
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2008, Article ID 192679, 19 pages
doi:10.1155/2008/192679

Research Article
Minimization of Tikhonov Functionals in
Banach Spaces

Thomas Bonesky,1 Kamil S. Kazimierski,1 Peter Maass,1
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1. Introduction

This article is concerned with the stable solution of operator equations of the first kind in Ba-
nach spaces. More precisely, we aim at computing a solution x ∈ X of

Ax = y + η (1.1)

for a linear, continuous mapping A : X → Y , where X and Y are Banach spaces and y ∈ Y
denotes the measured data which are contaminated by some noise η ∈ Y . There exists a large
variety of regularization methods for (1.1) in case that X and Y are Hilbert spaces such as
the truncated singular value decomposition, the Tikhonov-Phillips regularization, or iterative
solvers like the Landweber method and the method of conjugate gradients. We refer to the
monographs of Louis [1], Rieder [2], Engl et al. [3] for a comprehensive study of solution
methods for inverse problems in Hilbert spaces.

The development of explicit solvers for operator equations in Banach spaces is a current
field of research which has great importance since the Banach space setting allows for dealing
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with inverse problems in a mathematical framework which is often better adjusted to the re-
quirements of a certain application. Alber [4] established an iterative regularization scheme
in Banach spaces to solve (1.1) where particularly A : X → X∗ is a monotone operator. In
case that X = Y , Plato [5] applied a linear Landweber method together with the discrepancy
principle in order to get a solution to (1.1) after a discretization. Osher et al. [6] developed an
iterative algorithm for image restoration by minimizing the BV norm. Butnariu and Resmerita
[7] used Bregman projections to obtain a weakly convergent algorithm for solving (1.1) in a
Banach space setting. Schöpfer et al. [8] proved strong convergence and stability of a nonlinear
Landweber method for solving (1.1) in connection with the discrepancy principle in a fairly
general setting where X has to be smooth and uniformly convex.

The idea of this paper is to get a solver for (1.1) by minimizing a Tikhonov functional
where we use Banach space norms in the data term as well as in the penalty term. Since we
only consider the case of exact data we put η = 0 in (1.1). That means that we investigate the
problem

min
x∈X

Ψ(x), (1.2)

where the Tikhonov functional Ψ : X → R is given by

Ψ(x) =
1
r
‖Ax − y‖rY + α

1
p
‖x‖pX, (1.3)

with a continuous linear operator A : X → Y mapping between two Banach spaces X and Y .
If X and Y are Hilbert spaces, many results exist for problem (1.2) concerning solution

methods, convergence, and stability of them and parameter choice rules for α can be found in
the literature. In case that only Y is a Hilbert space, this problem has been thoroughly studied
and many solvers have been established; see [9, 10]. A possibility to get an approximate solu-
tion for (1.2) is to use the steepest descent method. Assume for the moment that both X and
Y are Hilbert spaces and r = p = 2. Then Ψ is Gâteaux differentiable and the steepest descent
method applied to (1.2) coincides with the well-known Landweber method

xn+1 = xn − μn∇Ψ
(
xn

)
= xn − μnA∗

(
Axn − y

)
. (1.4)

This iterative method converges to the unique minimizer of problem (1.2), if the stepsize μn is
chosen properly.

In the present paper, we consider two generalizations of (1.4). First we notice that the
natural extension of the gradient ∇Ψ for convex, but not necessarily smooth, functionals Ψ is
the notion of the subdifferential ∂Ψ. We will elaborate the details later, but for the time being
we note that ∂Ψ is a set-valued mapping, that is, ∂Ψ : X ⇒ X∗. Here we make use of the usual
notation in the context of convex analysis, where f : X ⇒ Y means a mapping f from X to 2Y .
We then consider the formally defined iterative scheme

x∗n+1 = x
∗
n − μnψn with ψn ∈ ∂Ψ

(
xn

)
,

xn+1 = J∗q
(
x∗n+1

)
,

(1.5)

where J∗q : X∗ ⇒ X is a duality mapping of X∗. In the case of smooth Ψ we also consider a
second generalization to (1.4)

xn+1 = xn − μnJ∗q
(∇Ψn

(
xn

))
. (1.6)
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We will show that both schemes converge strongly to the unique minimizer of problem (1.2),
if μn is chosen properly.

Alber et al. presented in [11] an algorithm for the minimization of convex and not nec-
essarily smooth functionals on uniformly smooth and uniformly convex Banach spaces which
looks very similar to our first method in Section 3 and where the authors impose summation
conditions on the stepsizes μn. However, only weak convergence of the proposed scheme is
shown. Another interesting approach to obtain convergence results of descent methods in gen-
eral Banach spaces can be found in the recent papers by Reich and Zaslavski [12, 13]. We want
to emphasize that the most important novelties of the present paper are the strong convergence
results.

In the next section, we give the necessary theoretical tools and apply them in Sections 3
and 4 to describe the methods and prove their convergence properties.

2. Preliminaries

Throughout the paper, let X and Y be Banach spaces with duals X∗ and Y ∗. Their norms will
be denoted by ‖ · ‖. We omit indices indicating the space since it will become clear from the
context which one is meant. For x ∈ X and x∗ ∈ X∗, we write

〈
x, x∗

〉
=
〈
x∗, x

〉
= x∗(x). (2.1)

Let p, q ∈ (1,∞) be conjugate exponents such that

1
p
+
1
q
= 1. (2.2)

2.1. Convexity and smoothness of Banach spaces

We introduce some definitions and preliminary results about the geometry of Banach spaces,
which can be found in [14, 15].

The functions δX : [0, 2]→ [0, 1] and ρX : [0,∞)→ [0,∞) defined by

δX(ε) = inf
{
1 −

∥∥∥∥
1
2
(x + y)

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε
}
,

ρX(τ) =
1
2
sup{‖x + y‖ + ‖x − y‖ − 2 : ‖x‖ = 1, ‖y‖ ≤ τ}

(2.3)

are referred to as the modulus of convexity of X and the modulus of smoothness of X.

Definition 2.1. A Banach space X is said to be

(1) uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2],

(2) p-convex or convex of power type if for some p > 1 and C > 0,

δX(ε) ≥ Cεp, (2.4)

(3) smooth if for every x /= 0, there is a unique x∗ ∈ X∗ such that ‖x∗‖ = 1 and 〈x∗, x〉 = ‖x‖,
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(4) uniformly smooth if limτ→0(ρX(τ)/τ) = 0,

(5) q-smooth or smooth of power type if for some q > 1 and C > 0,

ρX(τ) ≤ Cτq. (2.5)

There is a tight connection between the modulus of convexity and the modulus of
smoothness. The Lindenstrauss duality formula implies that

X is p-convex iff X∗ is q-smooth,

X is q-smooth iff X∗ is p-convex,
(2.6)

(cf. [16], chapter II, Thereom 2.12). From Dvoretzky’s theorem [17], it follows that p ≥ 2 and
q ≤ 2. For Hilbert spaces the polarization identity

‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2 (2.7)

asserts that everyHilbert space is 2-convex and 2-smooth. For the sequence spaces 
p, Lebesgue
spaces Lp, and Sobolev spacesWm

p it is also known [18, 19] that


p, Lp,W
m
p with 1 < p ≤ 2 are 2-convex, p-smooth,


q, Lq,W
m
q with 2 ≤ q <∞ are q-convex , 2-smooth.

(2.8)

2.2. Duality mapping

For p > 1 the set-valued mapping Jp : X ⇒ X∗ defined by

Jp(x) =
{
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖∥∥x∗∥∥,∥∥x∗∥∥ = ‖x‖p−1} (2.9)

is called the duality mapping of X (with weight function t �→ tp−1). By jp we denote a single-
valued selection of Jp.

One can show [15, Theorem I.4.4] that Jp is monotone, that is,

〈x∗ − y∗, x − y〉 ≥ 0 ∀x∗ ∈ Jp(x), y∗ ∈ Jp(y). (2.10)

IfX is smooth, the dualitymapping Jp is single valued, that is, one can identify it as Jp : X → X∗

[15, Theorem I.4.5] .
If X is uniformly convex or uniformly smooth, then X is reflexive [15, Theorems II.2.9

and II.2.15]. By J∗p , we then denote the duality mapping from X∗ into X∗∗ = X.
Let ∂f : X ⇒ X∗ be the subdifferential of the convex functional f : X → R. At x ∈ X it is

defined by

x ∈ ∂f(x)⇐⇒ f(y) ≥ f(x) + 〈x, y − x〉 ∀y ∈ X. (2.11)

Another important property of Jp is due to the theorem of Asplund [15, Theorem I.4.4]

Jp = ∂
{
1
p
‖ · ‖p

}
. (2.12)

This equality is also valid in the case of set valued duality mappings.
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Example 2.2. In Lr spaces with 1 < r <∞, we have

〈
Jp(f), g

〉
=
∫ (

1

‖f‖r−pr

∣∣f(x)
∣∣r−1sign

(
f(x)

)
)

· g(x)dx. (2.13)

In the sequence spaces 
r with 1 < r <∞, we have

〈
Jp(x), y

〉
=
∑

i

(
1

‖x‖r−pr

∣∣xi
∣∣r−1sign

(
xi
)
)

· yi. (2.14)

We also refer the interested reader to [20]where additional information on duality map-
pings may be found.

2.3. Xu-Roach inequalities

The next theorem (see [19]) provides us with inequalities which will be of great relevance for
proving the convergence of our methods.

Theorem 2.3. (1) Let X be a p-smooth Banach space. Then there exists a positive constant Gp such
that

1
p
‖x − y‖p ≤ 1

p
‖x‖p − 〈Jp(x), y

〉
+
Gp

p
‖y‖p ∀x, y ∈ X. (2.15)

(2) Let X be a q-convex Banach space. Then there exists a positive constant Cq such that

1
q
‖x − y‖q ≥ 1

q
‖x‖q − 〈Jq(x), y

〉
+
Cq

q
‖y‖q ∀x, y ∈ X. (2.16)

We remark that in a real Hilbert space these inequalities reduce to the well-known polar-
ization identity (2.7). Further, we refer to [19] for the exact values of the constants Gp and Cq.
For special cases like 
p-spaces these constants have a simple form, see [8].

2.4. Bregman distances

It turns out that due to the geometrical characteristics of Banach spaces other than Hilbert
spaces, it is often more appropriate to use Bregman distances instead of conventional-norm-
based functionals ‖x − y‖ or ‖Jp(x) − Jp(y)‖ for convergence analysis. The idea to use such
distances to design and analyze optimization algorithms goes back to Bregman [21] and since
then his ideas have been successfully applied in various ways [4, 8, 22–26].

Definition 2.4. LetX be smooth and convex of power type. Then the Bregman distancesΔp(x, y)
are defined as

Δp(x, y) :=
1
q

∥∥Jp(x)
∥∥q − 〈Jp(x), y

〉
+
1
p
‖y‖p. (2.17)

We summarize a few facts concerning Bregman distances and their relationship to the
norm in X (see also [8, Theorem 2.12] ).
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Theorem 2.5. Let X be smooth and convex of power type. Then for all p > 1, x, y ∈ X, and sequences
(xn)n in X the following holds:

(1) Δp(x, y) ≥ 0,

(2) limn→∞‖xn − x‖ = 0⇐⇒ limn→∞Δp(xn, x) = 0,

(3) Δp(·, y) is coercive, that is, the sequence (xn) remains bounded if the sequence (Δp(xn, y)) is
bounded.

Remark 2.6. Δp(·, ·) is in general not metric. In a real Hilbert space Δ2(x, y) = (1/2)‖x − y‖2.

To shorten the proof in Chapter 3, we formulate and prove the following.

Lemma 2.7. Let X be a p-convex Banach space, then there exists a positive constant c, such that

c · ‖x − y‖p ≤ Δp(x, y). (2.18)

Proof. We have (1/q)‖Jp(x)‖q = (1/q)‖x‖p and 〈Jp(x), x〉 = ‖x‖p, hence

Δp(x, y) =
1
q

∥∥Jp(x)
∥∥q − 〈Jp(x), y

〉
+
1
p
‖y‖p

=
(
1 − 1

p

)
‖x‖p − 〈Jp(x), y

〉
+
1
p
‖y‖p

=
1
p

∥∥x − (x − y)∥∥p − 1
p
‖x‖p + 〈

Jp(x), x − y
〉
.

(2.19)

By Theorem 2.3, we obtain

Δp(x, y) ≥
Cp

p
‖x − y‖p. (2.20)

This completes the proof.

3. The dual method

This section deals with an iterative method for minimizing functionals of Tikhonov type. In
contrast to the algorithm described in the next section, we iterate directly in the dual space X∗.

Due to simplicity, we restrict ourselves to the Tikhonov functional

Ψ(x) =
1
r
‖Ax − y‖rY + α

1
2
‖x‖2X with r > 1, (3.1)

whereX is a 2-convex and smooth Banach space, Y is an arbitrary Banach space andA : X → Y
is a linear, continuous operator. For minimizing the functional, we choose an arbitrary starting
point x∗0 ∈ X∗ and consider the following scheme

x∗n+1 = x
∗
n − μnψn with ψn ∈ ∂Ψ

(
xn

)
,

xn+1 = J∗2
(
x∗n+1

)
.

(3.2)
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We show the convergence of this method in a constructive way. This will be done via the
following steps.

(1) We show the inequality

Δ2
(
xn+1, x

†) ≤ Δ2
(
xn, x

†) − μnα ·Δ2
(
xn, x

†) + μ2
n

G2

2
· ∥∥ψn

∥
∥2
, (3.3)

where x† is the unique minimizer of the Tikhonov functional (3.1).

(2) We choose admissible stepsizes μn and show that the iterates approach x† in the Breg-
man sense, if we assume

Δ2
(
xn, x

†) ≥ ε. (3.4)

We suppose ε > 0 to be small and specified later.

(3) We establish an upper estimate for Δ2(xn+1, x†) in the case that the condition
Δ2(xn, x†) ≥ ε is violated.

(4) We choose ε such that in the case Δ2(xn, x†) < ε the iterates stay in a certain Bregman
ball, that is, Δ2(xn+1, x†) < εaim, where εaim is some a priori chosen precision we want
to achieve.

(5) Finally, we state the iterative minimization scheme.

(i) First, we calculate the estimate for Δn+1, where

Δn := Δ2
(
xn, x

†). (3.5)

Under our assumptions on X, we know that Ψ has a unique minimizer x†. Using (3.2)
we get

Δn+1 =
1
2
∥∥x∗n+1

∥∥2 − 〈x∗n+1, x†
〉
+
1
2
∥∥x†

∥∥2

=
1
2
∥∥x∗n − μnψn

∥∥2 − 〈x∗n − μnψn, x†
〉
+
1
2
∥∥x†

∥∥2
.

(3.6)

We remember thatX is 2-convex, henceX∗ is 2-smooth; see Section 2.1. By Theorem 2.3 applied
to X∗, we get

1
2
∥∥x∗n − μnψn

∥∥2 ≤ 1
2
∥∥x∗n

∥∥2 − μn〈xn, ψn〉 + G2

2
· μ2

n

∥∥ψn
∥∥2
. (3.7)

Therefore,

Δn+1 ≤ 1
2
∥∥x∗n

∥∥2 − μn
〈
ψn, xn

〉
+
G2

2
· μ2

n

∥∥ψn
∥∥2 − 〈x∗n, x†

〉
+ μn

〈
ψn, x

†〉 +
1
2
∥∥x†

∥∥2

= Δn + μn
〈
ψn, x

† − xn
〉
+ μ2

n ·
G2

2
· ∥∥ψn

∥∥2
.

(3.8)
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We have

∂Ψ(x) = A∗Jr(Ax − y) + αJ2(x), (3.9)

(cf. [27], Chapter I; Propositons 5.6, 5.7). By definition, x† is the minimizer of Ψ, hence ψ† :=
0 ∈ ∂Ψ(x†). Therefore, with the monotonicity of Jr , we get

〈
ψn, x

† − xn
〉

=
〈
ψn − ψ†, x† − xn

〉

= α
〈
J2
(
xn

) − J2
(
x†
)
, x† − xn

〉
+
〈
A∗jr

(
Axn − y

) −A∗jr
(
Ax† − y), x† − xn

〉

= −α〈J2
(
xn

) − J2
(
x†
)
, xn − x†

〉 − 〈jr
(
Axn − y

) − jr
(
Ax† − y), (Axn − y

) − (Ax† − y)〉

≤ −α〈J2
(
xn

) − J2
(
x†
)
, xn − x†

〉
.

(3.10)

Consider

〈
ψn, x

† − xn
〉 ≤ −α〈J2

(
xn

) − J2
(
x†
)
, xn − x†

〉

= −α[Δ2
(
xn, x

†) + Δ2
(
x†, xn

)] ≤ −α ·Δn.
(3.11)

Finally, we arrive at the desired inequality

Δn+1 ≤ Δn − μnα ·Δn + μ2
n

G2

2
· ∥∥ψn

∥∥2
. (3.12)

(ii) Next, we choose admissible stepsizes. Assume that

Δ2
(
x0, x

†) = Δ0 ≤ R. (3.13)

We see that the choice

μn =
α

G2
∥∥ψn

∥∥2
·Δn (3.14)

minimizes the right-hand side of (3.12). We do not know the distance Δn, therefore, we
set

μn :=
α

G2P
· ε. (3.15)

We will impose additional conditions on ε later. For the time being, assume that ε is small. The
number P is defined by

P = P(R) = sup
{‖ψ‖2 : ψ ∈ ∂Ψ(x) with Δ2

(
x, x†

) ≤ R}. (3.16)

The Tikhonov functional Ψ is bounded on norm bounded sets, thus also ∂Ψ is bounded on
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norm-bounded sets. By Lemma 2.7, we know then that

∥∥x0 − x†
∥∥ ≤

√
R

c
. (3.17)

Hence, P is finite for finite R.

Remark 3.1. If we assume ‖x†‖ ≤ ρ and with the help of Lemma 2.7, the definition of P , and the
duality mapping J2, we get an estimate for P . We have

∥
∥x − x†∥∥ ≤

√
R

c
,

‖x‖ ≤ ∥
∥x − x†∥∥ +

∥
∥x†

∥
∥ ≤

√
R

c
+ ρ.

(3.18)

We calculate an estimate for ‖ψ‖ :

‖ψ‖ = ∥∥A∗jr(Ax − y) + αJ2(x)
∥∥

≤ ∥∥A∗
∥∥∥∥jr(Ax − y)

∥∥ + α
∥∥J2(x)

∥∥

≤ ∥∥A∗
∥∥‖Ax − y‖r−1 + α‖x‖

≤ ‖A‖
(

‖A‖
[√

R

c
+ ρ

]
+ ‖y‖

)r−1
+ α

(√
R

c
+ ρ

)

.

(3.19)

This calculation gives us an estimate for P . In practice, we will not determine this estimate
exactly, but choose P in a sense big enough.

For Δn ≥ ε we approach the minimizer x† in the Bregman sense, that is,

Δn+1 ≤ Δn − α2

G2P
ε2 +

α2

2G2P
ε2

= Δn − α2

2G2P
ε2 =: Δn −Dε2,

(3.20)

where

D := D(R) =
α2

2G2P
. (3.21)

This ensures

Δn+1 < Δn < · · · < Δ0 (3.22)

as long as Δn ≥ ε is fulfilled.
(iii) We know the behavior of the Bregman distances, if Δn ≥ ε holds. Next, we need to

know what happens if Δn < ε. By (3.12), we then have

Δn+1 ≤ Δn +Dε2 < ε +Dε2. (3.23)
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x0

x†

εaim

ε

R

Figure 1: Geometry of the problem. The iterates xn approach x† as long as Δ2(xn, x†) ≥ ε. The auxiliary
number ε is chosen such that, if the iterates enter the Bregman ball with radius εaim around x†, the following
iterates stay in that ball.

(iv) We choose

ε :=
−1 +

√
1 + 4D · εaim
2D

, (3.24)

where εaim > 0 is the accuracy we aim at. For the case Δn < ε this choice of ε assures that

Δn+1 < ε +Dε2 = εaim. (3.25)

Note that the choice of ε implies ε ≤ εaim.
Next, we calculate an indexN, which ensures that the iterates xn with n ≥N are located

in a Bregman ball with radius εaim around x†. We know that if xn fulfills Δn ≤ εaim, then all
following iterates fulfill this condition as well.

Hence, the opposite case is Δn+1 ≥ εaim ≥ ε. By (3.20), we know that this is only the case
if

εaim ≤ Δn+1 ≤ R − nDε2. (3.26)

By choosingN such that

N >
R − εaim
Dε2

=
R − εaim

(
1 + (1 −

√
1 + 4Dεaim)/2Dεaim

)
εaim

, (3.27)

we get

ΔN ≤ εaim. (3.28)

Figure 1 illustrates the behavior of the iterates.
(v)We are now in the same situation as described in (2). If we replace R by εaim, x0 by xN

and εaim by some εaim,2 < εaim and repeat the argumentation in (2)–(4), we obtain a contracting
sequence of Bregman balls.

If the sequence (εaim,k)k is a null sequence, then by Lemma 2.7 the iterates xn converge
strongly to x†. This proves the following.
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Theorem 3.2. The iterative method, defined by

(S0) choose an arbitrary x0 and a decreasing positive sequence (εk)k with

lim
k→∞

εk = 0

Δ2
(
x0, x

†) < ε1,
(3.29)

set k = 1;

(S1) compute P , D, ε, and μ as

P = sup
{‖ψ‖2 : ψ ∈ ∂Ψ(x) with Δ2

(
x, x†

) ≤ εk
}
,

D =
α2

2, G2P

ε =
−1 +

√
1 + 4D · εk+1
2, D

μ =
α

G2P
ε;

(3.30)

(S2) iterate xn by

x∗n+1 = x
∗
n − μ · ψn with ψn ∈ ∂Ψ

(
xn

)
,

xn+1 = J∗2
(
x∗n+1

)
,

(3.31)

for at leastN iterations, where

N >
εk − εk+1

(
1 + (1 −

√
1 + 4Dεk+1)/2Dεk+1

)
εk+1

; (3.32)

(S3) let k ← (k + 1), reset P,D, ε, μ,N and go to step (S1), defines an iterative minimization
method for the Tikhonov functional Ψ, defined in (3.1) and the iterates converge strongly to
the unique minimizer x†.

Remark 3.3. A similar construction can be carried out for any p-convex and smooth Banach
space.

4. Steepest descent method

Let X be uniformly convex and uniformly smooth and let Y be uniformly smooth. Then the
Tikhonov functional

Ψ(x) :=
1
r
‖Ax − y‖r + α

p
‖x‖p (4.1)

is strictly convex, weakly lower semicontinuous, coercive, and Gâteaux differentiable with
derivative

∇Ψ(x) = A∗Jr(Ax − y) + αJp(x). (4.2)



12 Abstract and Applied Analysis

Hence, there exists the unique minimizer x† of Ψ, which is characterized by

Ψ
(
x†
)
= min

x∈X
Ψ(x)⇐⇒ ∇Ψ(

x†
)
= 0. (4.3)

In this section, we consider the steepest descent method to find x†. In [28, 29], it has already
been proven that for a general continuously differentiable functional Ψ every cluster point
of such steepest descent method is a stationary point. Recently, Canuto and Urban [30] have
shown strong convergence under the additional assumption of ellipticity, which our Ψ in (4.1)
would fulfill if we required X to be p-convex. Here we prove strong convergence without
this additional assumption. To make the proof of convergence more transparent, we confine
ourselves here to the case of r-smooth Y and p-smooth X (with then r, p ∈ (1, 2] being the ones
appearing in the definition of the Tikhonov functional (4.1)) and refer the interested reader to
the appendix, where we prove the general case.

Theorem 4.1. The sequence (xn)n, generated by

(S0) choose an arbitrary starting point x0 ∈ X and set n = 0;

(S1) if ∇Ψ(xn) = 0, then STOP else do a line search to find μn > 0 such that

Ψ
(
xn − μnJ∗q

(∇Ψ(
xn

)))
= min

μ∈R
Ψ
(
xn − μJ∗q

(∇Ψ(
xn

)))
; (4.4)

(S2) set xn+1 := xn − μnJ∗q(∇Ψ(xn)), n ← (n + 1) and go to step (S1), converges strongly to the
unique minimizer x† of Ψ.

Remark 4.2. (a) If the stopping criterion ∇Ψ(xn) = 0 is fulfilled for some n ∈ N, then by (4.3),
we already have xn = x† and we can stop iterating.

(b) Due to the properties of Ψ, the function fn : R→ [0,∞) defined by

fn(μ) := Ψ
(
xn − μJ∗q

(∇Ψ(
xn

)))
(4.5)

appearing in the line search of step (S1) is strictly convex and differentiable with continuous
derivative

f ′n(μ) = −
〈∇Ψ(

xn − μJ∗q
(∇Ψ(

xn
)))

, J∗q
(∇Ψ(xn

))〉
. (4.6)

Since f ′n(0) = −‖∇Ψ(xn)‖q < 0 and f ′n is increasing by the monotonicity of the duality map-
pings, we know that μn must in fact be positive.

Proof of Theorem 4.1. By the above remark it suffices to prove convergence in case ∇Ψ(xn)/= 0
for all n ∈ N. We fix γ ∈ (0, 1) and show that there exists positive μ̃n such that

Ψ
(
xn+1

) ≤ Ψ
(
xn

) − μ̃n
∥
∥∇Ψ(

xn
)∥∥q(1 − γ), (4.7)
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which will finally assure convergence. To establish this relation, we use the characteristic in-
equalities in Theorem 2.3 to estimate, for all μ > 0,

Ψ
(
xn+1

) ≤ Ψ
(
xn − μJ∗q

(∇Ψ(
xn

)))

=
1
r

∥
∥(Axn − y

) − μAJ∗q
(∇Ψ(

xn
))∥∥r +

α

p

∥
∥xn − μJ∗q

(∇Ψ(
xn

))∥∥p

≤ 1
r

∥∥Axn − y
∥∥r − 〈Jr

(
Axn − y

)
, μAJ∗q

(∇Ψ(
xn

))〉
,+
Gr

r

∥∥μAJ∗q
(∇Ψ(

xn
))∥∥r

+
α

p

∥
∥xn

∥
∥p − α〈Jp

(
xn

)
, μJ∗q

(∇Ψ(
xn

))〉
+ α

Gp

p

∥
∥μJ∗q

(∇Ψ(xn)
)∥∥p.

(4.8)

By (4.1) and (4.2) for x = xn and

〈∇Ψ(
xn

)
, J∗q

(∇Ψ(
xn

))〉
=
∥∥∇Ψ(

xn
)∥∥q =

∥∥J∗q
(∇Ψ(

xn
))∥∥p, (4.9)

we can further estimate

Ψ
(
xn+1

) ≤ Ψ
(
xn

) − μ∥∥∇Ψ(
xn

)∥∥q +
Gr

r

∥∥AJ∗q
(∇Ψ(

xn
))∥∥rμr + α

Gp

p

∥∥∇Ψ(
xn

)∥∥qμp

= Ψ
(
xn

) − μ∥∥∇Ψ(
xn

)∥∥q(1 − φn(μ)
)
,

(4.10)

whereby we set

φn(μ) :=
Gr

r

∥∥AJ∗q
(∇Ψ(

xn
))∥∥r

∥∥∇Ψ(
xn

)∥∥q
μr−1 + α

Gp

p
μp−1. (4.11)

The function φn : (0,∞) → (0,∞) is continuous and increasing with limμ→0 φn(μ) = 0 and
limμ→∞ φn (μ) =∞. Hence, there exists a μ̃n > 0 such that

φn
(
μ̃n

)
= γ (4.12)

and we get

Ψ
(
xn+1

) ≤ Ψ
(
xn

) − μ̃n
∥∥∇Ψ(

xn
)∥∥q(1 − γ). (4.13)

We show that limn→∞‖∇Ψ(xn)‖ = 0. From (4.13), we infer that the sequence (Ψ(xn))n is de-
creasing and especially bounded and that

lim
n→∞

μ̃n
∥∥∇Ψ(

xn
)∥∥q = 0. (4.14)

Since Ψ is coercive, the sequence (xn)n remains bounded and (4.2) then implies that the
sequence (∇Ψ(xn))n is bounded as well. Suppose lim supn→∞‖∇Ψ(xn)‖ = ε > 0 and let
‖∇Ψ(xnk)‖ → ε for k → ∞. Then we must have limk→∞μ̃nk = 0 by (4.14). But by



14 Abstract and Applied Analysis

the definition of φn (4.11) and the choice of μ̃n (4.12), we get for some constant C > 0
with ‖AJ∗q(∇Ψ(xn))‖r ≤ C,

0 < γ = φnk
(
μnk

) ≤ Gr

r

C
∥∥∇Ψ(

xnk
)∥∥q

μ̃r−1nk + α
Gp

p
μ̃
p−1
nk . (4.15)

Since the right-hand side converges to zero for k →∞, this leads to a contradiction. So we have
lim supn→∞‖∇Ψ(xn)‖ = 0 and thus limn→∞‖∇Ψ(xn)‖ = 0. We finally show that (xn)n converges
strongly to x†. By (4.3) and the monotonicity of the duality mapping Jr , we get

∥∥∇Ψ(
xn

)∥∥∥∥xn − x†
∥∥ ≥ 〈∇Ψ(

xn
)
, xn − x†

〉

=
〈∇Ψ(

xn
) − ∇Ψ(

x†
)
, xn − x†

〉

=
〈
Jr
(
Axn − y

) − Jr
(
Ax† − y), (Axn − y

) − (Ax† − y)〉

+ α
〈
Jp
(
xn

) − Jp
(
x†
)
, xn − x†

〉

≥ α〈Jp
(
xn

) − Jp
(
x†
)
, xn − x†

〉
.

(4.16)

Since (xn)n is bounded and limn→∞‖∇Ψ(xn)‖ = 0, this yields

lim
n→∞

〈
Jp
(
xn

) − Jp
(
x†
)
, xn − x†

〉
= 0, (4.17)

from which we infer that (xn)n converges strongly to x† in a uniformly convex X [15, Theorom
II.2.17.]

5. Conclusions

We have analyzed two conceptionally quite different nonlinear iterative methods for finding
the minimizer of norm-based Tikhonov functionals in Banach spaces. One is the steepest de-
scent method, where the iterations are directly carried out in the X-space by pulling the gra-
dient of the Tikhonov functional back to X via duality mappings. The method is shown to be
strongly convergent in case the involved spaces are nice enough. In the other one, the iterations
are performed in the dual space X∗. Though this method seems to be inherently slow, strong
convergence can be shown without restrictions on the Y -space.

Appendix

Steepest descent method in uniformly smooth spaces

As already pointed out in Section 4, we prove here Theorem 4.1 for the general case of X being
uniformly convex and uniformly smooth and Y being uniformly smooth, and with r, p ≥ 2 in
the definition of the Tikhonov functional (4.1). To do so, we need some additional results based
on the paper of Xu and Roach [19].

In what follows C, L > 0 are always supposed to be (generic) constants and we write

a ∨ b = max{a, b}, a ∧ b = min{a, b}. (A.1)
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Let ρX : (0,∞)→ (0, 1] be the function

ρX(τ) :=
ρX(τ)
τ

, (A.2)

where ρX is the modulus of smoothness of a Banach space X. The function ρX is known to be
continuous and nondecreasing [14, 31].

The next lemma allows us to estimate ‖Jp(x) − Jp(y)‖ via ρX(‖x − y‖), which in turn
will be used to derive a version of the characteristic inequality that is more convenient for our
purpose.

Lemma A.1. Let X be a uniformly smooth Banach space with duality mapping Jp with weight p ≥ 2.
Then for all x, y ∈ X the following inequalities are valid:

∥∥Jp(x) − Jp(y)
∥∥ ≤ Cmax

{
1, (‖x‖ ∨ ‖y‖)p−1}ρX(‖x − y‖) (A.3)

(hence, Jp is uniformly continuous on bounded sets) and

‖x − y‖p ≤ ‖x‖p − p〈Jp(x), y〉 + C
(
1 ∨ (‖x‖ + ‖y‖)p−1)ρX(‖y‖). (A.4)

Proof. We at first prove (A.3). By [19, formula (3.1)], we have

∥∥Jp(x) − Jp(y)
∥∥ ≤ C(‖x‖ ∨ ‖y‖)p−1ρX

( ‖x − y‖
‖x‖ ∨ ‖y‖

)
. (A.5)

We estimate similarly as after inequality (3.5) in the same paper. If 1/(‖x‖ ∨ ‖y‖) ≤ 1, then we
get by the monotonicity of ρX

ρX

( ‖x − y‖
‖x‖ ∨ ‖y‖

)
≤ ρX

(‖x − y‖) (A.6)

and therefore (A.3) is valid. In case 1/(‖x‖∨‖y‖) ≥ 1 (⇔ ‖x‖∨‖y‖ ≤ 1), we use the fact that ρX
is equivalent to a decreasing function (i.e. ρX(η)/η2 ≤ L(ρX(τ)/τ2) for η ≥ τ > 0 [14]) and get

ρX

( ‖x − y‖
‖x‖ ∨ ‖y‖

)
≤ L
(‖x‖ ∨ ‖y‖)2

ρX
(‖x − y‖) (A.7)

and therefore

ρX

( ‖x − y‖
‖x‖ ∨ ‖y‖

)
≤ L

‖x‖ ∨ ‖y‖ρX
(‖x − y‖). (A.8)

For p ≥ 2, we thus arrive at

∥∥Jp(x) − Jp(y)
∥∥ ≤ CL(‖x‖ ∨ ‖y‖)p−2ρX

(‖x − y‖)

≤ CLρX
(‖x − y‖)

(A.9)

and also in this case (A.3) is valid.
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Let us prove (A.4). As in [19], we consider the continuously differentiable function f :
[0, 1]→ R with

f(t) := ‖x − ty‖p, f ′(t) = −p〈Jp(x − ty), y
〉
,

f(0) = ‖x‖p, f(1) = ‖x − y‖p, f ′(0) = −p〈Jp(x), y
〉 (A.10)

and get

‖x − y‖p − ‖x‖p + p〈Jp(x), y
〉
= f(1) − f(0) − f ′(0)

=
∫1

0
f ′(t) − f ′(0)dt

= p
∫1

0

〈
Jp(x) − Jp(x − ty), y

〉
dt

≤ p
∫1

0

∥∥Jp(x) − Jp(x − ty)
∥∥‖y‖dt.

(A.11)

For t ∈ [0, 1], we set ỹ := x−ty and get x−ỹ = ty, ‖ỹ‖ ≤ ‖x‖+‖y‖ and thus ‖x‖∨‖ỹ‖ ≤ ‖x‖+‖y‖.
By the monotonicity of ρX, we have

ρX
(
t‖y‖)‖y‖ ≤ ρX

(‖y‖)‖y‖ = ρX
(‖y‖) (A.12)

and by (A.3), we thus obtain

‖x − y‖p − ‖x‖p + p〈Jp(x), y
〉 ≤ p

∫1

0
Cmax

{
1,
(‖x‖ + ‖y‖)p−1}ρX

(
t‖y‖)‖y‖dt

≤ Cmax
{
1,
(‖x‖ + ‖y‖)p−1}ρX

(‖y‖).
(A.13)

The proof of Theorem 4.1 is now quite similar to the case of smoothness of power type,
though it is more technical, and we only give the main modifications.

Proof of Theorem 4.1 (for uniformly smooth spaces). We fix γ ∈ (0, 1), μ > 0 and for n ∈ N, we
choose μ̃n ∈ (0, μ] such that

φn
(
μ̃n

)
= φn(μ) ∧ γ. (A.14)

Here the function φn : (0,∞)→ (0,∞) is defined by

φn(μ) :=
CY

r

(
1 ∨ (∥∥Axn − y

∥∥ + μ
∥∥AJ∗q

(∇Ψ(
xn

))∥∥)
r−1)

×
∥∥AJ∗q

(∇Ψ(
xn

))∥∥
∥∥∇Ψ(

xn
)∥∥q

ρY
(
μ
∥∥AJ∗q

(∇Ψ(
xn

))∥∥)

+ α
CX

p

(
1 ∨ (∥∥xn

∥∥ + μ
∥∥∇Ψ(

xn
)∥∥q−1)p−1

)

× 1
∥∥∇Ψ(

xn
)∥∥ρX

(
μ
∥∥∇Ψ(

xn
)∥∥q−1

)

(A.15)
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with the constants CX,CY being the ones appearing in the respective characteristic inequalities
(A.4). This choice of μ̃n is possible since by the properties of ρY and ρX, the function φn is
continuous, increasing and limμ→0φn(μ) = 0. We again aim at an inequality of the form

Ψ
(
xn+1

) ≤ Ψ
(
xn

) − μ̃n
∥∥∇Ψ(

xn
)∥∥q(1 − γ), (A.16)

which will finally assure convergence. Here we use the characteristic inequalities (A.4) to esti-
mate

Ψ
(
xn + 1

)≤ Ψ
(
xn

) − μ̃n
∥∥∇Ψ(

xn
)∥∥q

+
CY

r

(
1 ∨ (∥∥Axn − y

∥
∥ +

∥
∥μ̃nAJ∗q

(∇Ψ(
xn

))∥∥)r−1
)
ρY

(∥∥μ̃nAJ∗q
(∇Ψ(

xn
))∥∥)

+ α
CX

p

(
1 ∨ (∥∥xn

∥∥ +
∥∥μ̃nJ

∗
q

(∇Ψ(
xn

))∥∥)p−1
)
ρX

(∥∥μ̃nJ∗q
(∇Ψ(

xn
))‖).

(A.17)

Since μ̃n ≤ μ and by the definition of φn (A.15), we can further estimate

Ψ
(
xn + 1

)≤ Ψ
(
xn

) − μ̃n
∥∥∇Ψ(

xn
)∥∥q

+
CY

r

(
1 ∨ (∥∥Axn − y

∥∥ + μ
∥∥AJ∗q

(∇Ψ(
xn

))∥∥)r−1
)
ρY

(∥∥μ̃nAJ∗q
(∇Ψ(

xn
))∥∥)

+ α
CX

p

(
1 ∨ (∥∥xn

∥
∥ + μ

∥
∥J∗q

(∇Ψ(
xn

))∥∥)p−1
)
ρX

(
μ̃n

∥
∥J∗q

(∇Ψ(
xn

))‖).

= Ψ
(
xn

) − μ̃n
∥∥∇Ψ(

xn
)∥∥q(1 − φn

(
μ̃n

))

(A.18)

The choice of μ̃n (A.14) finally yields

Ψ
(
xn+1

) ≤ Ψ
(
xn

) − μ̃n
∥∥∇Ψ(

xn
)∥∥q(1 − γ). (A.19)

It remains to show that this implies limn→∞‖∇Ψ(xn)‖ = 0. The rest then follows analogously as
in the proof of Theorem 4.1. From (A.19), we infer that

lim
n→∞

μ̃n
∥∥∇Ψ(

xn
)∥∥q = 0 (A.20)

and that the sequences (xn)n and (∇Ψ(xn))n are bounded.
Suppose lim supn→∞‖∇Ψ(xn)‖ = ε > 0 and let ‖∇Ψ(xnk)‖ → ε for k → ∞. Then we must

have limk→∞μ̃nk = 0 by (A.20). We show that this leads to a contradiction. On the one hand by
(A.15), we get

φnk
(
μ̃nk

) ≤ L1∥∥∇Ψ(
xnk

)∥∥q
ρY

(
μ̃nkL2

)
+

C1∥∥∇Ψ(
xnk

)∥∥ρX
(
μ̃nkC2

)
. (A.21)

Since the right-hand side converges to zero for k → ∞, so does φnk(μ̃nk). On the other hand,
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by (A.14), we have

φnk
(
μ̃nk

)
= φnk(μ) ∧ γ,

φnk(μ) ≥ 0 + CρX
(
μ
∥∥∇Ψ(

xnk
)∥∥q−1

)
.

(A.22)

Hence, φnk(μ̃nk) ≥ L > 0 for all k big enough which contradicts limk→∞φnk(μ̃nk) = 0. So we have
lim supn→∞‖∇Ψ(xn)‖ = 0 and thus limn→∞‖∇Ψ(xn)‖ = 0.
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