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1. Introduction

Several chemical and biochemical processes are typically described by nonlinear coupled par-
tial differential equations “PDE” and hence by distributed parameter models (see [1] and the
references within). The source of nonlinearities is essentially the kinetics of the reactions in-
volved in the process. For numerical simulation as well as for control design problems, many
authors approximate those distributed parameter systems by lumped parameter models [1–
5]. However, an important number of questions remained unsolved. In particular, to study the
stability of the tubular reactor, the trajectory must exist on the whole real positive time interval
[0,+∞[. In our previous works [6, 7], we have proven the global state trajectories existence for
a class of nonlinear systems arising from convection-dispersion-reaction systems, assuming
that the inlet concentrations are independent of time. In this paper, we investigate the question
in the case where the involved inlet concentrations are functions of time t. The considered class
of models correspond to the following chemical reaction:

nA +mB −→ P, (1.1)
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whose kinetic is given by r = (−k1CmLn,−k2CmLn)T , where C and L are the concentrations
of the reactants A and B, respectively, k1 and k2 are the kinetic constants and m, n are the
order of the reaction to A and B, respectively. More precisely, we study the global existence
and uniqueness of the trajectories of the models which describe the evolution of two reactant
concentrations C and L:

∂C

∂t
= −ν∂C

∂ξ
+D1

∂2C

∂ξ2
− k1C

mLn, (1.2)

∂L

∂t
= −ν∂L

∂ξ
+D2

∂2L

∂ξ2
− k2C

mLn, (1.3)

for ξ ∈]0, l[ and t > 0, with the following boundary and initial conditions:

D1
∂C

∂ξ
(0, t) − νC(0, t) + νCin(t) = 0 = D1

∂C

∂ξ
(l) ∀t > 0 (1.4)

D2
∂L

∂ξ
(0, t) − νL(0, t) + νLin(t) = 0 = D2

∂L

∂ξ
(l, t) ∀t > 0, (1.5)

C(ξ, 0) = C0(ξ), L(ξ, 0) = L0(ξ) for ξ ∈]0, l[. (1.6)

Additionally, the existence and uniqueness of the corresponding equilibrium profile will
be proven.

In the above equations, D1, D2 are the dispersion coefficients, ν is the superficial fluid
velocity, t, ξ denote the time and space independent variables, respectively, l is the length of the
reactor, m and n are two positive integers, Cin and Lin are the inlet concentration. For further
discussion of parameters, we refer to [3].

Comment 1. (i) The nonlinear models considered in this paper have been studied in a quali-
tative manner by several authors. In the case, ν = 0, [8] established the asymptotic behavior
of solutions for the second-order reaction (i.e., n = m = 1). N. Alikakos [9] established global
existence and L∞ bounds of positive solutions, when m = 1 and 1 < n < 3/2. This latter result
has been generalized by [10] for the case m = 1 and n > 1.

In practice, the special cases m = n = 1, 2, 3 have been used as an industrial pulp bleach-
ing model, where the two reactants are chlorine dioxide (C) and lignin (L). In particular, [3]
studied approximate solutions by using several methods (orthogonal collocation, finite ele-
ments, and finite difference methods), when n = m and D1 = D2. The reader can find another
model with D1 /=D2 in [11], where the numerical analysis has been done for m = n = 1 and
D2 = 4D1, D2 = 16D1 (see also [12]).

Recently, the existence of global solutions for problems such as (1.2)–(1.6) has been ex-
tensively studied in [6, 7]with constant inlet concentrations.

(ii) For technological limitations and economical considerations, the following satura-
tion conditions are usually fulfilled for all 0 ≤ ξ ≤ l and for all t ≥ 0:

0 ≤ C ≤ C, 0 ≤ L ≤ L, (1.7)

Cin(t) ≤ C, Lin(t) ≤ L, (1.8)

where C and L are positive constants.
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This paper is organized as follows. In Section 2, we will recall briefly some basic results
and preliminary facts from semilinear nonautonomous evolution equations which will be used
throughout Section 4. In Section 3, the problem (1.2)–(1.6) is converted through some transfor-
mations to a homogeneous formwhere the semigroup theory applies. In Section 4 we establish
the main global existence result for system (1.2)–(1.6). We report the existence and unique-
ness of equilibrium profiles results in Section 5. Finally, the main conclusions are outlined in
Section 6. The background of our approach can be found in [13–16].

2. Preliminaries

Let X be a real Banach space with norm ‖·‖, J = [a, b[ (a < b ≤ +∞), and let {T(t); t ≥ 0}
be a linear contraction C0-semigroup on X generated by A. Let B be a nonlinear continuous
operator form Ω into X, where Ω is a subset of J ×X. I and I denote, respectively, the identity
operator of X and the function identically equal to 1.

This section is devoted to investigate sufficient conditions for the existence and unique-
ness of global mild solutions to the following abstract Cauchy problem:

ẋ(t) = Ax(t) + B(t, x(t)), τ < t < b,
x(τ) = xτ ∈ Ω(τ),

(2.1)

where Ω(τ) denote the section of Ω at τ ∈ J , given by Ω(t) = {x ∈ X; (t, x) ∈ Ω}. Assume that
Ω(t)/=∅ for all t ∈ J . Moreover, recall that d(x;D) = inf{‖x − y‖, y ∈ D}, for x ∈ X and D is a
subset of X.

The semilinear nonautonomous evolution equations have been treated by a number of
authors [14, 15, 17–21]. However, one may find that in most cases Ω is cylindrical, that is,
Ω = J ×D [14, 22]. More generally, the cylindrical case ofΩwill not be convenient for the study
of evolution system satisfying time-dependent constraints, that is, x(t) ∈ Ω(t) on J (see our
problem in Section 3). A noncylindrical Ω case was studied in [16, 19].

The following result gives sufficient conditions for the existence and uniqueness of
global mild solutions to the semilinear equations of type (2.1). It is a particular version of
[16, Theorem 8.1], when the nonlinear B(t, ·) is lB-dissipative [16].

Theorem 2.1 (see [16]). Suppose that the following conditions are fulfilled:

(i) Ω is closed from the left, that is, if (tn, xn) ∈ Ω, tn ↑ t in J , and xn → x in X as n → ∞, then
(t, x) ∈ Ω;

(ii) for all(t, x) ∈ Ω, lim infh↓0 (1/h)d(T(h)x + hB(t, x),Ω(t + h)) = 0;

(iii) B is continuous on Ω and there exists lB ∈ R
+ such that the operator (B(t, ·) − lBI) is dissipative

on Ω(t) for all t ∈ J .

If Ω is a connected subset of J × X such that for all t ∈ J, Ω(t)/=∅, then, for each (τ, xτ) ∈ Ω, (2.1)
has a unique mild solution on J .

Comment 2. It is shown in [16] that the “subtangential condition” (ii) is a necessary condi-
tion for the existence of the mild solutions of (2.1). For more details on the conditions of
Theorem 2.1, we refer to [16].

In the particular case when Ω(t) is T(s)-invariant, that is, T(s)(Ω(t)) ⊂ Ω(t) for all t, s ≥
0, we have the following lemma.
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Lemma 2.2. Let B : Ω → X be continuous and let Ω be closed from the left. If Ω(t) is T(s)-invariant
for all t, s ≥ 0, then the following subtangential condition

lim
h↓0

inf
1
h
d
(
x + hB(t, x);Ω(t + h)

)
= 0 ∀(t, x) ∈ Ω (2.2)

implies the condition

lim
h↓0

inf
1
h
d
(
T(h)x + hB(t, x),Ω(t + h)

)
= 0, ∀(t, x) ∈ Ω. (2.3)

Proof. Let (t, x) ∈ Ω, given ε > 0, from condition (2.2) it follows, by [23, Lemma 3] (see also [24,
Lemma 1]), that there is h ∈ (0, ε] and y ∈ Ω(t + h) such that ‖y − x − hB(t, x)‖ ≤ hε. Let now
u = y − x − hB(t, x) and v = (1/h)u. We get ‖v‖ ≤ ε such that y = x + h(B(t, x) + v) ∈ Ω(t + h).
By the invariance properties of Ω(t), we have T(h)y ∈ Ω(t + h). Consequently,

d
(
T(h)x + hB(t, x);Ω(t + h)

)
≤
∥∥T(h)x + hB(t, x) − T(h)y

∥∥,

≤
∥∥hB(t, x) − hT(h)B(t, x) − hT(h)v

∥∥,

≤ h
∥∥T(h)B(t, x) − B(t, x)

∥∥ + h
∥∥T(h)v

∥∥,

≤ h
∥∥T(h)B(t, x) − B(t, x)

∥∥ + hε.

(2.4)

By using the continuity of C0-semigroup (T(t))t≥0, the desired result (2.3) is obtained.
Theorem 2.1 with Lemma 2.2 obviously imply the following.

Corollary 2.3. Suppose that the following conditions are fulfilled:

(i) Ω is closed from the left, that is, if (tn, xn) ∈ Ω, tn ↑ t in J , and xn → x in X as n → ∞, then
(t, x) ∈ Ω;

(ii) Ω(t) is T(s)-invariant, for all t, s ≥ 0;

(iii) for all (t, x) ∈ Ω, lim infh↓0 (1/h)d(x + hB(t, x),Ω(t + h)) = 0;

(iv) B is continuous on Ω and there exists lB ∈ R
+ such that the operator (B(t, ·) − lBI) is dissipative

on Ω(t) , for all t ∈ J .

If Ω is a connected subset of J × X such that for all t ∈ J, Ω(t)/=∅, then, for each (τ, xτ) ∈ Ω, (2.1)
has a unique mild solution on J .

3. Abstract semigroup formulation

Throughout the sequel, we assume H = L2[0, 1] ⊕ L2[0, 1], the Hilbert space with the usual
inner product

〈(
x1, x2

)
,
(
y1, y2

)〉
=
〈
x1, y1

〉
L2 +

〈
x2, y2

〉
L2 (3.1)
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and the induced norm

∥∥(x1, x2
)∥∥ =

(∥∥x1
∥∥2
L2 +

∥∥x2
∥∥2
L2

)1/2
(3.2)

for all (x1, x2) and (y1, y2) inH.
Clearly, the Hilbert space H is a real Banach lattice, where for all given x = (x1, x2) ∈

H, y = (y1, y2) ∈ H,

x ≤ y iff x1(z) ≤ y1(z), x2(z) ≤ y2(z) for a.e. z ∈ [0, 1]. (3.3)

Recall that for every pair x, y ∈ H, the set

[x, y] =
{
w ∈ H : x1 ≤ w1 ≤ y1, x2 ≤ w2 ≤ y2

}
=
[
x1, y1

]
×
[
x2, y2

]
(3.4)

is called the order interval between x and y. Clearly, [x, y] is nonempty if x ≤ y (for more
details, see, e.g., [25]). A bounded linear operator T on H is said to be positive if 0 ≤ Tx for
all 0 ≤ x. Similarly, a family of bounded linear operators (T(t))t≥0 of H is said to be a positive
C0-semigroup onH if T(t) is a C0-semigroup onH and T(t) is a positive operator for all t ≥ 0.

In the following, we will assume that Cin(t) and Lin(t) are positive
C1([0,∞[)-functions. Let us consider the following state transformation:

z =
ξ

l
, x1 = C − Cin, x2 = L − Lin, x01 = C0 − Cin, x02 = L0 − Lin. (3.5)

Then, we obtain the new equivalent system for all z ∈]0, 1[ and t > 0:

∂x1

∂t
= −v∂x1

∂z
+ d1

∂2x1

∂z2
− k1
(
x1 + Cin(t)

)m(
x2 + Lin(t)

)n−
.

Cin (t), (3.6)

∂x2

∂t
= −v∂x2

∂z
+ d2

∂2x2

∂z2
− k2
(
x1 + Cin(t)

)m(
x2 + Lin(t)

)n−
.

Lin (t), (3.7)

with

di
∂xi

∂z
(0, t) − vxi(0, t) = 0 = di

∂xi

∂z
(1, t) ∀t > 0 i = 1; 2, (3.8)

xi(z, 0) = x0i(z) for z ∈]0, 1[, i = 1; 2, (3.9)

where

d1 =
D1

l2
, d2 =

D2

l2
, v =

ν

l
. (3.10)

This PDEs describing the reactor dynamics may be formally written in the abstract form
as

ẋ(t) = Ax(t) + B
(
t, x(t)

)
,

x(0) = x0 ∈ Ω(0),
(3.11)
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where Ω(t) denote the section of Ω at t ∈ R
+, which is given in view of (1.7) by

Ω =
{(

t,
(
x1, x2

))T ∈ R
+ ×H : −Cin(t) ≤ x1(z) ≤ C − Cin(t),

− Lin(t) ≤ x2(z) ≤ L − Lin(t) a.e. z ∈ [0, 1]
}
.

(3.12)

The linear operator A is defined by

D(A) =

{

x =
(
x1, x2

)T ∈ H : x,
dx

dz
∈ H are absolutely continuous,

d2x

dz2
∈ H, di

dxi

dz
(0) − υxi(0) = 0 = di

dxi

dz
(1); i = 1; 2

}

,

(3.13)

Ax =

⎛

⎜⎜
⎝

d1
d2x1

dz2
− υ

dx1

dz
0

0 d2
d2x2

dz2
− υ

dx2

dz

⎞

⎟⎟
⎠ =

(
A1x1 0

0 A2x2

)

. (3.14)

The nonlinear operator B is defined on Ω by

B(t, x) =
(
− k1
(
x1 + Cin(t)I

)m(
x2 + Lin(t)I

)n−
.

Cin (t)I,

− k2
(
x1 + Cin(t)I

)m(
x2 + Lin(t)I

)n−
.

Lin (t)I
)T
.

(3.15)

It is shown in [7] that the linear operator A given by (3.14) is the infinitesimal generator of
contraction semigroup onH

T(t) =

(
T1(t) 0

0 T2(t)

)

, (3.16)

where T1(t) and T2(t) are the C0-semigroups generated, respectively, by A1 and A2.

4. Global existence

This section is concerned with the existence and the uniqueness of mild solution for our prob-
lem given by (3.6)–(3.9) In order to be able to apply Corollary 2.3, we need the following lem-
mas.

Lemma 4.1. For each (t, x) ∈ Ω,

lim
h↓0

1
h
d
(
x + hB(t, x);Ω(t + h)

)
= 0. (4.1)

Proof. Let (t, x) ∈ Ω. Observe that Ω(t) is given by Ω(t) = Ω1(t) ×Ω2(t), where

Ω1(t) =
[
− Cin(t)I,

(
C − Cin(t)

)
I
]
,

Ω2(t) =
[
− Lin(t)I,

(
L − Lin(t)

)
I
]
.

(4.2)
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Denote

X1(t) = x1 + Cin(t)I, X2(t) = x2 + Lin(t)I, (4.3)

we have, for x ∈ Ω(t),

X(t) =
(
X1(t), X2(t)

)T ∈ [0, CI] × [0, LI]. (4.4)

Let h0 > 0 be sufficiently small such that h0k1C
m−1

L
n
≤ 1.

Let, now, h ∈ (0, h0), then

X1(t)
(
I − hk1X

m−1
1 (t)Xn

2 (t)
)
∈ [0, CI]. (4.5)

Hence

f1
(
t, X(t)

)
= X1(t)

(
I − hk1X

m−1
1 (t)Xn

2 (t)
)
− Cin(t + h)I ∈ Ω1(t + h). (4.6)

By using the regularity of the inlet function Cin, we get

d
(
x1 + hB1(t, x),Ω1(t + h)

)
≤ d
(
X1(t) − hk1X

m
1 (t)X

n
2 (t) − Cin(t + h)I,Ω1(t + h)

)
+ hε(h)

≤ d
(
f1
(
t, X(t)

)
,Ω1(t + h)

)
+ hε(h) = hε(h),

(4.7)

where ε(h) → 0 as h → 0. Whence

lim
h↓0

1
h
d
(
x1 + hB1(t, x); Ω1(t + h)

)
= 0. (4.8)

By similar considerations as above, taking into account the regularity of the function Lin, we
also get

lim
h↓0

1
h
d
(
x2 + hB2(t, x);Ω2(t + h)

)
= 0. (4.9)

Observe, now, that

d
(
x + B(t, x),Ω(t + h)

)
≤ d
(
x1 + B1(t, x),Ω1(t + h)

)
+ d
(
x2 + B2(t, x),Ω2(t + h)

)
, (4.10)

combining the latter with (4.8)-(4.9) we get the desired result (4.1).

The following lemma is useful to establish the dissipativity property.

Lemma 4.2. There exists lB ∈ R
+ such that the operator (B(t, ·) − lBI) is dissipative on Ω(t) for each

t ≥ 0.
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Proof. Let t ≥ 0 and let x, y be in Ω(t). Denote

gi(t, x) = −ki
(
x1 + Cin(t)I

)m(
x2 + Lin(t)I

)n for i = 1, 2, (4.11)

and let also

X1(t) = x1 + Cin(t)I; X2(t) = x2 + Lin(t)I; Y1(t) = y1 + Cin(t)I , Y2(t) = y2 + Lin(t)I.
(4.12)

Observe that, for each x, y ∈ Ω(t), (Xi(t), Yi(t))
T ∈ [0, CI] × [0, LI] for i = 1, 2. Hence, by apply-

ing the mean value theorem, for i = 1, 2, we get

∥∥gi(t, x) − gi(t, y)
∥∥
L2 ≤ ki

(
C

2m∥∥Xn
2 (t) − Yn

2 (t)
∥∥2
L2 + L

2n∥∥Xm
1 (t) − Ym

1 (t)
∥∥2
L2

)1/2

≤ ki
(
n2C

2m
L
2n−2∥∥x2 − y2

∥∥2
L2 +m2L

2n
C

2m−2∥∥x1 − y1
∥∥2
L2

)1/2

≤ kiC
m−1

L
n−1

max
(
nC;mL

)
‖x − y‖.

(4.13)

Finally,

∥∥B(t, x) − B(t, y)
∥∥ =
(∥∥g1(t, x) − g1(t, y)

∥∥2
L2 +

∥∥g2(t, x) − g2(t, y)
∥∥2
L2

)1/2

≤ max
(
k1, k2

)
C

m−1
L
n−1

max
(
nC;mL

)
‖x − y‖.

(4.14)

Consequently, B(t, ·) is an lB-dissipative operator on Ω(t) [14, page 245], where

lB = max
(
k1, k2

)
C

m−1
L
n−1

max
(
nC;mL

)
. (4.15)

Finally, we state the invariance properties of the state trajectories of the model given by
(3.6)–(3.9).

Proposition 4.3. One has that

Ω(t) is T(s)-invariant ∀ t, s ≥ 0. (4.16)

Proof. Let t, s ≥ 0 and (x, y)T ∈ Ω(t). We have

(
− Cin(t)I,−Lin(t)I

)T ≤ (x, y)T ≤
((
C − Cin(t)

)
I,
(
L − Lin(t)

)
I
)T
. (4.17)

Hence, by using the positivity of (T(t))t≥0 [26], we have

(
− Cin(t)T1(s)I,−Lin(t)T2(s)I

)T ≤ T(s)(x, y)T

≤
((
C − Cin(t)

)
T1(s)I,

(
C − Cin(t)

)
T2(s)I

)T
.

(4.18)

Since, Ti(t)I ≤ I for i = 1; 2 (see [26]) and by using the inequalities (1.8) (i.e., C ≥ Cin and
L ≥ Lin), the invariance of Ω(t) holds for all t ≥ 0. Thus, (T1(s)x, T2(s)y)

T ∈ Ω(t) for all
t, s ≥ 0.
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Now, we are in a position to state and prove our global existence result for problem
(3.6)–(3.9).

Theorem 4.4. Let Cin(t) and Lin(t) be positive C1([0,+∞[)-functions. Then, for every x0 ∈ Ω(0), the
problem (3.6)–(3.9) has a unique global mild solution.

Proof. SinceB is continuous function inΩ, by Corollary 2.3, it is sufficient to prove the condition
(i) in Corollary 2.3 and to check that the subset Ω is connected

(a) Let us first show that Ω is closed from the left.

Let tn ↗ t and xn ∈ Ω(tn) with xn → x ∈ H, then there exists a subsequence of (xn)
which is also denoted by (xn) such that xn(z) → x(z), that is, on [0, 1] which implies, by
continuity of Cin and Lin, that x(z) ∈ [−Cin(t), C −Cin(t)] × [−Lin(t), L − Lin(t)], that is, on
[0, 1], hence x ∈ Ω(t) for each t ≥ 0.

(b) Let us, now, check that Ω is connected in [0,+∞[×H:

Let K = [0, CI] × [0, LI] and define G : [0,+∞[×K → Ω such that for all (t, x) ∈
[0,+∞[×K,G(t, x) = (t, x1 − Cin(t)I, x2 − Lin(t)I)

T . Since Cin and Lin are continuous func-
tions in [0,+∞[, it follows that G in [0,+1[×K is also a continuous function. Observe that
G is surjective; since [0, CI] × [0, LI] is connected in H, we get that Ω = G([0,+∞[×K) is
also connected in [0,+∞[×H.

Thus the proof of the theorem is complete.

The next section deals with the existence and uniqueness results of equilibrium profile
solutions for a nonlinear model given by (3.6)–(3.9).

5. Equilibrium profiles

In the steady-state solution analysis, the inlet functions Cin and Lin are independent of time
t, which implies that the domain Ω(t) is also independent of t. If we denote by Cin and Lin

the values of Cin and Lin which correspond to the steady-state solutions, the corresponding
steady-state system to the models (3.6)–(3.9) is given by the following equations:

−vdx1

dz
= d1

d2x1

dz2
− k1
(
x1 + Cin

)m(
x2 + Lin

)n = 0, (5.1)

−vdx2

dz
= d2

d2x2

dz2
− k2
(
x1 + Cin

)m(
x2 + Lin

)n = 0, (5.2)

with

di
dxi

dz
(0) − vxi(0) = 0 = di

dxi

dz
(1), i = 1; 2, (5.3)

Ω(t) = Δ =
{(

x1, x2
)T ∈ H : −Cin ≤ x1(z) ≤ C − Cin,

−Lin ≤ x2(z) ≤ L − Lin for almost all z ∈ [0, 1]
}
.

(5.4)

The following existence result can be proven as in the case where Cin and Lin are independent
of time.
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Theorem 5.1 (see [7, 27]). The tubular reactor modelled by the nonlinear coupled partial differential
equations given by (3.6)–(3.9) has at least one equilibrium profile in Δ.

The sequel of this paper will deal with the uniqueness analysis of steady states in the
important case where d1 = d2 = d.

First, since d1 = d2 = d, we denote A = d(d2/dz2) − v(d/dz) = Ai with D(A) = D(Ai)
for i = 1; 2.

Now, we derive a positivity lemma, which will play a fundamental role in the proof of
the uniqueness result of steady states.

Lemma 5.2. Let b(·) be a bounded nonnegative function defined in [0, 1]. If u ∈ L2([0, 1]) satisfies the
equations

Au = bu in ]0, 1[, u ∈ D(A), (5.5)

then u = 0 in [0, 1].

Proof. Let u be the solution of problem (5.5), then

〈Au, u〉L2 = 〈bu, u〉L2 . (5.6)

We have,

〈Au, u〉L2 =
∫1

0

[
d
d2u

dz2
(z) − v

du

dz
(z)
]
u(z)dz,

= −
∫1

0
d

[
du

dz
(z)
]2
dz + d

[
du

dz
(1)u(1) − du

dz
(0)u(0)

]
− 1
2
v
[
u2(1) − u2(0)

]
,

= −d
∥∥∥∥
du

dz

∥∥∥∥

2

L2
− 1
2
vu2(1) − 1

2
vu2(0),

(5.7)

≤ 0. (5.8)

Since b(z) is nonnegative function in [0, 1], then by (5.8) and taking into account (5.6)

〈bu, u〉L2 =
∫1

0
b(z)u2(z)dz = 0. (5.9)

Which implies, in view of (5.6)-(5.7), that

〈Au, u〉L2 = 0 = d

∥∥∥∥
du

dz

∥∥∥∥

2

L2
+
1
2
vu2(1) +

1
2
vu2(0). (5.10)

Then, we get

du

dz
(z) = 0 a.e. z ∈ [0, 1],

u(0) = 0 = u(1).
(5.11)

Clearly, by using the Sobolev imbedding theorem, D(A) ⊂ C([0, 1]). Therefore, u = 0 since
u ∈ D(A).
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Theorem 5.3. For d1 = d2 = d, the steady-state problem given by (5.1)–(5.3) has a unique solution
in Δ.

Proof. Let x = (x1, x2)
T andy = (y1, y2)

T be solutions to (5.1)–(5.3) on [0, 1]. To obtain the
desired result, we will be showing that x = y. Let

g
(
x1, x2

)
= −
(
x1 + CinI

)m(
x2 + LinI

)n
,

w1 = y1 − x1 ∈ D(A), w2 = x2 − y2 ∈ D(A).
(5.12)

Then

−Aw1 = k1
(
g
(
y1, y2

)
− g
(
x1, x2

))

= k1
(
y1 + Cin

)m[(
x2 + Lin

)n
−
(
y2 + Lin

)n]

+ k1
(
x2 + Lin

)n[(
x1 + Cin

)m
−
(
y1 + Cin

)m]
(5.13)

Hence, by applying the mean value theorem, we get

−Aw1 = k1n
(
y1 + Cin

)m
ξn−12 w2 −mk1

(
x2 + Lin

)n
ξm−1
1 w1, (5.14)

where (ξ1, ξ2) are some intermediate values between (0, 0) and (C, L).
By similar considerations as above, we also get

−Aw2 = −k2
(
g
(
y1, y2

)
− g
(
x1, x2

))

= −k2n
(
y1 + Cin

)m
ξn−12 w2 +mk2

(
x2 + Lin

)n
ξm−1
1 w1,

(5.15)

for the same ξ1 and ξ2.
Now, we have the following system:

−Aw1 = −a1w1 + b1w2, (5.16)

−Aw2 = a2w1 − b2w2, (5.17)

where, for i = 1; 2,

ai(z) = mki
(
x2(z) + Lin

)n
ξm−1
1 (z),

bi(z) = nki
(
y1(z) + Cin

)m
ξn−12 (z).

(5.18)

Multiplying (5.16) by k2 and (5.17) by k1, we get by addition of both equations that

Aw = 0, w ∈ D(A), (5.19)

wherew = k2w1 + k1w2. By Lemma 5.2, this system has a unique solutionw = 0 in [0, 1].Now,
let

−Aw2 = a2w1 − b2w2 (5.20)

and substituting the expression

w1 = −k−1
2 k1w2 (5.21)

yields

Aw2 = cw2, (5.22)
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where c(z) = a1(z) + b2(z). Observe that, for i = 1; 2,

0 ≤ ai(z) ≤ mkiL
n
C

m−1
, 0 ≤ bi(z) ≤ nkiC

m
L
n−1

. (5.23)

Let λ = max(mL, nC)max(k1, k2)C
m−1

L
n−1

, then we have 0 ≤ c(z) ≤ 2λ. By Lemma 5.2
we get w2 = 0. Thus it follows, by (5.21), that w1 = 0, which ensures the desired result, that is,
x = y.

6. Conclusion

In this paper, we have studied the existence and uniqueness of the global mild solution for
a class of tubular reactor nonlinear nonautonomous models. It has also been proven that the
trajectories are satisfying time-dependent constraints, that is, x(t) ∈ Ω(t). Moreover, the set of
physically meaningful admissible states Ω(t) is invariant under the dynamics of the reactions.
In addition, the existence and uniqueness results of equilibrium profiles are reported.

An important open question is the stability analysis of equilibrium profile for system
(1.2)–(1.6). This question is under investigation.

Acknowledgments

This paper presents research results of the Moroccan “Programme Thématique d’Appui à
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[3] S. Renou, Commande Non-Linéaire d’un Systeme Décrit par des Equations Paraboliques: Application au
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