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1. Introduction

LetN be a fixed integer. Let BN denote the unit ball of C
N and letH(BN) denote the space of

all holomorphic functions in BN . For each p, 1 ≤ p <∞, the Hardy spaceHp(BN) is defined by

Hp
(
BN

)
=
{
f ∈ H(

BN
)
: sup
0<r<1

∫

∂BN

∣∣f(rζ)
∣∣pdσ(ζ) <∞

}
,

‖f‖p =
[∫

∂BN

∣∣f∗(ζ)
∣∣pdσ(ζ)

]1/p
,

(1.1)

where dσ is the normalized Lebesgue measure on the boundary ∂BN of BN .
For a given holomorphic self-map ϕ of BN and holomorphic function u in BN , the

weighted composition operator uCϕ is defined by uCϕf = u(f ◦ ϕ). In particular, if u is the con-
stant function 1, then uCϕ becomes the composition operator Cϕ. In the special case that ϕ is the
identity mapping of BN , uCϕ is called the multiplication operator and is denoted byMu.

Let X and Y be Banach spaces. For a bounded linear operator T : X → Y , the essential
norm ‖T‖e,X→Y is defined to be the distance from T to the set of the compact operators K,
namely,

‖T‖e,X→Y = inf
{‖T −K‖ : K is compact from X into Y

}
, (1.2)
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where ‖ · ‖ denotes the usual operator norm. Clearly, T is compact if and only if ‖T‖e,X→Y = 0.
Thus, the essential norm is closely related to the compactness problem of concrete operators.
Many mathematicians have studied the essential norm of various concrete operators. For these
studies about composition operators on Hardy spaces of the unit disc, refer to [1–4]. In this
paper, our objects are weighted composition operators between Hardy spaces of the unit ball
BN . Several authors have also studied weighted composition operators on various analytic
function spaces. For more information about weighted composition operators, refer to [5–10].

Recently, Contreras and Hernández-Dı́az [11, 12] have characterized the compactness
of uCϕ from Hp(B1) into Hq(B1) (1 < p ≤ q < ∞) in terms of the pull-back measure. Here,
B1 denotes the open unit disc in the complex plane. But they have not given the estimate for
the essential norm of uCϕ. The essential norm of uCϕ : Hp(B1) → Hq(B1) has been studied
by C̆uc̆ković and Zhao [13, 14]. In the higher-dimensional case, Ueki [15] characterized the
boundedness and compactness of uCϕ : Hp(BN) → Hq(BN), in terms of the pull-back measure
and the integral operator. The purpose of this paper is to estimate the essential norm of uCϕ :
Hp(BN) → Hq(BN). The following theorem is our main result.

Main Theorem. Let 1 < p ≤ q <∞. If uCϕ is a bounded weighted composition operator fromHp(BN)
intoHq(BN), then

∥∥uCϕ

∥∥q
e,Hp→Hq ∼ lim sup

|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ)

∼ lim sup
t→0+

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
,

(1.3)

where μϕ,u is the pull-back measure induced by ϕ and u, S(ζ, t) is the Carleson set of BN , and the
notation ∼ means that the ratios of two terms are bounded below and above by constants dependent
upon the dimensionN and other parameters.

The one variable case of the first estimate for ‖uCϕ‖e in above theorem may be
found in the work [14] by C̆uc̆ković and Zhao. In the case p = q = 2 and u = 1,
Choe [1] and Luo [16] showed that the essential norm ‖Cϕ‖e is comparable to the value
lim supt→0+supζ∈∂BN(μϕ(S(ζ, t))/t

N).
We give the proof of main theorem in Section 3. The ideas of our proofs are based on

the method which Choe or Luo used in their papers. In Section 4, we have a discussion on the
compact multiplication operator between different Hardy spaces.

Throughout the paper, the symbol C denotes a positive constant, possibly different at
each occurrence, but always independent of the function f and other parameters r or t.

2. Carleson-type measures

For each u ∈ Hq(BN), we can define a finite positive Borel measure μϕ,u on BN by

μϕ,u(E) =
∫

ϕ∗−1(E)

∣
∣u∗

∣
∣q dσ (∀ Borel sets E of BN), (2.1)
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where ϕ∗ denotes the radial limit map of the mapping ϕ considered as a map of ∂BN → BN . A
change-of-variable formula from measure theory shows that

∫

BN

g dμϕ,u =
∫

∂BN

∣∣u∗
∣∣q(g ◦ ϕ∗)dσ, (2.2)

for each nonnegative measurable function g on BN . This type of pull-back measure played an
important role in past studies of composition operators on Hardy spaces of BN .

For each ζ ∈ ∂BN and t > 0, let

S(ζ, t) =
{
z ∈ BN :

∣∣1 − 〈z, ζ〉∣∣ < t},

B(ζ, t) = S(ζ, t) ∩ BN, Q(ζ, t) = S(ζ, t) ∩ ∂BN.
(2.3)

It is well known that σ(Q(ζ, t)) is comparable to tN ([17, page 67]).
The proof of the following lemma is essentially the same as that of Power’s theorem in

[18].

Lemma 2.1. Let 1 ≤ α < ∞. Suppose that μ is a positive Borel measure on BN and that there exists a
constant C > 0 such that

μ
(
B(ζ, t)

) ≤ CtαN (
ζ ∈ ∂BN, t > 0

)
. (2.4)

Then there exists a constant K > 0 such that
[∫

BN

|f |pαdμ
]1/pα

≤ K‖f‖Hp

(
f ∈ Hp(BN

))
. (2.5)

Proof. Fix f ∈ Hp(BN) and s > 0. By the same argument as in the proof of theorem in [18, pages
14-15], it follows from (2.4) that there exists a constant C > 0 such that

μ
({
z ∈ BN :

∣∣f(z)
∣∣ ≥ s}) ≤ C[σ({ζ ∈ ∂BN :Mf(ζ) ≥ s})]α, (2.6)

whereMf is the admissible maximal function of f which is defined by

Mf(ζ) = sup
{∣∣f(z)

∣
∣ : z ∈ C

n,
∣
∣1 − 〈z, ζ〉∣∣ < 1 − |z|2}, (2.7)

for ζ ∈ ∂BN . By (2.6), we have
∫

BN

|f |pαdμ = pα
∫∞

0
μ
{|f | > s}spα−1ds ≤ Cpα

∫∞

0
σ{Mf ≥ s}αspα−1ds. (2.8)

Since f ∈ Hp(BN), it follows from [17, Theorem 5.6.5] that

σ{Mf ≥ s}α−1spα−p ≤
[∫

∂BN

{
Mf(ζ)

}p
dσ(ζ)

]α−1
≤ C‖f‖p(α−1)Hp . (2.9)

By (2.8) and (2.9), we have
∫

BN

|f |pαdμ ≤ C‖f‖p(α−1)Hp p

∫∞

0
σ{Mf ≥ s}sp−1ds

≤ C‖f‖p(α−1)Hp

∫

∂BN

{
Mf(ζ)

}p
dσ(ζ) ≤ C‖f‖pαHp .

(2.10)

This completes the proof.



4 Abstract and Applied Analysis

Lemma 2.2. Let 1 ≤ α <∞. Suppose that μ is a positive Borel measure on ∂BN such that

μ
(
Q(ζ, t)

) ≤ CtαN (
ζ ∈ ∂BN, t > 0

)
, (2.11)

for some constant C > 0.

(a) If α = 1, then there exist a g ∈ L∞(∂BN) and a constant C′ > 0 (C′ is the product of C and a
constant depending only on the dimensionN) such that dμ = gdσ and ‖g‖L∞ ≤ C′.

(b) If α > 1, then μ ≡ 0 for all Borel sets of ∂BN .

Proof. Part (a) is completely analogous to [19, page 238, Lemma 1.3]. So we only prove part
(b). Combining σ(Q(ζ, t))∼tN with (2.11), we have

μ
(
Q(ζ, t)

)

σ
(
Q(ζ, t)

) ≤ CtN(α−1) (2.12)

for all ζ ∈ ∂BN and t > 0. Hence we see that the maximal functionMμ of the positive measure μ
satisfies Mμ(ζ) < ∞ for all ζ ∈ ∂BN . By [17, page 70, Theorem 5.2.7], we obtain dμ = gdσ for
some g ∈ L1(∂BN). By (2.12), we have

0 ≤ 1
σ
(
Q(ζ, t)

)
∫

Q(ζ,t)
gdσ =

μ
(
Q(ζ, t)

)

σ
(
Q(ζ, t)

) ≤ CtN(α−1) (2.13)

for all ζ ∈ ∂BN and t > 0. Letting t → 0+, we see that g = 0 a.e. on ∂BN , and so μ ≡ 0. This
completes the proof of part (b).

Combining Lemma 2.1 with Lemma 2.2 and using the same argument as in [19, page
239], we obtain the following lemma.

Lemma 2.3. Let 1 < p ≤ q <∞. Suppose that μ is a positive Borel measure on BN such that

μ
(
S(ζ, t)

) ≤ CtqN/p (
ζ ∈ ∂BN, t > 0

)
, (2.14)

for some constant C > 0. Then, there exists a constant K > 0 such that

[∫

BN

∣∣f∗∣∣qdμ
]1/q≤K‖f‖Hp

, (2.15)

for all f ∈ Hp(BN). Here, the notation f∗ denotes the function defined on BN by f∗ = f in BN and
f∗ = limr→1−fr a.e. [σ] on ∂BN .

Remark 2.4. In Lemma 2.3 (or in Lemma 2.1), we see that the constant K of (2.15) (or (2.5))
can be chosen to be the product of C and a positive constant depending only on p, q, and the
dimensionN.

In order to prove the main theorem, we need some results. These are the extensions of
[19, Corollary 1.4 and Lemma 1.6] to the case of weighted composition operators uCϕ.
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Proposition 2.5. Let 1 < p ≤ q < ∞. Suppose that ϕ : BN → BN is a holomorphic map and
u ∈ Hq(BN) \ {0} such that uCϕ : Hp(BN) → Hq(BN) is bounded. Then ϕ∗ cannot carry a set of
positive σ-measure in ∂BN into a set of σ-measure 0 in ∂BN .

Proof. Suppose that E, F ⊂ ∂BN and ϕ∗(E) ⊂ F with σ(E) > 0 and σ(F) = 0. Put μ = μϕ,u|∂BN . As
in the case of composition operators, it is well known that the boundedness of uCϕ : Hp(BN) →
Hq(BN) implies

μ
(
S(ζ, t)

) ≤ CtqN/p (
ζ ∈ ∂BN, t > 0

)
, (2.16)

for some positive constant C (see [15]). By Lemma 2.2, we see that μ ≡ 0 (if p < q) or μ is
absolutely continuous with respect to dσ (if p = q). Thus we have

0 ≥ μ(ϕ∗(E)
) ≡

∫

ϕ∗−1(ϕ∗(E))

∣
∣u∗

∣
∣qdσ ≥

∫

E

∣
∣u∗

∣
∣qdσ. (2.17)

That is, u∗ = 0 a.e. on E. Hence [17, page 83, Theorem 5.5.9] gives that u ≡ 0 in BN . This
contradicts u/≡ 0.

Lemma 2.6. Let 1 < p ≤ q < ∞ and f ∈ Hp(BN). Suppose that ϕ : BN → BN is a holomorphic map
and u ∈ Hq(BN)\{0} such that uCϕ : Hp(BN) → Hq(BN) is bounded. Then u∗(f ◦ ϕ)∗ = u∗(f∗◦ϕ∗)
a.e. [σ] on ∂BN . Here the notation f∗ is used as in Lemma 2.3.

Proof (cf. [19, Lemma 1.6]). Since ϕ∗ cannot carry a set of positive measure in ∂BN into a set of
measure 0 in ∂BN (by Proposition 2.5) and since the radial limit of ϕ, f and ψ exist on a set of
full measure in ∂BN , we have limr→1−u

∗(fr ◦ ϕ∗) = u∗(f∗ ◦ ϕ∗) a.e. [σ] on ∂BN .
On the other hand, since fr is in the ball algebraA(BN) and fr → f as r → 1− inHp(BN),

the boundedness of uCϕ shows that

0 ≤
∫

∂BN

∣∣u∗(ζ)(f ◦ ϕ)∗(ζ) − u∗(ζ)(f∗ ◦ ϕ∗)(ζ)
∣∣qdσ(ζ)

≤ lim inf
r→1−

∫

∂BN

∣∣u∗(ζ)(f ◦ ϕ)∗(ζ) − u∗(ζ)(fr ◦ ϕ
)∗(ζ)

∣∣qdσ(ζ)

= lim inf
r→1−

∥∥uCϕf − uCϕfr
∥∥q
Hq = 0.

(2.18)

This implies that u∗(f ◦ ϕ)∗ = u∗(f∗ ◦ ϕ∗) a.e. [σ] on ∂BN .

3. Weighted composition operators between Hardy spaces

Theorem 3.1. Let 1 < p ≤ q < ∞. If uCϕ is a bounded weighted composition operator from Hp(BN)
intoHq(BN), then

∥∥uCϕ

∥∥q
e,Hp→Hq ∼ lim sup

|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ)

∼ lim sup
t→0+

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
.

(3.1)
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Proof of the lower estimates. For each w ∈ BN , we define the function fw on BN by

fw(z) =
{

1 − |w|2
(
1 − 〈z,w〉)2

}N/p

. (3.2)

Then the functions {fw : w ∈ BN} belong to the ball algebra A(BN) and form a bounded
sequence of Hp(BN). Take a compact operator K : Hp(BN) → Hq(BN) arbitrarily. Since the
bounded sequence {fw} converges to 0 uniformly on compact subsets of BN as |w| → 1−, we
have ‖Kfw‖Hq → 0 as |w| → 1−. Thus we obtain

∥∥uCϕ −K∥∥
Hp→Hq ≥ C lim sup

|w|→1−

∥∥(uCϕ −K)
fw

∥∥
Hq ≥ C lim sup

|w|→1−

∥∥uCϕfw
∥∥
Hq. (3.3)

By the definition of fw, we also see that

∥∥uCϕfw
∥∥q
Hq =

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣
∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ). (3.4)

Combining this with (3.3), we get

∥∥uCϕ −K∥∥q
Hp→Hq ≥ C lim sup

|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ). (3.5)

Since this holds for every compact operator K, it follows that

∥∥uCϕ

∥∥q
e,Hp→Hq ≥ C lim sup

|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ). (3.6)

Furthermore, we put w = (1 − t)ζ for each t, 0 < t < 1 and ζ ∈ ∂BN in the definition of
fw. Since we see that |f(1−t)ζ(z)| ≥ Ct−qN/p for all z ∈ S(ζ, t), we have

C sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
≤ sup

ζ∈∂BN

∫

S(ζ,t)

∣∣f(1−t)ζ
∣∣qdμϕ,u ≤ sup

ζ∈∂BN

∥∥uCϕf(1−t)ζ
∥∥q
Hq . (3.7)

Letting t→ 0+, we get

C lim sup
t→0+

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
≤ lim sup

t→0+
sup
ζ∈∂BN

∥∥uCϕf(1−t)ζ
∥∥q
Hq . (3.8)

Combining this with (3.6), we obtain

C lim sup
t→0+

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
≤ ∥∥uCϕ

∥∥q
e,Hp→Hq, (3.9)

completing the proof of the lower estimates.
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To prove the upper estimates, we need some technical results about the polynomial ap-
proximation of f ∈ Hp(BN). Recall that a holomorphic function f in BN has the homogeneous
expansion

f(z) =
∞∑

k=0

∑

|γ |=k
c(γ)zγ , (3.10)

where γ = (γ1, . . . , γN) is a multi-index, |γ | = γ1 + · · · + γN , and zγ = z1
γ1 · · · zNγN . For the

homogeneous expansion of f and any integer n ≥ 1, let

Rnf(z) =
∞∑

k=n

∑

|γ |=k
c(γ)zγ , (3.11)

and Kn = I − Rn, where If = f is the identity operator.

Proposition 3.2. Suppose that X is a Banach space of holomorphic functions in BN with the property
that the polynomials are dense in X. Then ‖Knf − f‖X → 0 as n → ∞ if and only if sup{‖Kn‖ : n ≥
1} <∞.

Proof. We see that [20, Proposition 1] also holds if we replace the unit disc with the unit ball.
So we omit the proof of this proposition.

Proposition 3.3. If 1 < p <∞, then ‖Knf − f‖Hp → 0 as n→ ∞ for each f ∈ Hp(BN).

Proof. For each f ∈ Hp(BN) and r, 0 < r < 1, the slice function (fr)ζ (ζ ∈ ∂BN) of fr is in the
disc algebra A(D). Here, fr denotes the dilated function of f , that is fr(z) = f(rz). Hence [20,
Corollary 3 and Proposition 1] implies that there is a positive constant Cp such that

1
2π

∫π

−π

∣∣Kn

(
fr
)
ζ

(
eiθ

)∣∣pdθ ≤ Cp
1
2π

∫π

−π

∣∣(fr
)
ζ

(
eiθ

)∣∣pdθ, (3.12)

for every integer n ≥ 1. Since Kn(fr)ζ(e
iθ) = Knf(reiθζ), integration by slices (see [17, page 15,

Proposition 1.4.7.]) shows
∫

∂BN

∣∣Knf(rζ)
∣∣pdσ(ζ) ≤ Cp

∫

∂BN

∣∣f(rζ)
∣∣pdσ(ζ), (3.13)

that is, ‖Kn‖ ≤ C
1/p
p for every integer n ≥ 1. By Proposition 3.2, we see ‖Knf − f‖Hp → 0 as

n→ ∞. This completes the proof of the proposition.

Corollary 3.4. If 1 < p < ∞, then Rn converges to 0 pointwise in Hp(BN) as n → ∞. Moreover,
sup{‖Rn‖ : n ≥ 1} <∞.

Proof. Since Rnf = f − Knf , Proposition 3.3 shows that ‖Rnf‖p → 0 as n → ∞. Furthermore,
the principle of uniform boundedness implies that supn≥1‖Rn‖ <∞.

Lemma 3.5. Let 1 < p <∞. For each f ∈ Hp(BN) and n ≥ 1,

∣
∣Rnf(z)

∣
∣ ≤ ‖f‖Hp

∞∑

k=n

Γ(N + k)
k!Γ(N)

|z|k. (3.14)
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Proof. Let Kw be the reproducing kernel forH2(BN) and let C[f] be the Cauchy-Szegö projec-
tion. Then, the orthogonality of monomials ζα implies that

Rnf(z) = C
[
Rnf

]
(z) =

∫

∂BN

Rnf(ζ)Kz(ζ)dσ(ζ) =
∫

∂BN

f(ζ)RnKz(ζ)dσ(ζ). (3.15)

Hölder’s inequality and the expansion of Kz(w) give

∣∣Rnf(z)
∣∣ ≤

∫

∂BN

∣∣f(ζ)
∣∣∣∣RnKz(ζ)

∣∣dσ(ζ)

≤
{∫

∂BN

∣∣f(ζ)
∣∣p dσ(ζ)

}1/p{∫

∂BN

∣∣RnKz(ζ)
∣∣q dσ(ζ)

}1/q

≤ ‖f‖Hp

∞∑

k=n

Γ(N + k)
k!Γ(N)

|z|k.

(3.16)

This completes the proof.

The following lemma is well known in the case of functional Hilbert spaces (cf. [4, 21]).
As in the proof of [21, Lemma 3.16], an elementary argument verifies Lemma 3.6.

Lemma 3.6. Let 1 < p ≤ q <∞. If uCϕ is bounded fromHp(BN) intoHq(BN), then

∥∥uCϕ

∥∥
e,Hp→Hq ≤ lim inf

n→∞
∥∥uCϕRn

∥∥
Hp→Hq. (3.17)

Let us prove the upper estimates for the essential norm of uCϕ.

Proof of the upper estimates. For the sake of convenience, we set

M1 = lim sup
|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣
∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}(qN/p)

dσ(ζ), (3.18)

M2 = lim sup
t→0+

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
, (3.19)

D(ζ, t) =
{
z ∈ BN : |z| > 1 − t, z

|z| ∈ Q(ζ, t)
}
. (3.20)

By the notation (3.18), for given ε > 0, we can choose an R1, 0 < R1 < 1 such that

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ) < M1 + ε, (3.21)

for w ∈ BN with |w| ≥ R1. For each ζ ∈ ∂BN and t, 0 < t ≤ 1 − R1 ≡ t1, we put w1 = (1 − t)ζ.
Since the function fw1(z) = {(1 − |w1|2)/(1 − 〈z,w1〉)2}N/p satisfies |fw1(z)|p> 4−Nt−N for all
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z ∈ S(ζ, t), the inequality (3.21) implies that

μϕ,u
(
S(ζ, t)

)

tqN/p
< C

∫

S(ζ,t)

∣
∣fw1(z)

∣
∣qdμϕ,u(z) < C(M1 + ε) (3.22)

for all ζ ∈ ∂BN and all t, 0 < t ≤ t1.
By the notation (3.19), we can also choose a t2, 0 < t2 < 1, so that

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
< M2 + ε (3.23)

for all t, 0 < t ≤ t2. Let μ1 and μ2 be the restrictions of μϕ,u to BN \ (1− t1)BN and BN \ (1− t2)BN ,
respectively. We claim that μj (j = 1, 2) also satisfies the Carleson measure condition

μj
(
S(ζ, t)

) ≤ C(Mj + ε
)
tqN/p (3.24)

for all ζ ∈ ∂BN and t > 0. By (3.22) or (3.23), these conditions are true for all t, 0 < t ≤ tj .
Hence, we assume that t > tj . For a finite cover {Q(wk, tj/3)}, where wk ∈ Q(ζ, t) of the set
Q(ζ, t) = {z ∈ ∂BN : |1 − 〈z, ζ〉| ≤ t}, the covering property implies that there exists a disjoint
subcollection Γ of {Q(wk, tj/3)} so that

Q(ζ, t) ⊂
⋃

Γ

Q
(
wk, tj

)
. (3.25)

Furthermore, we obtain card(Γ) ≤ C(t/tj)N . By the notation (3.20), we have

μj
(
S(ζ, t)

) ≤ μj
(
D(ζ, t)

) ≤
∑

Γ

μj
(
D
(
wk, tj

))

≤
∑

Γ

μj
(
S
(
wk, 2tj

)) ≤ C
(
t

tj

)N(
Mj + ε

)
tj
qN/p

= C
(
Mj + ε

)
tNtj

(q/p−1)N ≤ C(Mj + ε
)
tqN/p,

(3.26)

where the constant C depends only on p, q, and the dimensionN.
Now, we take a function f ∈ Hp(BN) with ‖f‖Hp ≤ 1. By Lemma 2.6, we have

∥∥uCϕRnf
∥∥q
Hq =

∫

∂BN

∣∣u∗
(
Rnf

∗ ◦ ϕ∗)∣∣q dσ

=
∫

BN

∣∣Rnf
∗∣∣q dμϕ,u

=
∫

BN

∣∣Rnf
∗∣∣q dμj +

∫

(1−tj)BN

∣∣Rnf
∣∣q dμϕ,u

(3.27)

for all integers n ≥ 1. Condition (3.24) and Lemma 2.3 implies that
∫

BN

∣∣Rnf
∗∣∣q dμj ≤ C

(
Mj + ε

)∥∥Rnf
∥∥q
Hp ≤ C sup

n≥1

∥∥Rn

∥∥q(Mj + ε
)
. (3.28)
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On the other hand, by Lemma 3.5, we have

∫

(1−tj)BN

∣∣Rnf
∣∣q dμϕ,u ≤ ‖f‖qHp

{ ∞∑

k=n

Γ(N + k)
k!Γ(N)

∣∣1 − tj
∣∣k
}q

‖u‖qHq . (3.29)

The boundedness of uCϕ implies that u ∈ Hq(BN) and the convergence of the series
∑
(Γ(N +

k)/k!Γ(N))|1 − tj |k implies that

∞∑

k=n

Γ(N + k)
k!Γ(N)

∣∣1 − tj
∣∣k −→ 0 as n −→ ∞. (3.30)

So we obtain
∫

(1−tj)BN

∣∣Rnf
∣∣q dμu,ϕ −→ 0 as n −→ ∞. (3.31)

Combining (3.27), (3.28), and (3.31)with Lemma 3.6, we have

∥∥uCϕ

∥∥q
e,Hp→Hq ≤ lim inf

n→∞
∥∥uCϕRn

∥∥q
Hp→Hq ≤ C sup

n≥1

∥∥Rn

∥∥q(Mj + ε
)
. (3.32)

Since Corollary 3.4 implies that supn≥1‖Rn‖ <∞, and ε > 0 was arbitrary, we conclude that

‖uCϕ‖qe,Hp→Hq ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C lim sup
|w|→1−

∫

∂BN

∣
∣u∗(ζ)

∣∣q
{

1 − |w|2
∣∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ),

C lim sup
t→0+

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
,

(3.33)

which were to be proved.

Corollary 3.7 (see [15]). Suppose that 1 < p ≤ q <∞. For the bounded weighted composition operator
uCϕ : Hp(BN) → Hq(BN), the following conditions are equivalent:

(a) uCϕ : Hp(BN) → Hq(BN) is compact;

(b) u and ϕ satisfy

lim
|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣∣1 − 〈

ϕ∗(ζ), w
〉∣∣2

}qN/p

dσ(ζ) = 0; (3.34)

(c) u and ϕ satisfy

lim
t→0+

sup
ζ∈∂BN

μϕ,u
(
S(ζ, t)

)

tqN/p
= 0. (3.35)
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4. Multiplication operators between Hardy spaces

In this section, we consider the compact multiplication operator Mu between Hardy spaces.
As a consequence of Theorem 3.1, we obtain the following results.

Corollary 4.1. Suppose that 1 < p ≤ q <∞. For the bounded multiplication operatorMu : Hp(BN) →
Hq(BN), the following inequality holds:

∥∥Mu

∥∥q
e,Hp→Hq∼lim sup

|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣∣1 − 〈ζ,w〉∣∣2

}qN/p

dσ(ζ). (4.1)

Furthermore,Mu : Hp(BN) → Hq(BN) is compact if and only if

lim
|w|→1−

∫

∂BN

∣∣u∗(ζ)
∣∣q
{

1 − |w|2
∣
∣1 − 〈ζ,w〉∣∣2

}qN/p

dσ(ζ) = 0. (4.2)

By using Corollary 4.1, we can completely characterize the compactness of a multiplica-
tion operatorMu fromHp(BN) intoHq(BN).

Theorem 4.2. Suppose that 1 < p ≤ q <∞. ThenMu : Hp(BN) → Hq(BN) is compact if and only if
u = 0 in BN .

Proof. If u ≡ 0, then Mu is compact. Thus, we only prove that the compactness of Mu implies
u ≡ 0. The boundedness ofMu implies that u ∈ Hq(BN). Hence, the Poisson representation for
u gives that

u(w) =
∫

∂BN

u∗(ζ)P(w, ζ)dσ(ζ)
(
w ∈ BN

)
, (4.3)

where P(w, ζ) is the Poisson kernel. Hölder’s inequality shows that

|u(w)| ≤
∫

∂BN

∣∣u∗(ζ)
∣∣P(w, ζ)dσ(ζ)

≤
{∫

∂BN

∣∣u∗(ζ)
∣∣qP(w, ζ)q/p dσ(ζ)

}1/q{∫

∂BN

P(w, ζ)(1−1/p)q
′
dσ(ζ)

}1/q′

,

(4.4)

where 1/q + 1/q′ = 1. By the assumption 1 < p ≤ q <∞, we see that

s ≡
(
1 − 1

p

)
q′ =

q(p − 1)
p(q − 1)

≤ pq − p
p(q − 1)

= 1, (4.5)

and so we have

∫

∂BN

P(w, ζ)(1−1/p)q
′
dσ(ζ) ≤

{∫

∂BN

{
P(w, ζ)s

}1/s
dσ(ζ)

}s

= 1. (4.6)



12 Abstract and Applied Analysis

Inequality (4.4) and Corollary 4.1 give that lim|w|→1− |u(w)| = 0. Since u ∈ Hq(BN), this implies
that u has aK-limit 0 on a set of positive σ-measure in ∂BN . Hence [17, page 83, Theorem 5.5.9]
shows that u ≡ 0. This completes the proof.
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