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The functional inequality ‖f(x) + 2f(y) + 2f(z)‖ ≤ ‖2f(x/2 + y + z)‖ + φ (x, y, z) (x, y, z ∈ G)
is investigated, where G is a group divisible by 2, f : G→ X and φ : G3 → [0,∞) are mappings,
and X is a Banach space. The main result of the paper states that the assumptions above together
with (1) φ(2x,−x, 0) = 0 = φ(0, x,−x) (x ∈ G) and (2) limn→∞(1/2n)φ(2n+1x, 2ny, 2nz) = 0, or
limn→∞2nφ(x/2n−1, y/2n, z/2n) = 0 (x, y, z ∈ G), imply that f is additive. In addition, some
stability theorems are proved.
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1. Introduction and preliminaries

The concept of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. The study of stability
problems had been formulated by Ulam [1] during a talk in 1940: under what condition does
there exist a homomorphism near an approximate homomorphism? In the following year 1941,
Hyers [2] had answered affirmatively the question of Ulam for Banach spaces, which states
that if ε ≥ 0 and f : X → Y is a mapping withX a normed space, Y a Banach space such that

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ ε (1.1)

for all x, y ∈ X, then there exists a unique additive mapping L : X → Y such that
∥
∥f(x) − L(x)

∥
∥ ≤ ε (1.2)

for all x ∈ X. Then, Aoki [3] in 1950 and Rassias [4] in 1978 proved the following
generalization of Hyers’ theorem [2] by considering the case when the inequality (1.1) is
unbounded.
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Proposition 1.1. Let f : X → Y be a mapping from a normed spaceX into a Banach space Y subject
to the inequality

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) (1.3)

for all x, y ∈ X,where ε and p are constants with ε ≥ 0 and p < 1. Then, there exists a unique additive
mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥ ≤ 2ε

2 − 2p
‖x‖p (1.4)

for all x ∈ X. If p < 0, then inequality (1.3) holds for x, y /= 0 and (1.4) for x /= 0.

Following the techniques of the proof of the corollary of Hyers [2], we observed that
Hyers introduced (in 1941) Hyers continuity condition about the continuity of the mapping
f(tx) in t ∈ R for each fixed x, and then he proved homogenouity of degree one and,
therefore, the famous linearity. This condition has been assumed further till now through
the complete Hyers direct method in order to prove linearity for generalized Hyers-Ulam
stability problem forms (cf., [5]).

In 1991, Gajda [6] provided an affirmative answer to Rassias’ question whether his
theorem can be extended for values of p greater than one. However, it was shown by Gajda
[6] as well as by Rassias and Šemrl [7] that one cannot prove a theorem similar to [4] when
p = 1. On the other hand, Rassias [8–10] generalized Hyers’ stability result by presenting a
weaker condition controlled by (or involving) a product of different powers of norms (from
the right-hand side of assumed conditions) as follows.

Proposition 1.2. Suppose that there exist constants ε ≥ 0 and p, q ∈ R such that r = p + q /= 1, and
f : X → Y is a mapping withX a normed space, Yis a Banach space such that the inequality

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ ε‖x‖p‖y‖q (1.5)

holds for all x, y ∈ X. Then, there exists a unique additive mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥ ≤ ε

∣
∣2 − 2r

∣
∣
‖x‖r (1.6)

for all x ∈ X.

Since then, more generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations andmappings have been investigated in [11–32].

Recently, Roh and Shin [33] proved that if f : X → Y is a mapping from a normed
space X into a Banach space Y satisfying the inequality

∥
∥f(x) + 2f(y) + 2f(z)

∥
∥ ≤

∥
∥
∥
∥
2f

(
x

2
+ y + z

)∥
∥
∥
∥
+ ε‖x‖r‖y‖r‖z‖r (1.7)

for all x, y, z ∈ X and some ε ≥ 0, then it is additive. In addition, they investigated the stability
in Banach spaces.

In this paper, we will consider a mapping on a group instead of a normed space which
satisfies the following inequality:

∥
∥f(x) + 2f(y) + 2f(z)

∥
∥ ≤

∥
∥
∥
∥
2f

(
x

2
+ y + z

)∥
∥
∥
∥
+ φ(x, y, z) (1.8)
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for all x, y, z ∈ G, where G is a group, f : G → X and φ : G3 → [0,∞) are mappings, and X is
a Banach space.

Inequalities of the type above and some corresponding equations were examined by
several authors [34–36]. In [35], it has been proved that if G is a (not necessarily 2-divisible)
group, X is an inner product space and the mapping f : G → X satisfies

∥
∥f(x) + f(y)

∥
∥ ≤ ∥

∥f(x + y)
∥
∥ (1.9)

for all x, y ∈ G, then it is additive. By replacing x = 0 in (1.8), we obtain
∥
∥f(0) + 2f(y) + 2f(z)

∥
∥ ≤ ∥

∥2f(0 + y + z)
∥
∥ + 0 (1.10)

for all y, z ∈ G, which implies the inequality (1.9). Therefore, Theorem 2.1 in this paper is a
special case of the result cited above for mappings which maps into Hilbert spaces. However,
Theorem 2.1 is also valid for Banach spaces, while the result in [35] is not. (A counter example
was constructed in [34]).

2. Main results

Theorem 2.1. Let (G,+) be a 2-divisible group and (X, ‖·‖) a Banach space. Assume that a mapping
φ : G3 → [0,∞) satisfies the assumptions

(1) φ(2x,−x, 0) = 0 = φ(0, x,−x) (x ∈ G),

(2) limn→∞(1/2n)φ(2
n+1x, 2ny, 2nz) = 0 or limn→∞2nφ(x/2n−1, y/2n, z/2n) = 0 (x, y, z ∈

G),

and that the mapping f : G → X satisfies the inequality (1.8). Then, f is additive.

Proof. By letting x = y = z = 0 in (1.8), we get f(0) = 0; and by letting x = 2x, y = −x and
z = 0 in (1.8), we have

f(2x) = −2f(−x) (2.1)

for all x ∈ G. Also, by letting x = 0 and z = −y in (1.8), we obtain

f(−y) = −f(y) (2.2)

for all y ∈ G.
Next, we are in the position to show that f is additive. We will consider two different

cases for second assumption of φ.

Case 1. Assume limn→∞2nφ(x/2n−1, y/2n, z/2n) = 0 for all x, y, z ∈ G. We get by (2.1) and
(2.2)

f(2x) = 2f(x), f(x) = 2f
(
x

2

)

= 4f
(
x

4

)

= · · ·= 2nf
(

x

2n

)

(2.3)

for all positive integer n and all x ∈ G. Therefore, we can define f(x) := limn→∞2nf(x/2n) for
all x ∈ G. Due to (1.8), (2.1), and (2.2), we obtain

∥
∥f(x) + f(y) − f(x + y)

∥
∥ = lim

n→∞
2n
∥
∥
∥
∥
f

(
x

2n

)

+ f

(
y

2n

)

+ f

(−x − y

2n

)∥
∥
∥
∥

≤ lim
n→∞

2n
∥
∥
∥
∥
f

(
x

2n

)

+ f

(
y

2n

)

+
1
2
f

(−x − y

2n−1

)∥
∥
∥
∥

≤ lim
n→∞

2n−1φ
(−x − y

2n−1
,
x

2n
,
y

2n

)

= 0

(2.4)

for all x, y ∈ G. Thus, f(x + y) = f(x) + f(y).
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Case 2. Assume limn→∞(1/2n)φ(2
n+1x, 2ny, 2nz) = 0 for all x, y, z ∈ G. We get by (2.1) and

(2.2)

f(2x) = 2f(x), f(x) =
1
2
f(2x) =

1
4
f(4x) = · · · = 1

2n
f
(

2nx
)

(2.5)

for all positive integer n and all x ∈ G. Therefore, we can define f(x) := limn→∞(1/2n)f(2
nx)

for all x ∈ G. Due to (1.8), (2.1), and (2.2), we obtain

∥
∥f(x) + f(y) − f(x + y)

∥
∥ = lim

n→∞
1
2n

∥
∥f

(

2nx
)

+ f
(

2ny
)

+ f
(

2n(−x − y)
)∥
∥

≤ lim
n→∞

1
2n+1

φ
(

2n+1(−x − y), 2nx, 2ny
)

= 0
(2.6)

for all x, y ∈ G. Thus, f(x + y) = f(x) + f(y).

Next, wewill study the generalizedHyers-Ulam stability of functional inequality (1.8).

Theorem 2.2. Let (G,+) be a 2-divisible abelian group and (X, ‖·‖) a Banach space. Assume that a
mapping φ : G3 → [0,∞) satisfies the assumptions

(1) ρ(x) =
∑∞

j=02
j[φ(x/2j ,−x/2j+1, 0) + φ(0, x/2j+1,−x/2j+1)] < ∞ (x ∈ G),

(2) limn→∞2nφ((−x − y)/2n−1, x/2n, y/2n) = 0 (x, y ∈ G),

and the inequality (1.8). Then, there exists a unique additive mapping L : G → X such that

‖L(x) − f(x)‖ ≤ ρ(x) (2.7)

for all x ∈ G.

Proof. Letting x = y = z = 0 in (1.8), we get ‖f(0)‖ ≤ (1/3)φ(0, 0, 0). By assumption, we
should have φ(0, 0, 0) = 0, since limn→∞2nφ(0, 0, 0) = 0. Hence, f(0) = 0. So, by letting y =
−x/2 and z = 0 in (1.8), we have

∥
∥
∥
∥
f(x) + 2f

(

− x

2

)∥
∥
∥
∥
≤ φ

(

x,−x
2
, 0
)

(2.8)

for all x ∈ G. Letting x = 0, y = x, and z = −x in (1.8), we obtain

∥
∥f(x) + f(−x)∥∥ ≤ 1

2
φ(0, x,−x) (2.9)

for all x ∈ G. Therefore, we have
∥
∥
∥
∥
2lf

(
x

2l

)

− 2mf
(

x

2m

)∥
∥
∥
∥
≤

m−1∑

j=l

∥
∥
∥
∥
2jf

(
x

2j

)

− 2j+1f
(

x

2j+1

)∥
∥
∥
∥

≤
m−1∑

j=l

[∥
∥
∥
∥
2jf

(
x

2j

)

+ 2j+1f
( −x
2j+1

)∥
∥
∥
∥
+
∥
∥
∥
∥
2j+1f

( −x
2j+1

)

+ 2j+1f
(

x

2j+1

)∥
∥
∥
∥

]

≤
m−1∑

j=l

[

2jφ
(
x

2j
,− x

2j+1
, 0
)

+ 2jφ
(

0,
x

2j+1
,− x

2j+1

)]

(2.10)
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for all nonnegative integers m and l with m > l and all x ∈ G. It means that the sequence
{2nf(x/2n)} is a Cauchy sequence. SinceX is complete, the sequence {2nf(x/2n)} converges.
So we can define a mapping L : G → X by L(x) := limn→∞2nf(x/2n) for all x ∈ G. Moreover,
by letting l = 0 and passing m → ∞,we get (2.7).

Now, we claim that the mapping L is additive. We note by (2.9) that
∥
∥
∥
∥
L(x) + L(−x)

∥
∥
∥
∥
= lim

n→∞
2n
∥
∥
∥
∥
f

(
x

2n

)

+ f

(

− x

2n

)∥
∥
∥
∥
≤ lim

n→∞
2n−1φ

(

0,
x

2n
,− x

2n

)

= 0. (2.11)

So we have L(−x) = −L(x). By (1.8), (2.8), and (2.9), we have

∥
∥L(x) + L(y) − L(x + y)

∥
∥ = lim

n→∞
2n
∥
∥
∥
∥
f

(
x

2n

)

+ f

(
y

2n

)

+ f

(−x − y

2n

)∥
∥
∥
∥

≤ lim
n→∞

2n
∥
∥
∥
∥

1
2
f

(−x − y

2n−1

)

+ f

(
x

2n

)

+ f

(
y

2n

)∥
∥
∥
∥

+ lim
n→∞

2n
∥
∥
∥
∥
f

(−x − y

2n

)

+
1
2
f

(
x + y

2n−1

)∥
∥
∥
∥

+ lim
n→∞

2n−1
∥
∥
∥
∥
f

(−x − y

2n−1

)

+ f

(
x + y

2n−1

)∥
∥
∥
∥

≤ lim
n→∞

2n−1φ
(−x − y

2n−1
,
x

2n
,
y

2n

)

+ lim
n→∞

2n−1φ
(
x + y

2n−1
,
−x − y

2n
, 0
)

+ lim
n→∞

2n−2φ
(

0,
−x − y

2n−1
,
x + y

2n−1

)

= 0

(2.12)

for all x, y ∈ G.
Now, to prove uniqueness of the mapping L, let us assume that T : G → X is an

additive mapping satisfying (2.7). Then, we obtain due to (2.7) that

∥
∥L(x) − T(x)

∥
∥ = 2n

∥
∥
∥
∥
L

(
x

2n

)

− T

(
x

2n

)∥
∥
∥
∥

≤ 2n
[∥
∥
∥
∥
L

(
x

2n

)

− f

(
x

2n

)∥
∥
∥
∥
+
∥
∥
∥
∥
T

(
x

2n

)

− f

(
x

2n

)∥
∥
∥
∥

]

≤ 2n+1ρ
(

x

2n

)

−→ 0

(2.13)

for all x ∈ G, as n → ∞.

Theorem 2.3. Let (G,+) be a 2-divisible abelian group and (X, ‖·‖) a Banach space. Assume that a
mapping φ : G3 → [0,∞) satisfies the assumptions

(1)
∑∞

j=0(1/2
j)[φ(−2j+1x, 2jx, 0) + (1/2)φ(0, 2j+1x,−2j+1x)] < ∞ (x ∈ G),

(2) limn→∞(1/2n)φ(2
n+1(−x − y), 2nx, 2ny) = 0 (x, y ∈ G),

and the inequality (1.8). Then, there exists a unique additive mapping L : G → X such that
∥
∥L(x) − f(x)

∥
∥ ≤ η(x) (2.14)

for all x ∈ G, where

η(x) =
∞∑

j=0

1
2j+1

[

φ
( − 2j+1x, 2jx, 0

)

+
1
2
φ
(

0, 2j+1x,−2j+1x) + 11
6
φ(0, 0, 0)

]

. (2.15)
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Proof. By letting x = y = z = 0 in (1.8), we get
∥
∥f(0)

∥
∥ ≤ 1

3
φ(0, 0, 0). (2.16)

We also have, by letting y = −x/2 and z = 0 in (1.8), that
∥
∥
∥
∥

1
2
f(x) + f

(

− x

2

)∥
∥
∥
∥
≤ 1

2
φ

(

x,−x
2
, 0
)

+
2
3
φ(0, 0, 0) (2.17)

for all x ∈ G. Next, by letting x = 0, y = x, and z = −x in (1.8), we obtain
∥
∥f(x) + f(−x)∥∥ ≤ 1

2
φ(0, x,−x) + 1

2
φ(0, 0, 0) (2.18)

for all x ∈ G. Therefore, we have
∥
∥
∥
∥

1
2l
f
(

2lx
) − 1

2m
f
(

2mx
)
∥
∥
∥
∥

≤
m−1∑

j=l

∥
∥
∥
∥

1
2j
f
(

2jx
) − 1

2j+1
f
(

2j+1x
)
∥
∥
∥
∥

≤
m−1∑

j=l

[∥
∥
∥
∥

1
2j
f
(

2jx
)

+
1

2j+1
f
( − 2j+1x

)
∥
∥
∥
∥
+
∥
∥
∥
∥

1
2j+1

f
(

2j+1x
)

+
1

2j+1
f
( − 2j+1x

)
∥
∥
∥
∥

]

≤
m−1∑

j=l

[
1

2j+1
φ
( − 2j+1x, 2jx, 0

)

+
1

2j+2
φ
(

0, 2j+1x,−2j+1x) + 1
2j+1

11
6
φ(0, 0, 0)

]

(2.19)

for all nonnegative integers m and l with m > l and all x ∈ G. It follows that the sequence
{(1/2n)f(2nx)} is a Cauchy and so it is convergent since X is complete. So one can define a
mapping L : G → X by L(x) := limn→∞(1/2n)f(2

nx) for all x ∈ G. By letting l = 0 and taking
the limit m → ∞,we arrive at (2.14).

Now, we claim that the mapping L is additive. By (2.18), one notes
∥
∥L(x) + L(−x)∥∥ = lim

n→∞
1
2n

∥
∥
∥
∥
f
(

2nx) + f
( − 2nx

)
∥
∥
∥
∥
≤ lim

n→∞
1

2n+1
[

φ
(

0, 2nx,−2nx) + φ(0, 0, 0)
]

= 0.

(2.20)

So we have L(−x) = −L(x). By (1.8), (2.17), and (2.18), we obtain
∥
∥L(x) + L(y) − L(x + y)

∥
∥ = lim

n→∞
1
2n

∥
∥f

(

2nx
)

+ f
(

2ny
)

+ f
(

2n(−x − y)
)∥
∥

≤ lim
n→∞

1
2n

∥
∥
∥
∥

1
2
f
(

2n+1(−x − y)
)

+ f
(

2nx
)

+ f
(

2ny
)
∥
∥
∥
∥

+ lim
n→∞

1
2n

∥
∥
∥
∥
f
(

2n(−x − y)
)

+
1
2
f
(

2n+1(x + y)
)
∥
∥
∥
∥

+ lim
n→∞

1
2n+1

∥
∥f

(

2n+1(−x − y)
)

+ f
(

2n+1(x + y)
)∥
∥

≤ lim
n→∞

1
2n+1

[

φ
(

2n+1
( − x − y

)

, 2nx, 2ny
)

+
2
3
φ(0, 0, 0)

]

+ lim
n→∞

1
2n+1

[

φ
(

2n+1(x + y), 2n
( − x − y

)

, 0
)

+
4
3
φ(0, 0, 0)

]

+ lim
n→∞

1
2n+2

[

φ
(

0, 2n+1(−x − y), 2n+1(x + y)
)

+ φ(0, 0, 0)
]

= 0

(2.21)

for all x, y ∈ G.
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Now, to show uniqueness of the mapping L, let us assume that T : G → X is another
additive mapping satisfying (2.14). Then, by (2.14), and assumptions of φ,we have

∥
∥L(x) − T(x)

∥
∥ =

1
2n

∥
∥L

(

2nx
) − T

(

2nx
)∥
∥

≤ 1
2n

[∥
∥L

(

2nx
) − f

(

2nx
)∥
∥ +

∥
∥T

(

2nx
) − f

(

2nx
)∥
∥
]

≤ 1
2n−1

η
(

2nx
) −→ 0

(2.22)

for all x ∈ G, as n → ∞.

With the help of Theorems 2.2 and 2.3, we obtain the following corollaries.

Corollary 2.4. Suppose that f : E → X is a mapping from a normed space E into a Banach space X
subject to the inequality

∥
∥f(x) + 2f(y) + 2f(z)

∥
∥ ≤

∥
∥
∥
∥
2f

(
x

2
+ y + z

)∥
∥
∥
∥
+ ε

(‖x‖p + ‖y‖p + ‖z‖p) (2.23)

for all x, y, z ∈ E, where ε and p are constants with ε ≥ 0 and p > 1. Then, there exists a unique
additive mapping L : E → X such that

∥
∥L(x) − f(x)

∥
∥ ≤ 2p + 3

2p − 2
ε‖x‖p (2.24)

for all x ∈ E.

Corollary 2.5. Suppose that f : E → X is a mapping from a normed space E into a Banach space X
subject to the inequality (2.23) for all x, y, z ∈ E, where ε and p are constants with ε ≥ 0 and p < 1.
Then, there exists a unique additive mapping L : E → X such that

∥
∥L(x) − f(x)

∥
∥ ≤ 2p+2 + 2

2 − 2p
ε‖x‖p (2.25)

for all x ∈ E.

Theorem 2.6. Let (G,+) be a 2-divisible abelian group and (X, ‖·‖) a Banach space. Assume that a
mapping φ : G3 → [0,∞) satisfies the assumptions

(1)
∑∞

j=02
j[φ(x/2j ,−x/2j+1, 0) + φ(−x/2j , x/2j+1, 0)] < ∞ (x ∈ G),

(2) limn→∞2nφ(−x − y/2n−1, x/2n, y/2n) = 0 (x, y ∈ G),

and the inequality (1.8). Then, there exists a unique additive mapping L : G → X such that
∥
∥
∥
∥
L(x) − f(x) − f(−x)

2

∥
∥
∥
∥
≤ γ(x) (2.26)

for all x ∈ G, where

γ(x) =
∞∑

j=0

2j−1
[

φ

(
x

2j
,− x

2j+1
, 0
)

+ φ

(

− x

2j
,

x

2j+1
, 0
)]

. (2.27)
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Proof. Letting x = y = z = 0 in (1.8), we get ‖f(0)‖ ≤ (1/3)φ(0, 0, 0). By assumption, we
should have φ(0, 0, 0) = 0, since limn→∞2nφ(0, 0, 0) = 0. Hence, we obtain f(0) = 0. By letting
y = −x/2 and z = 0 in (1.8), we have

∥
∥
∥
∥
f(x) + 2f

(

− x

2

)∥
∥
∥
∥
≤ φ

(

x,−x
2
, 0
)

(2.28)

for all x ∈ G. Let g(x) = (f(x) − f(−x))/2. Then, we obtain

∥
∥2g(x) − g(2x)

∥
∥ ≤

∥
∥
∥
∥
f(x) +

f(−2x)
2

∥
∥
∥
∥
+
∥
∥
∥
∥
f(−x) + f(2x)

2

∥
∥
∥
∥

≤ 1
2
[

φ(−2x, x, 0) + φ(2x,−x, 0)]
(2.29)

for all x ∈ G. Hence, for all nonnegative integers m and l withm > l and all x ∈ G,

∥
∥
∥
∥
2lg

(
x

2l

)

− 2mg
(

x

2m

)∥
∥
∥
∥
≤

m−1∑

j=l

∥
∥
∥
∥
2jg

(
x

2j

)

− 2j+1g
(

x

2j+1

)∥
∥
∥
∥

≤
m−1∑

j=l

2j−1
[

φ

(

− x

2j
,

x

2j+1
, 0
)

+ φ

(
x

2j
,− x

2j+1
0
)]

.

(2.30)

So the sequence {2ng(x/2n)} is a Cauchy sequence. Due to the completeness of X, this
sequence is convergent. Let L : G → X be a mapping defined by L(x) := limn→∞2ng(x/2n)
for all x ∈ G. Letting l = 0 and sending m → ∞,we get (2.26).

Next, we claim that the mapping L is additive. We first note that L(−x) = −L(x)
because g(−x) = −g(x). So, by (1.8) and (2.28), we obtain

∥
∥L(x) + L(y) − L(x + y)

∥
∥ = lim

n→∞
2n
∥
∥
∥
∥
g

(
x

2n

)

+ g

(
y

2n

)

+ g

(−x − y

2n

)∥
∥
∥
∥

≤ lim
n→∞

2n
[∥
∥
∥
∥

f
(

x/2n
)

2
+
f
(

y/2n
)

2
+
f
( − x − y/2n−1

)

4

∥
∥
∥
∥

+
∥
∥
∥
∥

f
( − x/2n

)

2
+
f
( − y/2n

)

2
+
f
(

x + y/2n−1
)

4

∥
∥
∥
∥

]

+ lim
n→∞

2n
[∥
∥
∥
∥

f
( − x − y/2n

)

2
+
f
(

x + y/2n−1
)

4

∥
∥
∥
∥

+
∥
∥
∥
∥

f
(

x + y/2n
)

2
+
f
( − x − y/2n−1

)

4

∥
∥
∥
∥

]

≤ lim
n→∞

2n−2
[

φ

(−x − y

2n−1
,
x

2n
,
y

2n

)

+ φ

(
x + y

2n−1
,
−x
2n

,
−y
2n

)]

+ lim
n→∞

2n−2
[

φ

(
x + y

2n−1
,
−x − y

2n
, 0
)

+ φ

(−x − y

2n−1
,
x + y

2n
, 0
)]

= 0

(2.31)

for all x, y ∈ G. So we have L(x + y) = L(x) + L(y).
The proof of uniqueness for L is similar to the proof of Theorem 2.2.
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Theorem 2.7. Let (G,+) be a 2-divisible abelian group and (X, ‖·‖) a Banach space. Assume that a
mapping φ : G3 → [0,∞) satisfies the assumptions

(1)
∑∞

j=0(1/2
j)[φ(−2j+1x, 2jx, 0) + φ(2j+1x,−2jx, 0)] < ∞ (x ∈ G),

(2) limn→∞(1/2n)φ(2
n+1(−x − y), 2nx, 2ny) = 0 (x, y ∈ G),

and the inequality (1.8). Then, there exists a unique additive mapping L : G → X such that

∥
∥
∥
∥
L(x) − f(x) − f(−x)

2

∥
∥
∥
∥
≤ δ(x) (2.32)

for all x ∈ G, where

δ(x) =
∞∑

j=0

1
2j+2

[

φ
( − 2j+1x, 2jx, 0

)

+ φ(2j+1x,−2jx, 0) + 8
3
φ(0, 0, 0)

]

. (2.33)

Proof. Due to (2.17), we have

∥
∥
∥
∥

1
2
f(x) + f

(

− x

2

)∥
∥
∥
∥
≤ 1

2
φ

(

x,−x
2
, 0
)

+
2
3
φ(0, 0, 0) (2.34)

for all x ∈ G. So, we obtain

∥
∥
∥
∥

1
2l
g
(

2lx
) − 1

2m
g
(

2mx
)
∥
∥
∥
∥
≤

m−1∑

j=l

∥
∥
∥
∥

1
2j
g
(

2jx
) − 1

2j+1
g
(

2j+1x
)
∥
∥
∥
∥

≤
m−1∑

j=l

1
2j+2

[

φ
( − 2j+1x, 2jx, 0

)

+ φ
(

2j+1x,−2jx, 0) + 8
3
φ(0, 0, 0)

]

(2.35)

for all nonnegative integers m and l with m > l and all x ∈ G. This means that the sequence
{(1/2n)g(2nx)} is a Cauchy sequence. Since X is complete, the sequence {(1/2n)g(2nx)}
converges. Thus, we may define a mapping L : G → X by L(x) := limn→∞(1/2n)g(2

nx)
for all x ∈ G. Letting l = 0 and passing the limit m → ∞,we get (2.32).

Now, we claim that the mapping L is additive. By (2.16), (1.8), and (2.34), we have

∥
∥L(x) + L(y) − L(x + y)

∥
∥

= lim
n→∞

1
2n

∥
∥g

(

2nx
)

+ g
(

2ny
)

+ g
(

2n(−x − y)
)∥
∥

≤ lim
n→∞

1
2n+2

[

φ
(

2n+1(−x − y), 2nx, 2ny
)

+ φ
(

2n+1(x + y),−2nx,−2ny)]

+ lim
n→∞

1
2n+2

[

φ
(

2n+1(x + y), 2n(−x − y), 0
)

+ φ
(

2n+1(−x − y), 2n(x + y), 0
)]

+ lim
n→∞

1
2n

φ(0, 0, 0) = 0

(2.36)

for all x, y ∈ G.
The proof of uniqueness for L is similar to the proof of Theorem 2.3.
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Sciences Mathématiques, vol. 108, no. 4, pp. 445–446, 1984.

[10] J. M. Rassias, “Solution of a problem of Ulam,” Journal of Approximation Theory, vol. 57, no. 3, pp.
268–273, 1989.

[11] D. G. Bourgin, “Classes of transformations and bordering transformations,” Bulletin of the American
Mathematical Society, vol. 57, pp. 223–237, 1951.

[12] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, vol. 34
of Progress in Nonlinear Differential Equations and Their Applications, Birkh”auser, Boston, Mass, USA,
1998.

[13] K.-W. Jun and H.-M. Kim, “Stability problem of Ulam for generalized forms of Cauchy functional
equation,” Journal of Mathematical Analysis and Applications, vol. 312, no. 2, pp. 535–547, 2005.

[14] K.-W. Jun and Y.-H. Lee, “A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized
quadratic equations,” Journal of Mathematical Analysis and Applications, vol. 297, no. 1, pp. 70–86, 2004.

[15] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic
Press, Palm Harbor, Fla, USA, 2001.

[16] S.-M. Jung, “Hyers-Ulam stability of a system of first order linear differential equations with constant
coefficients,” Journal of Mathematical Analysis and Applications, vol. 320, no. 2, pp. 549–561, 2006.

[17] C.-G. Park, “Homomorphisms between Poisson JC∗-algebras,” Bulletin of the Brazilian Mathematical
Society, vol. 36, no. 1, pp. 79–97, 2005.

[18] C. Park, “Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras,” Bulletin des
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