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1. Introduction

The qualitative theory of second-order elliptic equations received a strong effort from Harnack
inequalities. Here, we will make use of this powerful technique to study continuous viscosity
solutions u of fully nonlinear elliptic equations (F = f):

F
(
x, u(x), Du(x), D2u(x)

)
= f(x), x ∈ Ω, (1.1)

in unbounded domainsΩ of R
n, where F is a real function of x ∈ Ω, t ∈ R, p ∈ R

n and X in the
set Sn of n × n real symmetric matrices.

We recall that F is (degenerate) elliptic if F is nondecreasing in X and uniformly elliptic
if there exist (ellipticity) constants λ and Λ such that 0 < λ ≤ Λ and

λtr(Y ) ≤ F(x, t, p, X + Y ) − F(x, t, p, X) ≤ Λtr(Y ), (1.2)

for Y ≥ 0, that is Y is semidefinite positive, where tr(Y ) denotes the trace of the matrix Y .
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In the class of uniformly elliptic operators, there are two extremal ones, well known as
Pucci maximal and minimal operators, respectively:

P+
λ,Λ(X) = Λtr

(
X+) − λtr

(
X−),

P−
λ,Λ(X) = λtr

(
X+) −Λtr

(
X−),

(1.3)

where X± are the positive and negative parts of X, which can be decomposed in a unique way
asX = X+−X− withX± ≥ 0 andX+X− = 0. Other examples of fully nonlinear uniformly elliptic
operators can be found in [1–3].

Throughout this paper, we will consider elliptic operators with the structure conditions

F(x, t, p, X) ≥ P−
λ,Λ(X) − b(x)|p|q, (1.4)

F(x, t, p, X) ≤ P+
λ,Λ(X) + b(x)|p|q, (1.5)

where P± are the extremal Pucci operators, b(x) is a continuous function and the exponent
q ∈ [1, 2], so that the gradient term can have a superlinear, at most quadratic growth.

Remark 1.1. The above structure conditions are exactly equivalent to the uniform ellipticity
when F is linear in the variableX ∈ Sn. In the nonlinear case they allow a slight generalization.
Let us consider, for 0 < λ < Λ and t ≥ 0, the function

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Λt, if 0 ≤ t ≤ 1
Λ
,

1, if
1
Λ

< t ≤ 1
λ
,

λt, if t >
1
λ
,

(1.6)

then the operator F = h(tr(X+))−h(tr(X−)) is elliptic and satisfies both the conditions (1.4) and
(1.5), even that it is not uniformly elliptic.

However, if (1.5) (resp., (1.4)) holds, then subsolutions (resp., supersolutions) of the
equation F = f are subsolutions (resp., supersolutions) of uniformly elliptic equations, and
this is needed to prove our results.

We will be concerned principally with the following topics in unbounded domains; see
[4–6] for classical results.

[MP] maximum principle for u.s.c. subsolutions w of F = 0 in the viscosity sense (v.s.),
in the form

F ≥ 0 in Ω, w ≤ 0 on ∂Ω, sup
Ω

w < +∞ =⇒ w ≤ 0 in Ω; (1.7)

[LT] Liouville theorem for continuous solutions of F = 0 v.s., in the form

F = 0 in R
n, sup

Rn

w < +∞ =⇒ w = constantin R
n. (1.8)
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Concerning MP, it is worth to note that the condition from above on the size of w can be
weakened in the framework of the Phragmén-Lindelöf theory (see, e.g., [7–9]) but not omitted
at all, even for classical subsolutions (see, e.g., [4, 10]). It is also well known that MP fails
to hold in general in exterior domains. In fact, due to the boundedness of the fundamental
solution u(x) = |x|2−n of the Laplace equation Δu = 0, the function w = 1 − u provides
a counterexample to MP in Ω = R

n \ B1(0). Thus we introduce a local measure-geometric
condition Gσ in Ω at y ∈ R

n, which depends on the real parameter σ ∈ (0, 1) : there exists a ball
B = B(y) such that

y ∈ B,
∣∣B \Ωy

∣∣ ≥ σ|B|, (1.9)

where Ωy is the connected component of B \ ∂Ω containing y.
If Gσ is satisfied in Ω at all y ∈ Ω, we simply say that Ω is a wG domain (with

parameter σ). This is a generalization of condition G of Cabré [10], which ultimately goes
back to Berestycki et al. [11].

Let R(y) denote the radius of the ball B = B(y) provided by condition wG. We will call
domains of cylindrical and conical type thewG domains such that R(y) = O(1) and R(y) = O(|y|)
as |y|→ +∞, respectively. Examples of the first kind are domains with finite measure, cylinders,
slabs, complements of a periodic lattice of balls, whereas cones, and complements, in the plane,
of logarithmic spirals, are examples of the second kind.

In [12], it is shown that MP holds true in a wG domain for strong solutions of a linear
second-order uniformly elliptic operator F = trA(x)X; see also [13, 14] for earlier results and
[15, 16] for viscosity solutions of a fully nonlinear operator with linear and quadratic growth
in the gradient (i.e., in the case of the structure condition (1.5) with q = 1 and q = 2) provided
that b(x) = O(1/|x|) and b(x) = O(1) as |x|→∞, respectively.

With the aim to find conditions on the coefficient b(x) such thatMP holds inwG domains
when 1 ≤ q ≤ 2, our result is the following.

Theorem 1.2 (MP). Let 0 < σ < 1 and 1 ≤ q ≤ 2. Let Ω be a domain of R
n satisfying condition wG

or alternatively such that, for a closed subsetH of R
n,

(i) MP holds in each connected component of Ω \H;

(ii) conditionGσ is satisfied in Ω at each y ∈ Ω ∩H.

Suppose that w ∈ USC(Ω) is a viscosity solution of F(x,w,Dw,D2w) ≥ 0 and structure condition
(1.5) holds with b ∈ C(Ω), such that b(x) = O(1/|x|2−q).

If w ≤ 0 on ∂Ω and supw < +∞ in Ω, then w ≤ 0 in Ω.

This yields indeed MP in a wider class of domains than wG, for example, the cut
plane and more generally the complement of continuous semi-infinite curves in R

2 and their
generalizations to hypersurfaces in R

n.
We also outline that the limit cases q = 1 and q = 2 of the above mentioned papers are

obtained by continuity from the intermediate cases 1 < q < 2, as it follows from Theorem 1.2.
Nonetheless, there are technical improvements with respect to the previous works even in the
limit cases.

Consider in particular a parabolic shaped domain Ω, satisfying conditionwGwith R(y) =
O(|y|α), 0 < α < 1; the limit cases α = 0 and α = 1 correspond to domains of cylindrical and
conical types, respectively.
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Based on an argument of [12], eventually passing to a smaller ry ≤ R(y), we can suppose
that condition Gσ is satisfied with |B \Ωy| = σ|B| exactly. We get the new following variant of
ABP estimate.

Theorem 1.3 (ABP). Let 0 < σ, τ < 1, τ ′ > 1, R0, β ≥ 0, 1 ≤ q ≤ 2, and N > 0. Let Ω be a wG
domain, such that condition Gσ in Ω is fulfilled at each y ∈ Ω with R(y) ≤ R0 + β|y|α, 0 ≤ α ≤ 1.
Assume that F satisfies the structure condition (1.5), with b, f ∈ C(Ω) and b0 := supΩ|b(x)|(1 +
|x|α(2−q)) < +∞.

If w ∈ USC(Ω) is a viscosity solution of F(x,w,Dw,D2w) ≥ f such that w ≤ N in Ω and
w ≤ 0 on ∂Ω, then

sup
Ω

w ≤ C lim
ε→0+

sup
y∈Ω;|y|≥εry

ry
∥∥f−∥∥

Ln(Ω∩Bτεry ,τ ′ry )
, (1.10)

where C is a positive constant depending on n, q, λ, Λ, b0Nq−1, σ, τ , τ ′, R0, β.

Note that in the case of a domain of cylindrical type (α = 0), it is sufficient to have
b(x) = O(1), for all q ∈ [1, 2], as well as in the case of a quadratic growth in the gradient
variable (q = 2), for all α ∈ [0, 1].

This result extends the previous ones contained in [10, 14] for the linear case, and [8, 16],
dealing with fully nonlinear equations, in the limit situations of cylindrical/conical domains
and linear/quadratic gradient terms.

Remark 1.4. In general, unless q = 1, the above ABP type estimate is different from the so-called
ABP maximum principles since C depends on the upper boundN ofw if b0 > 0 and q > 1. For
ABP-type estimates of this kind in bounded domains we refer to [17]. Counterexamples to the
ABP maximum principle can been found in [17–19].

Consider now Ω = R
n. The classical Liouville theorem says that harmonic functions in

the entire R
n, which are bounded either above or below, are constant. This result continues

to hold for strong solutions of quasilinear uniformly elliptic equations; see [20]. For viscosity
solutions of fully nonlinear uniformly elliptic equations with an additive gradient term having
linear growth, we refer to [21, 22]. Our result is the following.

Theorem 1.5 (Liouville theorem). Let w ∈ C(Rn) be such that F(x,w,Dw,D2w) = 0 in the
viscosity sense, and assume structure conditions (1.4) and (1.5), with b ∈ C(Rn) such that b(x) =
O(1/|x|2−q) as |x|→ +∞. If w is bounded either above or below, then w is constant.

Remark 1.6. Under some additional assumptions, Liouville-type results also hold in un-
bounded domains of R

n containing balls of arbitrary large radius; see [23].

Our main tools are Krylov-Safonov Harnack inequalities and local MP; see [20] for
strong solutions of quasilinear uniformly elliptic equations. For viscosity solutions and F
satisfying the structure condition (1.4), they can be found in [3] if b = 0 and in [24] if q = 2;
see also [25]. In the case of linear or superlinear, almost quadratic, growth in the gradient
(1 ≤ q < 2), weak Harnack (wH) inequality and local MP can be deduced using arguments of
[17], in which a (full) Harnack inequality has been established for Lp viscosity solutions; see
also [26].

Nevertheless, for convenience of the reader we believed that it is worth to report
systematically on this kind of inequalities in Section 3.
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As the previous ones, our approach follows the lines of [3], based on the methods of
[27, 28] and on the ABP maximum principle for viscosity solutions in bounded domains, due
to Caffarelli [29].

Remark 1.7. In deriving wH inequality and local MP, we only need the Alexandroff-Bakelman-
Pucci (ABP) estimate with q = 1 and f continuous, so [30, Proposition 2.12] and also [17,
Theorem 4.1] in the case of linear growth in the gradient term, are sufficient to our purpose.
But we notice that new ABP-type estimates have been established for Lp-viscosity solutions
of equations with discontinuous coefficients by Koike and Świȩch [19, 27] for q ∈ [1, 2] and
f ∈ Lp.

Remark 1.8. In the case of a superlinear first-order term, wH inequality and local MP are
obtained by interpolation between the linear and quadratic cases, eliminating the square
gradient term by means of an exponential transformation used before by Trudinger [24], see
Lemmas 3.1 and 3.2 below. This kind of ideas have been also considered by Sirakov in [31].

What we definitely need are, for MP, the scaled boundary wH inequality (3.16), derived
in Section 3 by means of typical viscosity methods, and, for technical reasons, its version in
annular regions (3.24), and, for LT, the scaled Harnack inequality (3.11). Moreover, using the
interior wH inequality (3.7) and assuming the structure condition (1.5), we also state a strong
MP theorem, according to which a subsolution u of equation F = 0 cannot achieve a positive
maximum inside any domain (open connected set) of R

n unless it is constant; see Theorem 5.1
below. For a different approach, based on Hopf lemma, and more general versions see [32].

The paper is organized as follows. In Section 2, we recall some basic results of elliptic
theory for viscosity solutions of second-order fully nonlinear equations with a linear gradient
term; in Section 3, we extend local maximum principle and weak Harnack inequality, even up
to the boundary, to the case of a superlinear gradient term; these results are applied in Section 4
to get Alexandroff-Bakelman-Pucci-type estimates and maximum principles, with the proof of
Theorems 1.2 and 1.3; finally, a strong maximum principle is derived and the proof of Liouville
theorem (Theorem 1.5) is given in Section 5. In the appendix, for the sake of completeness, we
show the basic weak Harnack inequality and local MP for a uniformly elliptic operator with
an additive first-order term having linear growth in the gradient.

2. Basic estimates (linear gradient term)

LetΩ be a domain of R
n, and denote by USC(Ω) and LSC(Ω), respectively, the sets of the upper

and lower semicontinuous functions in Ω. The function u ∈ USC(Ω) is said to be a viscosity
subsolution of F = f if

F
(
x, u(x), Dϕ(x), D2ϕ(x)

) ≥ f(x) (2.1)

at any point x ∈ Ω and for all ϕ ∈ C2(Ω) such that ϕ − u has a local minimum in x. Similarly, a
viscosity supersolution u ∈ LSC(Ω) of F = f satisfies

F
(
x, u(x), Dϕ(x), D2ϕ(x)

) ≤ f(x) (2.2)

at any point x ∈ Ω and for all ϕ ∈ C2(Ω) such that u − ϕ has a local minimum in x.



6 Abstract and Applied Analysis

We may also assume that ϕ(x) = u(x) in the above definition, that is the graph of the test
function ϕ touches that one of u from above for subsolutions and from below for supersolutions
[3]. Moreover, if F is continuous in the matrix-variable, as for uniformly elliptic operators, then
we may assume that ϕ(x) is a paraboloid, that is a quadratic polynomial.

We will make use of the following version of the ABP estimate, in which Γ+u denotes the
upper contact set

Γ+u =
{
x ∈ Ω/ ∃p ∈ R

n s.t. u(y) ≤ u(x) + p·(y − x) forx ∈ Ω
}

(2.3)

of the graph of the function u. Using [30, Proposition 2.12] or [17, Theorem 4.1], we have the
following.

Lemma 2.1 (ABP estimate). Let u ∈ LSC(B) be a viscosity supersolution of the equation

P−
λ,Λ

(
D2u

) − b0|Du| = f (2.4)

in a ball B of unit radius, such that u ≥ 0 on ∂B, where f ∈ Ln(B) ∩ C(B), for some constant b0 ≥ 0.
Then

sup
B

u− ≤ C
∥∥f+∥∥

Ln(Γ+
u− )

, (2.5)

for a positive constant C = C(n, λ,Λ, b0). Similarly, if u ∈ USC(B) is a viscosity subsolution of the
equation

P+
λ,Λ

(
D2u

)
+ b0|Du| = f (2.6)

such that u ≤ 0 on ∂B, then

sup
B

u+ ≤ C
∥∥f−∥∥

Ln(Γ+
u+ )

. (2.7)

From Lemma 2.1, we obtain the following results, see the appendix, which extend
[3, Theorem 4.8, (1) and (2)]; see also [15].

Here we denote by Br a ball centered at x0 ∈ R
n of radius r > 0.

Lemma 2.2 (wH inequality). Let b0 ≥ 0 and 0 < τ < 1. Suppose that u ∈ LSC(B1/τ) is a viscosity
supersolution of (2.4), with f ∈ C(B1/τ), and u ≥ 0 in B1/τ . Then

(
1

|B1|
∫

B1

up0

)1/p0

≤ C
(
inf
B1

u +
∥∥f+∥∥

Ln(B1/τ )

)
, (2.8)

where C and p0 are positive numbers, depending on n, λ,Λ, b0, and τ .

Lemma 2.3 (local MP). Let b0 ≥ 0 and 0 < τ < 1. Suppose that u ∈ USC(B1) is a viscosity
subsolution of (2.6) with f ∈ C(B1). Then for all p > 0,

sup
Bτ

u ≤ C

((
1

|B1|
∫

B1

(
u+)p

)1/p

+
∥∥f−∥∥

Ln(B1)

)

, (2.9)

where C is a positive constant, depending on n, λ,Λ, b0, τ, and p.
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3. Interior and boundary Harnack estimates and
local MP (superlinear gradient term)

Firstly, we extend interior estimates (2.8) and (2.9) to fully nonlinear operators F with a
superlinear first-order term, such that, respectively, (1.4) and (1.5) hold.

Lemma 3.1 (wH inequality). Let b0 ≥ 0, 0 < τ < 1, and 1 ≤ q ≤ 2. Suppose that u ∈ LSC(B1/τ) is a
viscosity solution of F(x, u,Du,D2u) ≤ f , under structure condition (1.4) with b ≤ b0, f ∈ C(B1/τ),
and 0 ≤ u ≤ 1 in B1/τ . Then (2.8) holds with positive constants C and p0, depending on n, λ,Λ, b0, τ,
and q.

Lemma 3.2 (local MP). Let b0 ≥ 0, 0 < τ < 1, and 1 ≤ q ≤ 2. Suppose that u ∈ USC(B1) is a viscosity
solution of F(x, u,Du,D2u) ≥ f , under structure condition (1.5), with b ≤ b0, f ∈ C(B1), and u ≤ 1.
Then (2.9) holds for all p > 0 with a positive constant C, depending on n, λ,Λ, b0, q, τ, and p.

Proof of Lemmas 3.1 and 3.2. We only show the proof of Lemma 3.2, since that one of Lemma 3.1
is similar. By the structure condition (1.5), we have

P+
λ,Λ

(
D2u

)
+ b0|Du|q ≥ f(x) (3.1)

and also, in the viscosity sense,

P+
λ,Λ

(
D2u+) + b0

∣∣Du+∣∣q ≥ −f−(x). (3.2)

From this, by Young’s inequality, it follows that

P+
λ,Λ

(
D2u+) + b1

∣∣Du+∣∣ + b2
∣∣Du+∣∣2 ≥ −f−(x) (3.3)

with

b1 = (2 − q)b1/q0 ,

b2 = (q − 1)b2/q0 .
(3.4)

Using the transformation u+ = (λ/b2) log(1 + (b2/λ)v), then the USC function v = (λ/b2)
(exp((b2/λ)u+) − 1) satisfies the differential inequality

P+
λ,Λ

(
D2v

)
+ b1|Dv| ≥ −f−(x)

(
1 +

b2
λ
v(x)

)
(3.5)

in B1/τ . Therefore, we can apply Lemma 2.3 to the subsolution v. To conclude the proof of
Lemma 3.2, it is sufficient to observe that

u+ ≤ v ≤ λ

b2

(
exp
(
b2
λ

)
− 1
)
u+. (3.6)

Rescaling variables and functions, we highlight the dependence on geometric parame-
ters.
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Theorem 3.3 (scaled wH inequality). Let b0 ≥ 0, 0 < τ < 1, N > 0, and 1 ≤ q ≤ 2. Suppose that
u ∈ LSC(BR/τ) is a viscosity solution of F(x, u,Du,D2u) ≤ f , under structure condition (1.4), with
b ≤ b0, f ∈ C(BR/τ), and 0 ≤ u ≤ N in BR/τ . Then

(
1

|BR|
∫

BR

up0

)1/p0

≤ C
(
inf
BR

u + R‖f‖Ln(BR/τ )

)
, (3.7)

with positive constants C and p0, depending on n, λ,Λ, q, τ, and b0Nq−1R2−q.

Proof. Considering, for y ∈ B1/τ , the function v(y), defined by u(x) = Nv(x/R), we have

P−
λ,Λ

(
D2v

) − b0N
q−1R2−q|Dv|q ≤ R2N−1f+(Ry). (3.8)

Thus, applying Lemma 3.1, we get

(
1

|B1|
∫

B1

vp0

)1/p0

≤ C
(
inf
B1

v + R2N−1∥∥f+(Ry)
∥∥
Ln
y(B1/τ )

)
, (3.9)

with C = C(n, λ,Λ, q, τ, b0N
q−1R2−q), from which the assert follows.

Note that constants p0 and C of the above wH inequality depend in general on the upper
bound N for the supersolution and on the radius R of the ball, but in the case q = 1 there is no
dependence onN and in the case q = 2 no dependence on R.

In the same manner as in Theorem 3.3 for wH inequality, we make the dependence on
the geometric constants explicit in the following local MP.

Theorem 3.4 (scaled local MP). Let b0 ≥ 0, 0 < τ < 1, N > 0, and 1 ≤ q ≤ 2. Suppose that
u ∈ USC(BR) is a viscosity solution of F(x, u,Du,D2u) ≥ f , under structure condition (1.5), with
b ≤ b0, f ∈ C(BR), and u ≤ N. Then for all p > 0,

sup
BτR

u ≤ C

((
1

|BR|
∫

BR

(
u+)p

)1/p

+ R
∥∥f−∥∥

Ln(BR)

)

, (3.10)

with a positive constant C, depending on n, λ,Λ, q, τ, b0N
q−1R2−q, and p.

Combining Theorems 3.3 and 3.4, we get the full Harnack inequality for solutions.

Theorem 3.5 (Harnack inequality). Let b0 ≥ 0, 0 < τ < 1, N > 0, and 1 ≤ q ≤ 2. Suppose that
u ∈ C(BR/τ) is a viscosity solution of F(x, u,Du,D2u) = f in BR/τ , under structure conditions (1.4)
and (1.5), with b ≤ b0, f ∈ C(BR/τ), and 0 ≤ u ≤ N. Then

sup
BR

u ≤ C
(
inf
BR

u + R‖f‖Ln(BR/τ )

)
, (3.11)

with a positive constant C = C(n, λ,Λ, q, τ, b0N
q−1R2−q).



M. E. Amendola et al. 9

Wewish to extend the above estimates up to the boundary, that is, to balls intersecting the
boundary of the domainA ⊂ R

n, where the solutions are defined. For this purposewewill need
suitable extensions of such solutions outsideA. Precisely, take concentric balls BτR ⊂ BR ⊂ BR/τ

such that BτR ∩A/=∅ and BR/τ \A/=∅. For a nonnegative viscosity supersolution u ∈ LSC(A)
of equation F(x, u,Du,D2u) = f in A, we put

m = inf
BR/τ∩∂A

u; u−
m(x) =

⎧
⎨

⎩

min
(
u(x), m

)
, if x ∈ A,

m, if x /∈A,
(3.12)

where 0 < τ < 1. Similarly, for a viscosity subsolution u ∈ USC(A), we put

M = sup
BR∩∂A

u+; u+
M(x) =

⎧
⎨

⎩

max
(
u+(x),M

)
, if x ∈ A,

M, if x /∈A.
(3.13)

Denote also by f+
0 and f−

0 the continuations of f+ and f− vanishing outside A, respectively.
Following [3, Proposition 2.8] and using the structure conditions (1.4) and (1.5), we have

P−
λ,Λ

(
D2u−

m

) − b0
∣∣Du−

m

∣∣q ≤ f+
0 (3.14)

in BR/τ for a viscosity supersolution u ∈ LSC(A), and

P+
λ,Λ

(
D2u+

τ

)
+ b0
∣∣Du+

τ

∣∣q ≥ −f−
0 (3.15)

in BR for a viscosity subsolution u ∈ USC(A).
Observe that, if f+ = 0 on ∂A, then f+

0 is continuous, and then we can apply Theorem 3.3
to get a boundary wH inequality. Similarly, if f− = 0 on ∂A, we can use Theorem 3.4 to deduce
a boundary local MP.

Nevertheless, even in the general case, when f+
0 and f−

0 are not necessarily continuous,
we can get boundary estimates by means of an approximation process, as shown here below,
where we use the notations defined just above.

Theorem 3.6 (boundary wH inequality). Let b0 ≥ 0, 0 < τ < 1, N > 0, and 1 ≤ q ≤ 2. Suppose
that u ∈ LSC(A) is a viscosity solution of F(x, u,Du,D2u) ≤ f , under structure condition (1.4), with
b(x) ≤ b0, f ∈ C(A), and 0 ≤ u ≤ N in A. Then

(
1

|BR|
∫

BR

(
u−
m

)p0
)1/p0

≤ C
(
inf
BR∩A

u + R‖f‖Ln(BR/τ∩A)

)
, (3.16)

with positive constants C and p0, depending on n, λ,Λ, q, τ, and b0Nq−1R2−q.

Proof. For ε > 0, set

mε = inf
Iε(∂A)

u, Iε(∂A) =
{
x ∈ BR/τ ∩A : dist(x, ∂A) ≤ ε

}
, (3.17)
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and, for x ∈ BR/τ ,

u−
mε
(x) =

⎧
⎨

⎩

min
(
u(x), mε

)
, if x ∈ A,

mε, if x /∈A,

fε(x) = f+(x)ρ
(
dist(x,Rn \A)

ε

)
,

(3.18)

where

ρ(t) =

⎧
⎨

⎩

t, if 0 ≤ t < 1,

1, if t ≥ 1.
(3.19)

It is easy to check that u−
mε

∈ LSC(BR/τ), 0 ≤ u−
mε

≤ N, fε ∈ C(BR/τ), and

P−
λ,Λ

(
D2u−

mε

) − b0
∣∣Du−

mε

∣∣q ≤ fε(x) (3.20)

in BR/τ . Therefore, we can apply Theorem 3.3 with u−
mε

instead of u and fε instead of f to get

(
1

|BR|
∫

BR

(
u−
mε

)p0
)1/p0

≤ C
(
inf
BR

u−
mε

+ R
∥∥fε
∥∥
Ln(BR/τ )

)
. (3.21)

Note that infBR
u−
mε

≤ infBR∩A u and 0 ≤ fε ≤ f+ in A, fε = 0 outside A. Also observing that, by
lower semicontinuity,

m ≤ lim inf
ε→0

mε (3.22)

and therefore, by Fatou’s lemma,
∫

BR

(
u−
m

)p0 ≤ lim inf
ε→0

∫

BR

(
u−
mε

)p0 , (3.23)

from inequality (3.21) we get the assert.

In the sequel, we will make also use of a version of boundary wH inequality for annular
regions BεR,R = BR \ BεR(0), 0 < ε < 1, which can be deduced by Theorem 3.6 reasoning as in
[10, Theorem 3.1].

In this case m = inf∂A∩BετR,τ ′R u, where 0 < ε ≤ 1/2, 0 < τ < 1, τ ′ > 1.

Corollary 3.7 (boundary wH inequality). Let 0 < τ < 1, τ ′ > 1, N > 0, and 1 ≤ q ≤ 2. Suppose
that u ∈ LSC(A) is a viscosity solution of F(x, u,Du,D2u) ≤ f , under structure condition (1.4), with
f ∈ C(A), and 0 ≤ u ≤ N in A. Then

(
1

|BεR,R|
∫

BεR,R

(
u−
m

)p0
)1/p0

≤ C
(

inf
A∩BεR,R

u + R‖f‖Ln(A∩BετR,τ ′R)

)
, (3.24)

with positive constants C and p0, depending on n, λ,Λ, q, τ, τ ′, andNq−1R2−q‖b‖L∞(A∩BετR,R/τ ).



M. E. Amendola et al. 11

In a similar manner, we extend the local MP up to the boundary.

Theorem 3.8 (boundary local MP). Let b0 ≥ 0, 0 < τ < 1, N > 0, and 1 ≤ q ≤ 2. Suppose that
u ∈ USC(A) is a viscosity solution of F(x, u,Du,D2u) ≥ f , under structure condition (1.5), with
f ∈ C(A) and u ≤ N in A. Then for all p > 0,

sup
BτR∩A

u ≤ C

((
1

|BR|
∫

BR

(
u+
M

)p
)1/p

+ R
∥∥f−∥∥

Ln(BR∩A)

)

, (3.25)

with a positive constant C, depending on n, λ,Λ, q, τ, b0N
q−1R2−q, and p.

4. ABP-type estimates and maximum principles

Here we use boundary estimates of previous section to obtain MP in unbounded domains Ω
of R

n for viscosity subsolutions u ∈ USC(Ω), bounded above, of equation F(x, u,Du,D2u) = 0
under structure condition (1.5).

We will make use of the measure-geometric condition Gσ , 0 < σ < 1, given in the
introduction. By a continuity argument, see [12], eventually passing to a smaller R, which
we will call ry, we can assume that conditionGσ is satisfied with |B \Ωy| = σ|B| exactly.

We also recall that Ω is a wG domain (with parameter σ) if each point y ∈ Ω satisfies
conditionGσ inΩ. In particular, if R(y) is the radius of the ball B = B(y) provided by condition
Gσ , we define domains of cylindrical and conical type as wG domains such that R(y) = O(1)
and R(y) = O(|y|), respectively as |y|→∞.

4.1. Domains of cylindrical type

We start with the condition G of Cabré [10]. Let σ < 1, τ < 1, and R0 be positive real numbers.
We say that an open connected set Ω of R

n is a G domain if to each y ∈ Ω we can associate a
ball B = BR(xy) of radius R ≤ R0 such that

y ∈ BτR

(
xy

)
,
∣∣B \Ωy

∣∣ ≥ σ|B|, (
Gσ,τ

)
(4.1)

where Ωy is the connected component of Ω ∩ B containing y.
Since Gσ ≡ Gσ,1, then a G domain of R

n is of cylindrical type, like domains of finite
Lebesgue n-dimensional measure, subdomains of ω × R

n−k, where ω has finite Lebesgue
k-dimensional measure, the complement of the spiral of equation r = θ in polar coordinates of
R

2.
Given a differential operator with structure conditions, like (1.4) and (1.5), Ω will be

called a narrow domainwhen, for given τ and R0, condition Gσ,τ is satisfied for σ suitably close
to 1, depending on the structure constants and the remaining geometric constants.

A straightforward application of Theorem 3.8 yields MP in narrow domains. Indeed,
assume that u ≤ N and F(x, u,Du,D2u) ≥ 0 in Ω. Then, by (1.5), we have

P+(D2u+) + b0
∣∣Du+∣∣q ≥ 0. (4.2)

Suppose that u ≤ 0 on ∂Ω and set M = supΩu
+. Applying Theorem 3.8 in A = Ωy with p = 1,

we obtain

u(y) ≤ sup
Ωy∩BτR(xy)

u ≤ C

|B|
∫

Ωy∩B
u+ ≤ CM

|Ωy ∩ B|
|B| ≤ CM(1 − σ). (4.3)
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From this, taking the supremum over y ∈ Ω, we get M ≤ 0, that is u ≤ 0 in Ω, provided
σ > 1 − 1/C, and hence MP holds in this case.

In order to pass from narrow domains to arbitrary cylindrical domains we will use
Theorem 3.6, from which the following ABP-type estimate follows.

Theorem 4.1 (ABP estimate). Let σ, τ < 1, let R0 and N be positive real numbers, and 1 ≤ q ≤ 2.
Let Ω be a cylindrical domain such that conditionGσ in Ω is satisfied at each y ∈ Ω with R(y) ≤ R0.

Suppose thatw ∈ USC(Ω) is a viscosity solution of F(x,w,Dw,D2w) ≥ f , under the structure
condition (1.5), with b ≤ b0 and f ∈ C(Ω).

If w ≤ N in Ω and w ≤ 0 on ∂Ω, then

sup
Ω

w ≤ CR0 sup
y∈Ω

‖f‖Ln(BR(y)/τ (xy)∩Ω), (4.4)

where C depends on n, λ,Λ, σ, τ, and b0R
2−q
0 Nq−1.

Proof. It is enough to show the result for τ → 1−.
Set M = supΩw

+ and u = M − w. Let y ∈ Ω and B = BR of radius R, provided by
conditionGσ in y. We choose R = ry such that |B \Ωy| = σ|B|; see the beginning of this section.
We also denote by BτR the concentric ball of radius τR.

Now we apply Theorem 3.6 to u in A = Ωy with BτR(xy) instead of BR and τ close
enough to 1 in such a way that |BτR(xy) \ Ωy| ≥ (σ/2)|B| and |BτR(xy) ∩ Ωy| ≥ ((1 − σ)/2)|B|.
Since w ≤ 0 on ∂Ω, thenm ≥ M, hence we get

(
σ

2

)1/p0
M ≤

(
1

|BτR(xy)|
∫

BτR(xy)

(
u−
m

)p0
)1/p0

≤ C

(
M − sup

BτR(xy)∩Ωy

w + R‖f‖Ln(B∩Ω)

)
,

(4.5)

from which, for x ∈ BτR(xy) ∩Ωy, we obtain the pointwise inequality

w(x) ≤ sup
BτR(xy)∩Ωy

w ≤ tM + R‖f‖Ln(B∩Ω), (4.6)

with 0 < t < 1. On the other hand, settingK = tM +R‖f‖Ln(B∩Ω) andΩK = {x ∈ Ω/w(x) > K},
by virtue of (4.6)we have B \ΩK ⊃ BτR(xy) ∩Ωy and therefore, by our choice of R and τ ,

|B \ΩK|
|B| ≥ |BτR(xy) ∩Ωy|

|B| ≥ 1 − σ

2
. (4.7)

A further application of Theorem 3.6 to u = M −w in A = ΩK yields

(
1 − σ

2

)1/p0
(M −K) ≤

(
1
|B|
∫

B

(
u−
m

)p0
)1/p0

≤ C
(
M − sup

B∩ΩK

w + R‖f‖Ln(BR/τ (xy)∩Ω)

)
,

(4.8)
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since in this casem ≤ M −K. From this we deduce that, for x ∈ B ∩ΩK

w(x) ≤ sup
B∩ΩK

w ≤ (1 − t′
)
M + t′K + R‖f‖Ln(BR/τ (xy)∩Ω)

≤ (1 − t′ + tt′)M + 2R‖f‖Ln(BR/τ (xy)∩Ω),

(4.9)

with 0 < t′ < 1. From the definition of ΩK, see also (4.6), it follows that

w(x) ≤ t′′M + 2R‖f‖Ln(BR/τ (xy)∩Ω), (4.10)

with 0 < t′′ < 1, for all x ∈ Ω ∩ B and hence also for x = y.
Finally, passing to the supremum over y ∈ Ω, we get the result.

4.2. General domains

Firstly, we consider wG domains Ω, such that condition Gσ in Ω holds at each y ∈ Ω without
bounds for the radii R(y) of the balls provided by Gσ .

Note that in general the ABP-type estimate of Theorem 4.1 is useless unless b0 = 0, see
[13], since the the constant C of ABP estimate blows up when R→ +∞. This is why we assume
b(x) = O(1/|x|2−q) as |x|→ + ∞ in the structure condition (1.5). Moreover, to take advantage
from the decay of b(x), it is convenient to use the boundary wH inequality for annular regions
of Corollary 3.7 rather than Theorem 3.6.

Reasoning as in the proof of Theorem 4.1, but quite more carefully with the aid of (3.24)
instead of (3.16), see [16], we get the following ABP-type estimate.

Theorem 4.2 (ABP). Let σ and N be positive real numbers and 1 ≤ q ≤ 2. Let Ω be a wG domain
(with parameter σ < 1).

Suppose thatw ∈ USC(Ω) is a viscosity solution of F(x,w,Dw,D2w) ≥ f , under the structure
condition (1.5), with b, f ∈ C(Ω) such that

bq := sup
y∈Ω;|y|≥εry

r
2−q
y ‖b‖L∞(Ω∩Bτεry ,τ ′ry ) < +∞, (4.11)

for all ε > 0 small enough, all τ < 1 sufficiently close to 1, and some τ ′ > 1.
If w ≤ N in Ω and w ≤ 0 on ∂Ω, then

sup
Ω

w ≤ C sup
y∈Ω;|y|≥εry

ry
∥∥f−∥∥

Ln(Ω∩Bτεry ,τ ′ry )
+ sup

y∈Ω;|y|≤εry
Cyry

∥∥f−∥∥
Ln(Ω∩Bεry )

(4.12)

for possibly smaller ε > 0 and larger τ < 1, depending on n and σ.
Here C and Cy are positive constants depending on n, q, λ, Λ, bqNq−1, σ, ε, τ , τ ′, while Cy also

depends onNq−1r2−qy ‖b‖L∞(Ω∩Bεry ).

Proof of Theorem 1.2. In the case of wG domains, Theorem 1.2 follows at once letting f = 0 in
Theorem 4.2. Suppose now thatΩ can be split by a closed setH ⊂ R

n in components where MP
holds and each y ∈ H satisfies condition Gσ in Ω. By MP in the components, since we assume
that w ≤ 0 on ∂Ω, then for x ∈ Ωwe have

w(x) ≤ sup
(Ω∩H)∪∂Ω

w+ = sup
Ω∩H

w+. (4.13)
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Reasoning as above for (4.10), but using Corollary 3.7 instead of Theorem 3.6 as before to
obtain Theorem 4.2, from condition Gσ we deduce for y ∈ Ω ∩H that

w(y) ≤ t sup
Ω

w+, (4.14)

where t ∈]0, 1[ is independent of y. Inserting this inequality in the former one, and taking the
supremum over Ω, we get the result.

Examples

Provided that b(x) = O(1/|x|2−q) as |x|→∞, this last result yields MP in very general domains
such as, for instance:

(i) wG domains, like a proper cone Ω such that Ω /= R
n and in general a domain of

conical type, like the complementΩ in R
n of Γ×R

n−2, where Γ is a logarithmic spiral of
equation r = eθ in polar coordinates, or also complement of a larger spiral of equation
r = s(θ), with s a positive increasing function.

(ii) Domains which can be split in wG subdomains by a suitable closed set H of R
n, like

the cut plane in R
2 or in general the complement in R

n of a graph {(x, y) ∈ R
n−1 ×

R |xi ≥ 0, i = 1, . . . , n − 1, y = f(x)} such that |f(x)| ≤ h + k|x| for positive constants h
and k.

As a further example, we show a repeated application of Theorem 1.2. Look at the
complement Ω in R

2 of a sequence of balls Br(k), k = (kx, 0), kx ∈ N, with 0 < r < 1/3.
Consider the nonnegative x -axis as H, then ΩH = Ω \H is connected. If K is the half-line of
equations y = (1/2)x, x ≥ 0, then we have the following:

(i) ΩH \K has two components, which are domains of conical type, where MP holds;

(ii) each point of ΩH ∩K satisfies conditionG1/2 in ΩH .

Thus MP holds in Ω \H by Theorem 1.2. Also, each point of H satisfies condition Gσ in Ω for
some σ ∈ ]0, 1[ depending on r. Therefore, again by Theorem 1.2, we conclude that MP holds
in Ω.

4.3. Parabolic shaped domains

For a parabolic shaped wG domain, condition Gσ at y ∈ Ω holds with R(y) = O(|y|α) as
|y|→∞, for some 0 ≤ α ≤ 1, the limit cases α = 0 and α = 1 representing, respectively, the
cylindrical and the conical cases. Hence ry ≤ R(y) ≤ R0 + β|y|α for all y ∈ Ω with positive
constants R0 and β. Then, choosing ε sufficiently small in Theorem 4.2, if |y| ≤ εry, then

|y| ≤ εR0 + εβ|y|α ≤ ε
(
R0 + β

)
+ εβ|y|, (4.15)

so that the supremum in the second term of the right-hand side of (4.12) is taken over a
bounded subset of y ∈ Ω, in which ry ≤ R1 for some positive constant R1. Thus

sup
y∈Ω;|y|≤εry

ry
∥∥f−∥∥

Ln(Ω∩Bεry )
≤ R1 sup

y∈Ω;ry≤R1

∥∥f−∥∥
Ln(Ω∩Bεry )

. (4.16)

Proof of Theorem 1.3. Since condition wG holds with ry = O(|y|α), 0 ≤ α ≤ 1, the assumption
b(x) = O(1/|x|α(2−q)) as |x|→ +∞ implies the finiteness of bq in (4.11). Taking account of (4.16),
by continuity of f the estimate (1.10) follows letting ε→ 0.
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5. Strong maximum principle and Liouville theorem

The weak Harnack inequality of Theorem 3.3 can be used to show the following strong MP.

Theorem 5.1 (strongMP). LetΩ be a domain ofRn. Letw ∈ C(Ω) be such that F(x,w,Dw,D2w) ≥
0 in the viscosity sense, and assume structure condition (1.5), with b ∈ C(Ω). If x0 ∈ Ω and M :=
w(x0) ≥ w(x), for all x ∈ Ω, then w ≡ M in Ω.

Proof. Following [33], setΩ1 = w−1({M}) andΩ2 = Ω\Ω1. By assumptionΩ1 /=∅. By continuity
of w, it turns out that Ω2 = w−1(] − ∞,M[) is an open subset of R

n. Moreover, plainly, Ω =
Ω1 ∪Ω2 and Ω2 ∩Ω1 = ∅.

Recall that Ω is an open connected set. Thus it is sufficient to show that Ω1 is in turn an
open subset to have Ω = Ω1, as claimed in the statement of the theorem. Indeed, let x1 ∈ Ω1,
that is, w(x1) = M, and set u = M − w, then u is a nonnegative viscosity solution of
F(x, u,Du,D2u) ≤ 0. Applying (3.7) in a ball BR := BR(x1) ⊂ BR/τ(x1) ⊂⊂ Ω, we get

(
1

|BR|
∫

BR

(M −w)p0
)1/p0

≤ C inf
BR

u = 0, (5.1)

from which, by continuity, u ≡ M in BR(x1). This shows that Ω1 is an open subset of R
n and

concludes the proof.

The Liouville type result of Theorem 1.5 is instead based on Harnack inequality (3.11) of
Theorem 3.5. It is convenient to consider its version in annular regions BR,2R = B2R(0) \ BR(0)
to take advantage of the decay of b(x), obtained in standard way, using inequality (3.11) in a
chain of linked balls. This yields, for continuous solutions u ∈ C(BR/2,4R) of equation F = f ,
0 ≤ u ≤ N, under the structure conditions (1.4) and (1.5), with b, f ∈ C(BR/2,4R), the following
inequality:

sup
BR,2R

u ≤ C
(
inf
BR,2R

u + R‖f‖Ln(BR/2,4R)

)
, (5.2)

with a positive constant C = C(n, λ,Λ, q, τ, ‖b‖L∞(BR/2,4R)N
q−1R2−q).

Proof of Theorem 1.5. By the strong MP of Theorem 5.1, we know that w can achieve neither a
maximum nor a minimum at a point of R

n unless it is constant, in which case we should be
done.

Suppose for instance that w ≤ M := supw < +∞. Let Rk be an increasing sequence of
positive numbers such that limk→∞Rk = ∞. Set Mk = sup∂BRk

w and mk = inf∂BRk
w. By weak

maximum principle, Mk is increasing andmk is decreasing; thus

lim
k→∞

Mk = M, lim
k→∞

mk = m ∈ [−∞,+∞[. (5.3)

Then, using Harnack inequality (5.2), with u = M −w, we get

M −mk = sup
∂BRk

(M −w) ≤ C inf
∂BRk

(M −w) = C
(
M −Mk

)
, (5.4)

from which

M ≤ C
(
M −Mk

)
+mk ≤ C

(
M −Mk

)
+mk (5.5)

and, letting k→∞, we get M = m, as we wanted to show.
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Appendix

Proof of Lemmas 2.2 and 2.3

Although the proof of Lemma 2.2 is already contained in previous papers also in the case of
an almost-quadratic gradient term, see for instance [17], here, for the sake of completeness, we
give a sketch of the simple version in the case of linear gradient term, following [3], where the
fundamental case of a second-order uniformly elliptic operator is treated, with no lower-order
terms.

However, it seems useless to repeat the nice proof of [3], to which we refer for the ideas
and details. We only outline the steps which are influenced by the first-order term. For this
reason, we keep the same notations of [3].

Also, for the sake of brevity, we will refer to constants depending only on n, λ,Λ, b0 as to
structural constants.

Firstly, we introduce a test function; see [3, Lemma 4.1].

Lemma A.1. There exist positive structural constantsM, C and a function ϕ ∈ C2(Rn) such that

ϕ ≤ −2 in B(3/2)
√
n, ϕ ≥ 0 in R

n \ B2
√
n, (A.1)

ϕ ≥ −M in R
n, (A.2)

P+
λ,Λ(D

2ϕ) + b0
∣∣Dϕ

∣∣ ≤ Cξ in R
n, (A.3)

where ξ ∈ C(Rn), 0 ≤ ξ ≤ 1, supp ξ ⊂ B1/2.

Proof. We search for a function of type ϕ(x) = A1 −A2e
−αr , for r = |x| ≥ 1/4, where A1 and A2

are positive constants to be chosen in order that φ((3/2)
√
n) = −2 and φ(2

√
n) = 0. Next, we

extend ϕ to R
n in such a way that ϕ ≥ −M. By calculations, choosing α = 4Λ(n − 1) + 1/λ we

have

P+
λ,Λ

(
D2ϕ

)
+ b0
∣∣Dϕ

∣∣ = αA2e
−αr
(
Λ(n − 1)

r
− αλ + 1

)
≤ 0 (A.4)

for r ≥ 1/4. Also, for r ≤ 1/4,

P+
λ,Λ

(
D2ϕ

)
+ b0
∣∣Dϕ

∣∣ ≤ C (A.5)

and therefore (A.3) holds taking a cut-off function ξ ∈ C(Rn) such that ξ = 1 in B1/4 and ξ = 0
outside B1/2.

Next, we get a lower bound for the size of level sets of supersolutions. Denoting by Ql

a cube of side l, consider a nonnegative viscosity solution u ∈ LSC(Q4
√
n) of the differential

inequality P−
λ,Λ(D

2u) − b0|Du| ≤ f .
Setting w = u + ϕ and observing that

P−
λ,Λ

(
D2w

) − b0|Dw| ≤ P−
λ,Λ

(
D2u

)
+ P+

λ,Λ

(
D2ϕ

) − b0|Du| + b0
∣∣Dϕ

∣∣ ≤ f+ + Cξ, (A.6)

a positive lower bound

∣
∣{u ≤ M} ∩Q1

∣
∣ > μ, (A.7)
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with a structural positive constant μ < 1, see (A.2), follows, in the same way as in [3, Lemma
4.5], using ABP estimate (2.5), provided that infQ3u ≤ 1 and ‖f+‖Ln(Q4

√
n) ≤ ε0 for a positive

structural constant ε0. Moreover, under the same assumptions, [3, Lemma 4.6] says that
∣∣{u > Mk} ∩Q1

∣∣ ≤ (1 − μ)k (A.8)

for all k ∈ N, which for k = 1 agrees with (A.7). Then we point out that (A.8) follows by an
induction process, based on the Calderón-Zygmund decomposition of the cubeQ1, centered at
the origin, supposing (A.8) to hold for k − 1.

To perform the induction step it is crucial that, for a supersolution u(x) of (2.4), the
rescaled function ũ(y) = u(x)/Mk−1, where x = x0 + 2−iy runs in the dyadic cube Q2−i4

√
n,

centered at x0, is in turn a supersolution of (2.4) with a correspondingly scaled f , namely

P−
λ,Λ

(
D2ũ(y)

) − b0
∣∣Dũ(y)

∣∣ ≤ f+(x)
22iMk−1 (A.9)

for y ∈ Q4
√
n. From (A.8) it follows that

∣∣{u > t} ∩Q1
∣∣ ≤ dt−ε (A.10)

for all t > 0, with d and ε positive structural constants. Then, following the proof of Theorem
4.8(1) of [3], we use (A.8) in the identity

∫

Q1

up0 = p0

∫+∞

0

∣∣{u ≥ t} ∩Q1
∣∣dt, (A.11)

see [1], with p0 = ε/2 and, by rescaling, remove the normalization conditions infQ3u ≤ 1 and
‖f+‖Ln(Q4

√
n) ≤ ε0 to get

‖u‖Lp0 (Q1) ≤ C
(
inf
Q3

u +
∥∥f+∥∥

Ln(Q4
√
n)

)
. (A.12)

From this, with a covering argument as in [10, Theorem 3.1], we obtain (2.8).
We argue in the same manner for Lemma 2.3. Suppose again that Q1 is centered at the

origin. Following the proof of Theorem 4.8(2) of [3], firstly we consider a subsolution u of (2.6)
such that ‖f+‖Ln(Q4

√
n) ≤ ε0 and ‖u+‖Lε(Q1) ≤ d1/ε to get, even in this case, (A.10). Then, arguing

as in [3, Lemma 4.7], there exist structural constants M0 > 1 and σ > 0 such that, for all j ∈ N

large enough,

∣∣x0
∣∣ <

1
4
, u

(
x0
) ≥ νj−1 =⇒ Qj := Qlj

(
x0
) ⊂ Q1, sup

Qj

≥ νjM0, (A.13)

where ν = M0/(M0 − 1/2) and lj = σM−ε/n
0 ν−εj/n. As above, to get this result we use the

invariance of equation by scale transformations, namely that the function v(y) = ν/(ν −
1) − u(x)/νj−1(ν − 1)M0, where x = x0 + (4

√
n)−1ljy runs in the small cube Qj , is in turn a

supersolution of (2.4) with a correspondingly scaled f , that is,

P−
λ,Λ

(
D2v(y)

) − b0
∣∣Dṽ(y)

∣∣ ≤ f−(x)
νj−1(ν − 1)M0

(A.14)

for y ∈ Q4
√
n, provided that j > 1 + log(2 − 1/M0)/ log ν.
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On the base of (A.13), reasoning as in the proof of Lemma 4.4 of [3], we infer that
supQ1/4

u ≤ C, from which, by rescaling to remove normalization conditions ‖f+‖Ln(Q4
√
n) ≤ ε0

and ‖u+‖Lε(Q1) ≤ d1/ε, we get

sup
Q1/4

u ≤ C
(∥∥u+∥∥

Lε(Q1)
+
∥∥f+∥∥

Ln(Q4
√
n)

)
. (A.15)

as in the proof of Theorem 4.8 (2) of [3]. By a covering argument, as above for supersolutions,
we get (2.9) for p = ε. Note that (A.10) a fortiori holds replacing εwith p < ε. Thus (2.9) follows
for all 0 < p < ε. Finally, by Hölder inequality, we obtain (2.9) for all p > 0.
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[7] A. Vitolo, “On the Phragmén-Lindelöf principle for second-order elliptic equations,” Journal of
Mathematical Analysis and Applications, vol. 300, no. 1, pp. 244–259, 2004.

[8] I. Capuzzo Dolcetta and A. Vitolo, “A qualitative Phragmen-Lindelof theorem for fully nonlinear
elliptic equations,” Journal of Differential Equations, vol. 243, no. 2, pp. 578–592, 2007.

[9] I. CapuzzoDolcetta andA. Vitolo, “Local and global estimates for viscosity solutions of fully nonlinear
elliptic equations,” Discrete and Impulsive Systems, Series A, vol. 14, no. S2, pp. 11–16, 2007.
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