri , ∀(r1, r2
) ∈ R

2, (3.9)

where C > 0 depends only on ki, i = 1, . . . , 7. We will prove the following result.

Proposition 3.3. Assume that Ũ ∈ L
∞(Ω) is such that Ũ1, Ũ2 ≤ 0 a.e. in Ω. Then for all 0 < τ < 1,

there exists a weak solution Uτ ∈ H1(Ω) to problem (3.4).

The proof of this result relies on the Leray-Schauder fixed point theorem, so we start
by studying the linear problems associated with (3.4).

3.1. Linear problems associated with (3.4)

In the sequel, we let once for all 0 < τ < 1 and Ũ ∈ L
∞(Ω) fixed. Let U ∈ L

∞(Ω) be given; we
consider the following linear problem: find U ∈ H

1(Ω) satisfying

U(0) = Ub and ∀ϕ ∈ H
1
D(Ω),

1
τ

∫

Ω

(
eU − eŨ

) ·ϕdx +
∫

Ω
Bτ
(
U
)
Ux ·ϕxdx =

∫

Ω
Q+(U

) ·ϕdx.
(3.10)

We have the following result.

Lemma 3.4. For everyU ∈ L
∞(Ω), problem (3.10) has a unique solution U ∈ H

1(Ω).

Proof. We will apply the Lax-Milgram lemma. We set V = U −Ub, so (3.10) goes over into the
following equivalent problem

V (0) = 0 and ∀ϕ ∈ H
1
D(Ω),

∫

Ω
Bτ
(
U
)
Vx ·ϕxdx = − 1

τ

∫

Ω

(
eU − eŨ

) ·ϕ dx +
∫

Ω
Q+(U

) ·ϕ dx.
(3.11)

Next, we define a bilinear formA on H
1
D(Ω)×H

1
D(Ω) and a linear formL on H

1
D(Ω) by setting

A(V, ϕ) =
∫

Ω
Bτ(U)Vx ·ϕxdx, L(ϕ) =

−1
τ

∫

Ω

(
eU − eŨ

) ·ϕ dx +
∫

Ω
Q+(U

) ·ϕ dx.

(3.12)

The continuity of A and L follows from the boundedness of U and Ũ. For the coerciveness
ofA, it is sufficient to prove that the matrix D defined by

D(r, s) = B+(r, s) + er+s
(
er + es − 1

)+diag
(
er, es

)
(3.13)
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is positive definite. Let us computeD(r, s)ξ · ξ for (r, s) ∈ R
2 and ξ = (ξ1, ξ2) ∈ R

2. We consider
first the case where er + es ≤ 1 so that

D(r, s)ξ · ξ = e2r
(
3
2
− er
)
ξ21 + e2s

(
3
2
− es
)
ξ22 − er+s

(
er + es − 1

)
ξ1ξ2. (3.14)

The elementary inequality

1 − a − b ≤
√

3
2
− a

√
3
2
− b if 0 ≤ a, b, a + b ≤ 1 (3.15)

and Young inequality lead to

−er+s(er + es − 1
)
ξ1ξ2 ≥ −1

2

(
e2r
(
3
2
− er
)
ξ21 + e2s

(
3
2
− es
)
ξ22

)
, (3.16)

so

D(r, s)ξ · ξ ≥ 1
2

(
e2r
(
3
2
− er
)
ξ21 + e2s

(
3
2
− es
)
ξ22

)
≥ 1

4
min

(
e2r , e2s

)‖ξ‖2. (3.17)

In the case er + es > 1, we have

D(r, s)ξ · ξ = e2r
(
1
2
+ es
(
er + es

)
)
ξ21 + e2s

(
1
2
+ er
(
er + es

)
)
ξ22 − er+s

(
er + es − 1

)
ξ1ξ2. (3.18)

From the inequality

(
1 − er − es

)2 ≤ (er + es
)2 ≤ 9

4

(
1
2
+ es
(
er + es

)
)(

1
2
+ er
(
er + es

)
)
, (3.19)

we deduce that

er + es − 1 ≤ 3
2

√
1
2
+ es
(
er + es

)
√

1
2
+ er
(
er + es

)
. (3.20)

So, thanks to Young inequality we get

D(r, s)ξ · ξ ≥ 1
4

(
e2r
(
1
2
+ es
(
er + es

)
)
ξ21 + e2s

(
1
2
+ er
(
er + es

)
)
ξ22

)
≥ 1

8
min

(
e2r , e2s

)‖ξ‖2.
(3.21)
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Hence, we infer that for all ξ ∈ R
2, U = (U1, U2) ∈ L

∞(Ω),

Bτ(U)ξ · ξ ≥ D(U)ξ · ξ ≥ 1
8
min

(
e−2‖U1‖L∞(Ω) , e−2‖U2‖L∞(Ω)

)
‖ξ‖2, (3.22)

so Lax-Milgram lemma implies the existence of a unique solution V ∈ H
1
D(Ω) of problem

(3.11). Consequently, U = V +Ub is the unique solution of (3.10).

3.2. Proof of Proposition 3.3

Lemma 3.4 and the embedding H1(Ω) ⊂ L∞(Ω) allow us to define the map S : L
∞(Ω) →

L
∞(Ω), by setting S(U) = U the solution of (3.10). We will establish, using the theorem of

Leray Schauder, that S has a fixed point Uτ in L
∞(Ω), so Uτ ∈ H1(Ω) is a solution of the

nonlinear problem (3.4).
First, we prove thatS is continuous. Let (Un)n be a sequence in L

∞(Ω) such thatUn → U

strongly in L
∞(Ω) as n → ∞ and let S(Un) = Un. We use the test function ϕ = Un − Ub ∈

H
1
D(Ω) in (3.10), estimate (3.22), and Poincaré inequality to get

1
τ

∫

Ω

(
eŨ − eUn

) · (Un −Ub

)
dx +

∫

Ω
Q+(Un

) · (Un −Ub

)
dx ≥ C

∥∥Un −Ub

∥∥2
H1(Ω), (3.23)

where C > 0 is independent of n. So taking into account (3.9), we get, thanks to Young
inequality,

∥∥Un −Ub

∥∥2
H1(Ω) ≤ C(τ). (3.24)

Thus,Un is bounded in H
1(Ω) and from the compactness of the embeddingH1(Ω) ↪→ L∞(Ω),

we deduce that there exists a subsequence of (Un)n, still denoted by (Un)n and a function
U ∈ H

1(Ω) such that

Un −→ U strongly in L
∞(Ω), Un ⇀ U weakly in H

1(Ω). (3.25)

This implies the weak convergence Bτ(Un)Unx ⇀ Bτ(U)Ux in L
2(Ω), hence there exists a

subsequence of (Un)n which converges towards S(U). Moreover thanks to the uniqueness
result for the system (3.10), we see that all the sequence (Un)n converges to S(U)which ends
the proof of continuityof S.

The compactness of S follows from the compactness of the embedding H1(Ω) into
L∞(Ω) and (3.24). Finally, let us check that the sets Λδ = {U ∈ L

∞(Ω)/U = δS(U)} are
uniformly bounded with respect to δ ∈ [0, 1]. Observe that Λ0 = {0} and if δ /= 0 the equation
U = δS(U) is equivalent to U ∈ H

1(Ω), U(0) = δUb and for all ϕ ∈ H
1
D(Ω),

1
τ

∫

Ω

(
eU − eŨ

) ·ϕ dx +
1
δ

∫

Ω
Bτ(U

)
Ux ·ϕxdx =

∫

Ω
Q+(U

) ·ϕ dx. (3.26)

The remainder of the proof is a direct consequence of the following lemma.
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Lemma 3.5. Under the assumptions of Proposition 3.3, there exists a positive constant C(τ)
independent of δ such that ifU ∈ H

1(Ω) satisfies (3.26), then it holds

∥
∥Ux

∥
∥

L2(Ω) ≤ C(τ). (3.27)

For the proof, we need the following technical result which will be checked in the
appendix.

Lemma 3.6. For all (r, s), (ξ1, ξ2) ∈ R
2, one has

Bτ((r, s),
(
ξ1, ξ2

)) ≡ Bτ
11(r, s)

(
1 + 2τe−r

)
ξ21 + Bτ

22(r, s)
(
1 + 2τe−s

)
ξ22

+
(
Bτ
12(r, s)

(
1 + 2τe−r

)
+ Bτ

21(r, s)
(
1 + 2τe−s

))
ξ1ξ2 ≥ τ2

(
ξ21 + ξ22

)
,

(3.28)

where Bτ is the matrix given in (3.5).

Proof of Lemma 3.5. Testing the equation of (3.26)with ϕ = U−δUb +2τ(e−δUb −e−U) ∈ H
1
D(Ω)

leads to

∫

Ω
Bτ(U,Ux

)
dx = −δ

τ

∫

Ω

(
eU − eŨ

) ·ϕdx + δ

∫

Ω
Q+(U

) ·ϕdx. (3.29)

The left-hand side is estimated using (3.28). We write U = (U1, U2), Ũ = (Ũ1, Ũ2), Ub =
(Ub1, Ub2); the convexity of es leads to

(
eUi − eŨi

)(
Ui − δUbi

)
=
(
eUi
(
Ui − δUbi − 1

)
+ eδUbi

) − (eŨi
(
Ũi − δUbi − 1

)
+ eδUbi

)

+
((
eUi − eŨi

) − eŨi
(
Ui − Ũi

)) ≥ fi
(
δ,Ui

) − fi
(
δ, Ũi

)
,

(3.30)

where for i = 1, 2, fi(δ, s) = es(s − δUbi − 1) + eδUbi ≥ 0, for all (δ, s) ∈ [0, 1] × R. Using the
elementary inequality es ≥ 1 + s, valid for all s ∈ R, we get

(
eUi − eŨi

)(
e−δUbi − e−Ui

)
=
(
eUi−δUbi −Ui + δUbi

) − (eŨi−δUbi − Ũi + δUbi

)

+
(
eŨi−Ui − (Ũi −Ui

) − 1
) ≥ gi

(
δ,Ui

) − gi
(
δ, Ũi

)
,

(3.31)

with gi(δ, s) = es−δUbi − s + δUbi ≥ 1, for all (δ, s) ∈ [0, 1] ×R. Combining (3.30) and (3.31), we
find

−δ
τ

∫

Ω

(
eU − eŨ

) ·ϕdx ≤ 1
τ

∫

Ω

(
f1
(
δ, Ũ1

)
+ f2
(
δ, Ũ2

))
dx + 2

∫

Ω

(
g1
(
δ, Ũ1

)
+ g2
(
δ, Ũ2

))
dx.

(3.32)
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We recall that a.e. in Ω, − ‖Ũi‖∞ ≤ Ũi ≤ 0 for i = 1, 2, and since the functions fi, gi are
continuous on [0, 1] × [−‖Ũi‖∞, 0], we deduce that the right-hand side of (3.32) is uniformly
bounded with respect to δ. Now we infer from (3.9) and Poincaré inequality that

δ

∫

Ω
Q+(U

) · (U −Ub

)
dx ≤ C

∫

Ω

∣
∣U −Ub

∣
∣dx ≤ τ2

2
∥
∥Ux

∥
∥2

L2(Ω) + C(τ),

δ

∫

Ω
Q+(U

) · (e−δUb − e−U
)
dx ≤ C.

(3.33)

The result follows by combining all these inequalities.

3.3. End of proof of Theorem 3.2

LetUτ be the solution of (3.4) provided by Proposition 3.3. Recalling that ũ = eŨ and ub = eUb ,
we see that uτ = eUτ satisfies the following problem:

1
τ

(
uτ − ũ

) − (Aτ
(
uτ

)
uτx

)
x = Q+(lnuτ) in Ω,

uτ(0) = ub, uτx(1) = 0,
(3.34)

where the matrix Aτ is given by Aτ(r, s) = A+(r, s) + hτ(r, s)I with

A+(r, s) =

⎛

⎜⎜⎜
⎝

r

(
3
2
−min(r, 1 − s)

)
r

(
1
2
− s

)

s

(
1
2
− r

)
s

(
3
2
−min(s, 1 − r)

)

⎞

⎟⎟⎟
⎠

,

hτ(r, s) = (r + s − 1)+
(
rs + 5(r + s)

)
+ τ.

(3.35)

Note that if r + s ≤ 1 then A+(r, s) = A(r, s) and hτ(r, s) = τ .
We will focus on the L

∞ and H
1 estimates satisfied by the function uτ . We begin with

the following L∞ bounds.

Lemma 3.7. Let the hypotheses of Theorem 3.2 hold, and let uτ = (ατ , βτ) ∈ H
1(Ω) satisfy problem

(3.34). One has

0 < ατ , βτ , ατ + βτ ≤ 1 inΩ. (3.36)

Proof. We write the equation satisfied by ατ + βτ and test it with ϕ = (ατ + βτ − 1)+ ∈ H1
D(Ω).

We get using (1.24) that

∫

Ω

ατ + βτ − (α̃ + β̃)
τ

ϕdx +
∫

Ω

(
1
2
(
ατ + βτ

)
+ hτ(ατ , βτ

)
)∣∣ϕx

∣∣2dx ≤ 0, (3.37)
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so
∫
Ω(ατ + βτ − (α̃ + β̃))ϕdx ≤ 0. Consequently,

∫
Ωϕ

2dx ≤ ∫Ω(α̃ + β̃ − 1)ϕdx ≤ 0, and hence
ατ + βτ ≤ 1.

As a consequence of Lemma 3.7, we easily see that uτ is a solution to problem (3.1) in
the sense of Definition 3.1. Moreover, since lnuτ = Uτ ∈ H

1(Ω) then lnuτ ∈ L
∞(Ω). In order

to check the entropy inequality (3.3), we test (3.1) with ϕτ = lnuτ − lnub ∈ H
1
D(Ω) to get

1
τ

∫

Ω

(
uτ − ũ

) ·ϕτ dx +
∫

Ω

(
1 − ατ − βτ

)
ατxβτx dx + τ

∫

Ω

(∣
∣ατx

∣
∣2

ατ
+

∣
∣βτx
∣
∣2

βτ

)

dx

+
∫

Ω

((
3
2
− ατ

)∣
∣ατx

∣
∣2 +

(
3
2
− βτ

)∣
∣βτx
∣
∣2
)
dx =

∫

Ω
q(uτ) ·ϕτ dx.

(3.38)

Then, from (3.15) and Young inequality, we get

−
∫

Ω

(
ατ + βτ − 1

)
ατxβτx dx ≥ −1

2

∫

Ω

((
3
2
− ατ

)∣∣ατx

∣∣2 +
(
3
2
− βτ

)∣∣βτx
∣∣2
)
dx, (3.39)

so, inserting (3.39) into (3.38) and using the fact that 3/2 − ατ , 3/2 − βτ ≥ 1/2, we see that

1
τ

∫

Ω

(
uτ − ũ

) ·ϕτdx +
1
4

∫

Ω

(∣∣ατx

∣∣2 +
∣∣βτx
∣∣2)dx ≤

∫

Ω
q
(
uτ

) ·ϕτdx. (3.40)

Using the boundedness of q(uτ) and the fact that the function s ln(s) is bounded in [0, 1], we
obtain

∫
Ωq(uτ) ·ϕτdx ≤ C, then the convexity of the functions G1 and G2 leads to

∫

Ω

(
uτ − ũ

) ·ϕτdx ≥
∫

Ω

(
G1
(
ατ

)
+G2

(
βτ
))
dx −

∫

Ω

(
G1(α̃) +G2(β̃)

)
dx, (3.41)

which ends the proof.

Remark 3.8. All the results of this section remain valid if one consider, instead of (3.1), the
following problem:

1
τ
(u − ũ) − ((A(u) + εI

)
ux

)
x = q(u) in Ω,

u(0) = ub, ux(1) = 0,
(3.42)

where τ > 0 and ε > 0 is independent of τ . In particular, the solution vε
τ to (3.42) satisfies

the L∞ bounds and the entropy inequality given in Theorem 3.2, with the constant C > 0
independent of ε (and τ). Thus performing the limit as ε → 0 in (3.42), we get a function vτ

solving the problem

1
τ
(u − ũ) − (A(u)ux

)
x = q(u) in Ω,

u(0) = ub, ux(1) = 0,
(3.43)
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which corresponds to the “natural” time discretization of our problem (1.25)–(1.27).
However, from there, the situation becomes complicated because the obtained solution vτ

to problem (3.43) has its components which are only nonnegative and we no longer have
lnvτ ∈ L

∞(Ω) (in fact, we cannot even take the ln of vτ). Therefore, the time discretization
scheme based on (3.43) cannot be solved.

4. Proof of Theorem 2.2

4.1. The time discretization scheme

Let assumptions (H1)-(H2) hold and let T > 0.Wewill use the backward Euler approximation
of time derivative ut � (1/τ)(u(tk) − u(tk−1)). We divide the time interval (0, T) into N
subintervals (tk−1, tk] of the same length τ = T/N. Then, we define recursively uk

τ , k =
1, . . . ,N, as the weak solution of (3.1) provided by Theorem 3.2 corresponding to the data
ũ = uk−1

τ , that is,

1
τ

(
uk
τ − uk−1

τ

) − ((A(uk
τ

)
+ τI

)
uk
τx

)
x = q

(
uk
τ

)
in Ω,

uk
τ (0) = ub, uk

τx(1) = 0,
(4.1)

u0
τ being the initial condition u0 of problem (1.25)–(1.27). Let u(τ), u(τ) be the piecewise

constant in time interpolation on (0, T) of u1
τ , u

2
τ , . . . , u

N
τ and u0

τ , u
1
τ , . . . , u

N−1
τ , respectively, that

is,

u(τ)(t, x) = uk
τ (x), u(τ)(t, x) = uk−1

τ (x) on
(
tk−1, tk

] ×Ω, k = 1, . . . ,N, (4.2)

and let ũ(τ) be the function defined on QT by

ũ(τ)(t, x) =
t − tk−1

τ

(
u(τ)(t, x) − u(τ)(t, x)

)
+ u(τ)(t, x) on

(
tk−1, tk

] ×Ω, k = 1, . . . ,N. (4.3)

With these notations, we can rewrite (4.1) as

ũ
(τ)
t − ((A(u(τ)) + τI

)
u
(τ)
x

)
x = q

(
u(τ)) in Ω,

u(τ)(0) = ub, u
(τ)
x (1) = 0.

(4.4)

Now, we set for uk
τ = (αk

τ , β
k
τ )

ηk
τ =
∫

Ω

(
G1
(
αk
τ

)
+G2

(
βkτ
))
dx, k = 0, . . . ,N, η0 = η0

τ ,

η(τ)(t) = ηk
τ , ∀t ∈ (tk−1, tk

]
, k = 1, . . . ,N.

(4.5)
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4.2. Uniform estimates with respect to τ

Lemma 4.1. Let u(τ) = (α(τ), β(τ)) and u(τ) = (α(τ), β
(τ)

) defined by (4.2). One has

0 < α(τ), β(τ), α(τ) + β(τ) ≤ 1 a.e. in QT,

0 < α(τ), β
(τ)

, α(τ) + β
(τ) ≤ 1 a.e. in QT,

(4.6)

and there exists a positive constant C independent of τ such that

∥
∥η(τ)∥∥

L∞(0,T),
∥
∥u(τ)∥∥

L2(0,T ;H1(Ω)),
∥
∥u(τ)∥∥

L2(0,T ;H1(Ω)) ≤ C. (4.7)

Proof. We apply the results of Theorem 3.2, so the first part is immediate, then (3.3) leads to

ηk
τ − ηk−1

τ +
τ

4

∫

Ω

(∣∣αk
τx

∣∣2 +
∣∣βkτx
∣∣2)dx ≤ Cτ, k = 1, . . . ,N. (4.8)

Summing these inequalities from k = 1 to k = m, for 1 ≤ m ≤ N, we get

ηm
τ − η0 +

τ

4

m∑

k=1

∫

Ω

(∣∣αk
τx

∣∣2 +
∣∣βkτx
∣∣2)dx ≤ Cmτ. (4.9)

Therefore,

max
1≤m≤N

ηm
τ +

1
4

N∑

k=1

∫

Ω
τ
(∣∣αk

τx

∣∣2 +
∣∣βkτx
∣∣2)dx ≤ η0 + CT, (4.10)

which can be written as

∥∥η(τ)∥∥
L∞(0,T) +

1
4

∫

Ω

N∑

k=1

∫ tk

tk−1

(∣∣αk
τx

∣∣2 +
∣
∣βkτx
∣∣2)dt dx ≤ η0 + CT. (4.11)

This means that

∥∥η(τ)∥∥
L∞(0,T) +

1
4

∫

QT

(∣∣α(τ)
x

∣∣2 +
∣∣β(τ)x

∣∣2)dt dx ≤ η0 + CT. (4.12)

Coming back to (4.9), we deduce that

N−1∑

k=1

∫

Ω
τ
(∣∣αk

τx

∣∣2 +
∣∣βkτx
∣∣2)dx =

∫

QT

∣∣u(τ)
x

∣∣2dt dx − τ

∫

Ω

∣∣u0x
∣∣2dx ≤ 4

(
η0 + CT

)
, (4.13)

and we get the result.
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We have also the following estimate.

Lemma 4.2. There exists a positive constant C independent of τ such that

∥
∥ũ(τ)∥∥

H1(0,T ;(H1(Ω))′),
∥
∥ũ(τ)∥∥

L2(0,T ;H1(Ω)) ≤ C, (4.14)
∥
∥ũ(τ) − u(τ)∥∥

L2(0,T ;(H1(Ω))′) ≤ Cτ. (4.15)

Proof. Weuse (4.4) and the results of Lemma 4.1 to deduce that ‖ũ(τ)
t ‖L2(0,T ;(H1(Ω))′) is uniformly

bounded. Now, since ũ(τ)
x = ((t − tk−1)/τ)u

(τ)
x + ((tk − t)/τ)u(τ)

x on (tk−1, tk] ×Ω, then thanks to
Lemma 4.1 we deduce that ‖ũ(τ)‖L2(0,T ;H1(Ω)) is uniformly bounded. Finally, to check (4.15), we
have from (4.3) that for t ∈ (tk−1, tk), ‖ũ(τ) − u(τ)‖(H1(Ω))′ = (tk − t)‖ũ(τ)

t ‖(H1(Ω))′ ≤ τ‖ũ(τ)
t ‖(H1(Ω))′ .

This leads to the result by using (4.14).

4.3. Passing to the limit as τ → 0: End of proof of Theorem 2.2

Using (4.14), we deduce the existence of a function u ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))′)
such that as τ → 0 at least for some subsequence,

ũ(τ) ⇀ u weakly in L2(0, T ;H1(Ω)
) ∩H1(0, T ;

(
H

1(Ω
))′)

. (4.16)

Then Aubin compactness lemma and the compactness of the embedding of H1(Ω) into L∞

lead to the strong convergence

ũ(τ) −→ u strongly in L2(0, T ;L∞(Ω)
)
. (4.17)

Moreover, by Lemma 4.1, we infer the existence of a function v in L2(0, T ;H1(Ω)) and a
subsequence of uτ such that

u(τ) ⇀ v weakly in L2(0, T ;H1(Ω)
)
, (4.18)

and according to (4.15) and (4.16), we derive that v = u. Moreover, we have the strong
convergence

u(τ) −→ u strongly in L
2(QT

)
. (4.19)

Indeed,

∥∥u(τ) − u
∥∥
L2(QT )

≤ ∥∥u(τ) − ũ(τ)∥∥
L2(QT )

+
∥∥ũ(τ) − u

∥∥
L2(QT )

≤ C
∥∥ũ(τ) − u(τ)∥∥1/2

L2(0,T ;H1(Ω))

∥∥ũ(τ) − u(τ)∥∥1/2
L2(0,T ;(H1(Ω))′) +

∥∥ũ(τ) − u
∥∥

L2(QT )
,
(4.20)
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where C > 0 is independent of τ . Using (4.7), (4.14), (4.15), and (4.17), it is straightforward
to deduce that u(τ) → u strongly in L

2(QT ), and hence a.e. in QT . Consequently, u = (α, β)
satisfies

0 ≤ α, β, α + β ≤ 1, a.e. in QT. (4.21)

Finally, since H1(0, T ; (H1(Ω))′) ∩ L2(0, T ;H1(Ω)) ⊂ C0([0, T];L2(Ω)), the initial condition is
satisfied and thus u is a weak solution of (1.25)–(1.27) in the sense of Definition 2.1.

Remark 4.3. The result proved in this work remains valid if we replace the condition λ = μ =
P0 by one of these conditions:

8
7
max(λ, μ) ≤ P0 ≤ 18

7
(λ + μ) or

2
3
max(λ, μ) ≤ P0 ≤ 8

7
min(λ, μ). (4.22)

Indeed, in these cases, direct calculations show that (3.15) becomes

( − 2μb − 2λa + 2P0
)2 ≤ 9

4
(
2λ(1 − a) + P0

)(
2μ(1 − b) + P0

)
if 0 ≤ a, b, a + b ≤ 1. (4.23)

Appendix

Proof of Lemma 3.6

Inequality (3.28) is equivalent to say that, for all (r, s) ∈ R
2,

(
Bτ
12(r, s)

(
1 + 2τe−r

)
+ Bτ

21(r, s)
(
1 + 2τe−s

))2

≤ 4
(
Bτ
11(r, s)

(
1 + 2τe−r

) − τ2
)(
Bτ
22(r, s)

(
1 + 2τe−s

) − τ2
)
.

(A.1)

We write

((
Bτ
12(r, s)

(
1 + 2τe−r

)
+ Bτ

21(r, s)
(
1 + 2τe−s

))2 =
6∑

i=1

Ii, (A.2)

Ii denoting the successive terms of the equality

6∑

i=1

Ii = a2b2(a + b − 1)2 + 4τ2a2
(
a − 1

2

)2

+ 4τ2b2
(
b − 1

2

)2

+ 8τ2ab
(
a − 1

2

)(
b − 1

2

)
+ 4τa2b

(
a − 1

2

)
(a + b − 1) + 4τab2

(
b − 1

2

)
(a + b − 1),

(A.3)

with a = er and b = rs. We split the proof into two cases.
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Case 1. We suppose that a + b ≤ 1, so that

Bτ
11(r, s)

(
1 + 2τe−r

) − τ2 = a2
(
3
2
− a

)
+ τa + 2τa

(
3
2
− a

)
+ τ2 =

4∑

i=1

Ji,

Bτ
22(r, s)

(
1 + 2τe−s

) − τ2 = b2
(
3
2
− b

)
+ τb + 2τb

(
3
2
− b

)
+ τ2 =

4∑

i=1

Ki,

(A.4)

where Ji and Ki denote, respectively, the successive terms of the first and second sums in
(A.4). To handle I1, we use (3.15) to see that

I1 ≤ a2b2
(
3
2
− a

)(
3
2
− b

)
= J1K1. (A.5)

Next, to estimate the other terms, we use the inequality 0 ≤ 1 − a − b ≤ 1, together with
|c − 1/2| ≤ 1/2 ≤ (3/2 − c), valid for c = a and c = b. We get successively that

I2≤2τ2a2
(
3
2
− a

)
=2J1K4, I3≤2τ2b2

(
3
2
− b

)
=2J4K1, I4≤4τ2ab

(
3
2
− b

)
=2J2K3,

I5 ≤ 4τa2b

(
3
2
− a

)
= 4J1K2, I6 ≤ 4τab2

(
3
2
− b

)
= 4J2K1,

(A.6)

which concludes the proof in the first case.

Case 2. We suppose that a + b > 1, and we set Bτ
11(r, s)(1 + 2τe−r) − τ2 = f(a, b),where

f(a, b) =
8∑

i=1

Li = a2
(
1
2
+ b

)
+ a2b(a + b − 1) + τa + 5a(a + b − 1)(a + b)

+ 2τa
(
1
2
+ b

)
+ 2τab(a + b − 1) + 10τ(a + b − 1)(a + b) + τ2.

(A.7)

Then, Bτ
22(r, s)(1 + 2τe−s) − τ2 = f(b, a), and we set f(b, a) =

∑8
i=1Mi. Here again, the

enumeration respects the ordering of the terms in each sum. First, we get from (3.19) that

I1 ≤ 9
4
a2b2

(
1
2
+ b + b(a + b − 1)

)(
1
2
+ a + a(a + b − 1)

)
=

9
4
(
L1 + L2

)(
M1 +M2

)
. (A.8)

Next, to estimate I2, we distinguish two situations. If a ≤ 1/2+ 1/
√
2, then (a − 1/2)2 ≤ 1/2 ≤

1/2 + b and

I2 ≤ 4τ2a2
(
1
2
+ b

)
= 4L1M8. (A.9)
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Otherwise, we have a − 1/2 ≤ 6(a + b − 1), and

I2 ≤ 144τ2(a + b − 1)2(a + b)2 =
36
25

L7M7. (A.10)

Notice that I3 can be estimated in the same way. Now for I4, since (a − 1/2)(b − 1/2) ≤
(a + 1/2)(b + 1/2), we see that

I4 ≤ 2L5M5. (A.11)

To estimate I5, we consider first the case a ≤ 3/2, so that we have

I5 ≤ 4τab(a + b − 1)(a + b) =
4
5
L3M4, (A.12)

then if a > 3/2, the inequality a − 1/2 < 6 (a + b − 1) leads to

I5 ≤ 24τb(a + b)2(a + b − 1)2 =
12
25

L7M4. (A.13)

I6 can be estimated along the same lines as I5, and we get the result.
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