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HABIB MÂAGLI AND MALEK ZRIBI

Received 25 December 2004; Accepted 1 March 2005

We will study the following polyharmonic nonlinear elliptic equation (−Δ)mu+ f (·,u)=
0 in Rn, n > 2m. Under appropriate conditions on the nonlinearity f (x, t), related to a
class of functions called m-Green-tight functions, we give some existence results for the
above equation.
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1. Introduction

In this paper, we deal with the higher order elliptic equation

(−Δ)mu= f (·,u), in Rn, (1.1)

where m is a positive integer such that n > 2m.
In the case m = 1, (1.1) contains several well-known types which have been studied

extensively by many authors (see for example [1–3, 8, 9, 11, 12, 14] and the references
therein). Their basic tools are essentially some properties of functions belonging to the
classical Kato classKn(Rn) and the subclass of Green-tight functionsK∞n (Rn) (some prop-
erties pertaining to these classes can be found in [1, 4, 14]).

In this paper, we are concerned with the high order. Our purpose is two folded. One is
to extend the Kato class Kn(Rn) and the subclass K∞n (Rn) to the order m≥ 2. The second
purpose is to investigate the existence of positive solutions for (1.1). The outline of the
paper is as follows. The existence results are given in Sections 3, 4 and 5. In Section 2, we
give the explicit formula of the Green function Gm,n(x, y) of (−Δ)m in Rn. Namely, for
each x, y in Rn

Gm,n(x, y)= km,n
1

|x− y|n−2m
, (1.2)
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where km,n is a positive constant which will be precised later. The 3G-Theorem proved in
[13] for the case m= 1, is also valid for every m. Indeed, for each x, y,z in Rn, we have

Gm,n(x,z)Gm,n(z, y)
Gm,n(x, y)

≤ 2n−2m−1[Gm,n(x,z) +Gm,n(z, y)
]
. (1.3)

This 3G-Theorem will be useful to state our existence results.
Next, we study the Kato class Km,n(Rn) defined as follows.

Definition 1.1. A Borel measurable function ϕ in Rn (n > 2m), belongs to the Kato class
Km,n(Rn) if

lim
α→0

(

sup
x∈Rn

∫

|x−y|≤α

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy

)

= 0. (1.4)

Indeed, first we prove some properties of functions belonging to this class similar to
those established in [1, 4]. In particular, we have the following characterization

ϕ∈ Km,n
(
Rn
)⇐⇒ lim

t→0

(

sup
x∈Rn

∫ t

0
sm−1

∫

Rn
p(s,x, y)

∣
∣ϕ(y)

∣
∣dyds

)

= 0, (1.5)

where p(t,x, y)= (1/(4πt)n/2)exp(−|x− y|2/4t), for t ∈ (0,∞) and x, y ∈Rn, is the den-
sity of the Gauss semi-group on Rn.

Secondly, we study a subclass of Km,n(Rn) denoted by K∞m,n(Rn) and defined by the
following.

Definition 1.2. A Borel measurable function ϕ belongs to the class K∞m,n(Rn) and it is
called m-Green-tight function if ϕ∈ Km,n(Rn) and satisfies

lim
M→∞

(

sup
x∈Rn

∫

|y|≥M

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy

)

= 0. (1.6)

In particular, we characterize the class K∞m,n(Rn) as follows.

Theorem 1.3. Let ϕ∈�+(Rn), (n > 2m). Then the following assertions are equivalent
(1) ϕ∈ K∞m,n(Rn).
(2) The m-potential of ϕ, Vϕ(x) := ∫Rn Gm,n(x, y)ϕ(y)dy is in C+

0 (Rn).

This Theorem improves the result of Zhao in [14], for the case m = 1. A more fine
characterization will be given in the radial case.

One can easily check that L1(Rn)∩Km,n(Rn) ⊂ K∞m,n(Rn). Also we show that for p >
n/2m and λ < 2m−n/p < μ, we have

Lp
(
Rn
)

(
1 + | · |)μ−λ| · |λ

⊂ K∞m,n

(
Rn
)
, (1.7)

and we precise the behaviour of the m-potential of functions in this class.
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In Section 3, we are interested in the following polyharmonic problem

(−�)mu+uϕ(·,u)= 0, in Rn (in the sense of distributions)

lim
|x|→∞

u(x)= c > 0. (1.8)

The function ϕ is required to verify the following assumptions.
(H1) ϕ is a nonnegative measurable function on Rn× (0,∞).
(H2) For each λ > 0, there exists a nonnegative function qλ ∈ K∞m,n(Rn) with αqλ ≤ 1/2

(see (1.24)) and such that for each x ∈Rn, the mapping t→ t(qλ(x)−ϕ(x, t)) is continu-
ous and nondecreasing on [0,λ].

Under these hypotheses, we give an existence result for the problem (1.8). In fact, we
will prove the following theorem.

Theorem 1.4. Assume (H1) and (H2). Then the problem (1.8) has a positive continuous
solution u in Rn satisfying for each x ∈Rn, c/2≤ u(x)≤ c.

To establish this result, we use a potential theory approach. In particular, we prove that
if the function q ∈ K∞m,n(Rn) is sufficiently small and f is a nonnegative function on Rn,
then the equation

(−�)mu+ qu= f , (1.9)

has a positive solution on Rn. In [6], Grunau and Sweers gave a similar result in the unit
ball of Rn, with operators perturbed by small lower order terms:

(−�)mu+
∑

|k|<2m

ak(u)Dku= f . (1.10)

In the case m= 1, the problem (1.8) has been studied by Mâagli and Masmoudi in [7, 8],
where they gave an existence and an uniqueness result in both bounded and unbounded
domain Ω.

In Section 4, we are concerned with the following polyharmonic problem

(−�)mu= f (·,u), in Rn (in the sense of distributions)

lim
|x|→∞

u(x)= 0. (1.11)

Here f is required to satisfy the following assumptions.
(H3) f is a nonnegative measurable function on Rn× (0,∞), continuous with respect

to the second variable.
(H4) There exist a nonnegative function p in Rn such that

0 < α0 :=
∫

Rn

p(y)
(|y|+ 1

)2(n−2m) dy <∞ (1.12)

and a nonnegative function q ∈ K∞m,n(Rn) such that for x ∈Rn and t > 0

p(x)h(t)≤ f (x, t)≤ q(x)g(t), (1.13)
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where h is a nonnegative nondecreasing measurable function on [0,∞) satisfying

m0 := 1
km,nα0

< h0 := liminf
t→0+

h(t)
t
≤∞ (1.14)

and g is a nonnegative measurable function locally bounded on [0,∞) satisfying

0≤ g∞ := limsup
t→∞

g(t)
t

<M0 := 1
‖Vq‖∞ . (1.15)

By using a fixed point argument, we will state the following existence result.

Theorem 1.5. Assume (H3) and (H4). Then the problem (1.11) has a positive continuous
solution u in Rn satisfying for each x ∈Rn,

a
(|x|+ 1

)n−2m ≤ u(x)≤ bVq(x), (1.16)

where a, b are positive constants.

This result follows up the one of Dalmasso (see [5]), who studied the problem (1.11)
in the unit ball B, with more restrictive conditions on the function f . Indeed, he assumed
that f is nondecreasing with respect to the second variable and satisfies

lim
t→0+

min
x∈B

f (x, t)
t

= +∞, lim
t→+∞max

x∈B
f (x, t)
t

= 0. (1.17)

He proved the existence of a positive solution and he gave also an uniqueness result for
positive radial solution when f (x, t)= f (|x|, t).

When m= 1, similar conditions, but more restrictive, on the nonlinearity f have been
adopted by Mâagli and Masmoudi in [8]. In fact in [8], the authors studied (1.11) in an
unbounded domain D of Rn, n≥ 3, with compact nonempty boundary ∂D and gave an
existence result as Theorem 1.5.

On the other hand, Brezis and Kamin proved in [3], the existence and the uniqueness
of a positive solution for the problem

−Δu= ρ(x)uα in Rn,

liminf
|x|→∞

u(x)= 0, (1.18)

with 0 < α < 1 and ρ is a nonnegative measurable function satisfying some appropriate
conditions. We improve in this section the result of Brezis and Kamin in [3] and the one
of Mâagli and Masmoudi in [8].

In Section 5, we will study the existence of solutions to the following polyharmonic
problem

(−�)mu= f (·,u), in Rn (in the sense of distributions)

u(x) > 0, in Rn,
(1.19)

under the following assumptions on the nonlinearity f .
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(H5) f is a nonnegative measurable function on Rn× (0,∞), continuous with respect
to the second variable on (0,∞).

(H6) f (x, t) ≤ q(x, t), where q is a nonnegative measurable function on Rn × (0,∞)
such that the function t→ q(x, t) is nondecreasing on (0,∞).

(H7) There exists a constant c > 0 such that q(·,c)∈ K∞m,n(Rn) and

∥
∥V
(
q(·,c))∥∥∞ < c. (1.20)

Put c∗ = c−‖V(q(·,c))‖∞. We give in this section the following existence result.

Theorem 1.6. Assume (H5), (H6), and (H7). Then for each δ ∈ (0,c∗], the problem (1.19)
has a positive continuous solution u in Rn satisfying for each x ∈Rn

δ ≤ u(x)≤ c,

lim
|x|→∞

u(x)= δ. (1.21)

If m= 1, Yin gave in [11] an existence result of the following problem

�u+ f (x,u)= 0, in GB,

u(x) > 0,
(1.22)

where GB = {x ∈ Rn, |x| > B}, for some B ≥ 0. His method relies on the technique of
radial super/subsolutions. Our approach is different, in fact we will use a fixed point ar-
gument. We improve the result of Yin under more general assumptions (see Remark 5.3).

In order to simplify our statements, we define some convenient notations.

Notations.
(i) �(Rn) denotes the set of Borel measurable functions in Rn and �+(Rn) the set

of nonnegative ones.
(ii) C0(Rn) := {w continuous on Rn and lim|x|→∞w(x) = 0} and C+

0 (Rn) the set of
nonnegative ones.

(iii) For ϕ∈�+(Rn), we put the m-potential of ϕ on Rn by

Vϕ(x) :=Vm,nϕ(x)=
∫

Rn
Gm,n(x, y)ϕ(y)dy = km,n

∫

Rn

ϕ(y)
|x− y|n−2m

dy. (1.23)

(iv) For ϕ∈�+(Rn), we put

αϕ = sup
x,y∈Rn

∫

Rn

Gm,n(x,z)Gm,n(z, y)
Gm,n(x, y)

∣
∣ϕ(z)

∣
∣dz. (1.24)

(v) Let λ∈R, we denote by λ+ =max(λ,0).
(vi) Let f and g be two positive functions on a set S.

We call f ∼ g, if there is c > 0 such that

1
c
g(x)≤ f (x)≤ cg(x) ∀x ∈ S. (1.25)
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We call f � g, if there is c > 0 such that

f (x)≤ cg(x) ∀x ∈ S. (1.26)

The following properties will be used several times: for s, t ≥ 0, we have

min(s, t)= s∧ t ∼ st

s+ t
,

(s+ t)p ∼ sp + tp, p ∈R+.
(1.27)

2. Properties of the Kato class

In this section, we characterize functions belonging to the Kato class Km,n(Rn) and the
subclass K∞m,n(Rn) of m-Green-tight functions and we prove Theorem 1.3. We recall that
throughout this paper, we are concerned with n > 2m.

We set p(t,x, y)= (1/(4πt)n/2)exp(−|x− y|2/4t), for t ∈ (0,∞) and x, y ∈Rn, the den-
sity of the Gauss semi-group on Rn. By a simple computation, we obtain that the Green
function of (−Δ)m in Rn, for each m≥ 1, is given by

Gm,n(x, y)= 1
(m− 1)!

∫∞

0
sm−1p(s,x, y)ds, for x, y in Rn. (2.1)

Then we have the following explicit expression

Gm,n(x, y)= km,n
1

|x− y|n−2m
, for x, y in Rn, (2.2)

where km,n = Γ(n/2−m)/4mπn/2(m− 1)!.

2.1. The class Km,n(Rn). We will study properties of functions belonging to Km,n(Rn).
First we remark the following comparison on the classes Kj,n(Rn), for j ≥ 1.

Remark 2.1. Let j,m∈N such that 1≤ j ≤m, then we have for each n > 2m

Kn(Rn) := K1,n(Rn)⊆ Kj,n(Rn)⊆ Km,n(Rn), (2.3)

where Kn(Rn) is the classical Kato class introduced in [1].

Example 2.2. Let ϕ∈�(Rn). Suppose that for p > n/2m, we have

sup
x∈Rn

∫

|x−y|≤1

∣
∣ϕ(y)

∣
∣pdy <∞. (2.4)

Then by the Hölder inequality, we conclude that ϕ∈ Km,n(Rn).
In particular, we have that for p > n/2m, Lp(Rn)⊂ Km,n(Rn).

To establish the characterization (1.5) of the Kato class Km,n(Rn), we need the follow-
ing lemmas.
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Lemma 2.3. For each t > 0 and x, y ∈Rn, we have

∫ t

0
sm−1p(s,x, y)ds�Gm,n(x, y). (2.5)

Moreover, for |x− y| ≤ 2
√
t, we have that

Gm,n(x, y)�
∫ t

0
sm−1p(s,x, y)ds. (2.6)

Proof. Let t > 0 and x, y ∈Rn. Then (2.5) follows immediately from (2.1).
If we suppose further that |x− y| ≤ 2

√
t, then we have

∫ t

0
sm−1p(s,x, y)ds= c

∫ t

0
sm−n/2−1 exp

(

− |x− y|2
4s

)

ds

= c

|x− y|n−2m

∫∞

|x−y|2/4t
rn/2−m−1e−rdr

≥ c

|x− y|n−2m

∫∞

1
rn/2−m−1e−rdr

= cGm,n(x, y),

(2.7)

where the letter c is a positive constant which may vary from line to line. �

Lemma 2.4. Let ϕ∈ Km,n(Rn). Then for each compact L⊂Rn, we have

sup
x∈Rn

∫

x+L

∣
∣ϕ(y)

∣
∣dy <∞. (2.8)

In particular, we have Km,n(Rn)⊂ L1
loc(Rn).

Proof. Let ϕ∈ Km,n(Rn), then by (1.4) there exists α > 0 such that

sup
x∈Rn

∫

|x−y|≤α

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy ≤ 1. (2.9)

Let a1, . . . ,ap ∈ L such that L⊆⋃1≤i≤p B(ai,α). Hence for each x ∈Rn, we have

∫

x+L

∣
∣ϕ(y)

∣
∣dy ≤

p∑

i=1

∫

B(x+ai,α)

∣
∣ϕ(y)

∣
∣dy

≤
p∑

i=1

αn−2m
∫

B(x+ai,α)

∣
∣ϕ(y)

∣
∣

∣
∣x+ ai− y

∣
∣n−2m dy

≤ pαn−2m.

(2.10)

So, supx∈Rn

∫
x+L |ϕ(y)|dy <∞. �
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Proposition 2.5. Let ϕ∈ Km,n(Rn). Then for each fixed α > 0, we have

sup
0≤t≤1

(

sup
x∈Rn

∫

|x−y|≥α
tm−1p(t,x, y)

∣
∣ϕ(y)

∣
∣dy

)

:=M(α) <∞. (2.11)

Proof. Let ϕ∈ Km,n(Rn), 0 < t ≤ 1. Let α > 0, then we have that

sup
x∈Rn

∫

|x−y|≥α
tm−1p(t,x, y)

∣
∣ϕ(y)

∣
∣dy

� exp
(−α2/8t

)

tn/2−m+1
sup
x∈Rn

∫

Rn
exp

(

− |x− y|2
8

)
∣
∣ϕ(y)

∣
∣dy.

(2.12)

So to prove (2.11), we need to show that

sup
x∈Rn

∫

Rn
exp

(

− |x− y|2
8

)
∣
∣ϕ(y)

∣
∣dy <∞. (2.13)

Indeed, using Lemma 2.4, we denote by

c := sup
x∈Rn

∫

x+B(0,1)

∣
∣ϕ(y)

∣
∣dy <∞. (2.14)

On the other hand, since any ball B(0,k) of radius k ≥ 1 in Rn can be covered by α(n) :=
Ankn balls of radius 1, where An is a constant depending only on n (see [4, page 67]), then
there exist a1,a2, . . . ,aα(n) ∈ B(0,k) such that

B(0,k)⊂
⋃

1≤i≤α(n)

B
(
ai,1

)
. (2.15)

Hence for each x ∈Rn, we have

∫

x+B(0,k)

∣
∣ϕ(y)

∣
∣dy ≤

α(n)∑

i=1

∫

B(x+ai,1)

∣
∣ϕ(y)

∣
∣dy ≤ cAnk

n, (2.16)

which implies that for each x ∈Rn,

∫

Rn
exp

(

− |x− y|2
8

)
∣
∣ϕ(y)

∣
∣dy ≤

∞∑

k=0

exp

(

− k2

8

)∫

k≤|x−y|≤k+1

∣
∣ϕ(y)

∣
∣dy

≤ cAn

∞∑

k=0

exp

(

− k2

8

)

(k+ 1)n

<∞.

(2.17)

Thus (2.13) holds. This ends the proof. �
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Proposition 2.6. Let ϕ∈ B(Rn). Then ϕ∈ Km,n(Rn) if and only if

lim
t→0

(

sup
x∈Rn

∫ t

0
sm−1

∫

Rn
p(s,x, y)

∣
∣ϕ(y)

∣
∣dyds

)

= 0. (2.18)

Proof. Suppose ϕ verifies (2.18), then from (2.6) we have that

∫

|x−y|≤α

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy �

∫

Rn

∫ α2/4

0
sm−1p(s,x, y)

∣
∣ϕ(y)

∣
∣dsdy, (2.19)

which implies that the function ϕ satisfies (1.4).
Conversely, suppose that ϕ∈ Km,n(Rn). Let ε > 0, then by (1.4), there exists α > 0 such

that

sup
x∈Rn

∫

|x−y|≤α

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy ≤ ε. (2.20)

Thus from (2.5) and (2.11), we deduce that for each x ∈Rn and t ≤ 1, we have

∫ t

0
sm−1

∫

Rn
p(s,x, y)

∣
∣ϕ(y)

∣
∣dyds

≤
∫

|x−y|≤α

∫ t

0
sm−1p(s,x, y)

∣
∣ϕ(y)

∣
∣dyds

+
∫ t

0

∫

|x−y|≥α
sm−1p(s,x, y)

∣
∣ϕ(y)

∣
∣dyds

�
∫

|x−y|≤α

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy + tM(α)

� ε+ tM(α).

(2.21)

This implies (2.18) and completes the proof. �

2.2. The class K∞m,n(Rn). We will characterize the subclass of m-Green-tight functions
K∞m,n(Rn). In fact, we will prove Theorem 1.3 and we give in particular a more precise
characterization in the radial case.

Example 2.7. Let p > n/2m. Then Lp(Rn)∩L1(Rn)⊂ K∞m,n(Rn).

Proof of Theorem 1.3. Let ϕ ∈�+(Rn). First we suppose that ϕ ∈ K∞m,n(Rn), then using
similar arguments as in the proof [9, Proposition 6], we obtain easily that Vϕ∈ C+

0 (Rn).
Conversely we suppose that Vϕ∈ C+

0 (Rn). Then, we aim at proving that ϕ∈ K∞m,n(Rn).
So we divide the proof into two steps.
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Step 1. We will prove that ϕ satisfies (2.18). Indeed it is clear from (2.1), that for each
x ∈Rn, we have that

Vϕ(x)= 1
(m− 1)!

∫ t

0
sm−1

∫

Rn
p(s,x, y)ϕ(y)dyds

+
1

(m− 1)!

∫∞

t
sm−1

∫

Rn
p(s,x, y)ϕ(y)dyds

= I1(x) + I2(x).

(2.22)

From the properties of the density p(s,x, y), we deduce that x → I1(x) and x → I2(x)
are nonnegative lower semi-continuous functions in Rn. Then using the fact that Vϕ ∈
C+

0 (Rn), we get that the function x → I1(x) is also in C+
0 (Rn). So, for each x ∈ Rn, the

family {∫ t0 sm−1
∫
Rn p(s,x, y)ϕ(y)dyds, t > 0} is decreasing in C+

0 (Rn), which together with
the fact that for each x ∈Rn,

lim
t→0

∫ t

0
sm−1

∫

Rn
p(s,x, y)ϕ(y)dyds= 0 (2.23)

imply by Dini Lemma, that (2.18) is satisfied.

Step 2. We will prove that ϕ satisfies (1.6). Let ε > 0, then since Vϕ∈ C+
0 (Rn), there exists

a > 0 such that for |x| ≥ a, we have that Vϕ(x)≤ ε.

Let M ≥ 2a, then

sup
x∈Rn

∫

|y|≥M
ϕ(y)

|x− y|n−2m
dy ≤ sup

|x|≥a

∫

Rn

ϕ(y)
|x− y|n−2m

dy + sup
|x|≤a

∫

|y|≥M
ϕ(y)

|x− y|n−2m
dy

� ε+
∫

|y|≥M
ϕ(y)
|y|n−2m

dy.

(2.24)

Now, since Vϕ(0) <∞, we deduce that

lim
M→∞

∫

|y|≥M
ϕ(y)
|y|n−2m

dy = 0. (2.25)

Then (1.6) holds and this ends the proof. �

For a nonnegative function ρ in K∞m,n(Rn), we denote by

Mρ := {ϕ∈�
(
Rn
)
, |ϕ| � ρ

}
. (2.26)

Proposition 2.8. For a nonnegative function ρ in K∞m,n(Rn), the family of functions

V
(
Mρ
)

:= {Vϕ, ϕ∈Mρ
}

(2.27)

is uniformly bounded and equicontinuous in C0(Rn) and consequently it is relatively com-
pact in C0(Rn).
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Proof. Let ρ∈ K∞m,n(Rn). Obviously, since each function ϕ in Mρ is in K∞m,n(Rn), we obtain
by Theorem 1.3 that the family V(Mρ) ⊂ C0(Rn) and is uniformly bounded. Next, we
prove the equicontinuity of functions in V(Mρ) on Rn ∪{∞} by same arguments as in
the proof of [9, Proposition 6]. Thus by Ascoli’s Theorem the family V(Mρ) is relatively
compact in C0(Rn). This ends the proof. �

Remark 2.9. We recall (see [12, 14]) that for m = 1 and n ≥ 3, a radial function is in
K∞n (Rn) if and only if

∫∞
0 r|ϕ(r)|dr <∞.

Similarly, we will give in the sequel a characterization of radial functions belonging to
K∞m,n(Rn).

Proposition 2.10. Let ϕ be a radial function in Rn, then ϕ∈ K∞m,n(Rn) if and only if

∫∞

0
r2m−1

∣
∣ϕ(r)

∣
∣dr <∞. (2.28)

In order to prove Proposition 2.10, we will use the following behaviour of the m-
potential of radial functions on Rn.

Proposition 2.11. Let ϕ∈�+(Rn) be a radial function on Rn, then for x ∈Rn, we have

Vϕ(x)∼
∫∞

0

rn−1

(|x|∨ r
)n−2mϕ(r)dr. (2.29)

Proof. Let ϕ∈�+(Rn). First, we recall the well known results for x, y ∈Rn,

(n− 2)k1,n

∫

Rn

ϕ(y)
|x− y|n−2

dy =
∫∞

0

rn−1

(|x|∨ r
)n−2 ϕ(r)dr,

∫

Rn

dz

|x− z|n−2|y− z|n−2
= cn
|x− y|n−4

.

(2.30)

This implies that there exists a constant c > 0 such that

∫

Rn

ϕ(y)
|x− y|n−4

dy = c
∫∞

0
rn−1ϕ(r)

∫∞

0

tn−1

(|x|∨ t
)n−2

(t∨ r)n−2
dtdr

≥ c
∫∞

0
rn−1ϕ(r)

∫∞

|x|∨r
1

tn−3
dtdr

≥ c

n− 4

∫∞

0

rn−1ϕ(r)
(|x|∨ r

)n−4 dr.

(2.31)

Hence, we obtain by recurrence that

∫∞

0

rn−1

(|x|∨ r
)n−2mϕ(r)dr �

∫

Rn

ϕ(y)
|x− y|n−2m

dy. (2.32)
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On the other hand, there exists a constant c̃ > 0 such that for each x ∈Rn,

∫

Rn

ϕ(y)
|x− y|n−2m

dy = c̃
∫∞

0

∫ π

0

rn−1ϕ(r)(sinθ)n−2

(|x|2 + r2− 2r|x|cosθ)(n−2m)/2
dθdr

≤ c̃
∫∞

0

∫ π

0

rn−1ϕ(r)(sinθ)n−2

(|x|∨ r)n−2m(sinθ)n−2m
dθdr

= c̃
(∫ π

0
(sinθ)2m−2dθ

)(∫∞

0

rn−1ϕ(r)
(|x|∨ r)n−2m

dr

)

.

(2.33)

Thus (2.29) holds. �

Proof of Proposition 2.10. Suppose that ϕ is a radial function in K∞m,n(Rn), then by
Theorem 1.3, Vϕ(0) <∞ and so we deduce (2.28) from (2.29).

Conversely, suppose that ϕ satisfies (2.28). Let α > 0 and t = |x|, then by (2.29), we
have

∫

|x−y|≤α

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy �

∫ t+α

(t−α)+

rn−1

(t∨ r)n−2m

∣
∣ϕ(r)

∣
∣dr

≤
∫ t+α

(t−α)+
r2m−1

∣
∣ϕ(r)

∣
∣dr.

(2.34)

Let φ(s)= ∫ s0 r2m−1|ϕ(r)|dr, for s∈ [0,∞]. Using (2.28), we deduce that φ is a continuous
function on [0,∞]. This implies that

∫ t+α

(t−α)+
r2m−1

∣
∣ϕ(r)

∣
∣dr = φ(t+α)−φ

(
(t−α)+), (2.35)

converges to zero as α→ 0 uniformly for t ∈ [0,∞]. So ϕ verifies (1.4).
Next, we have by (2.29)

∫

|y|≥M

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy �

∫∞

M

rn−1

(t∨ r)n−2m

∣
∣ϕ(r)

∣
∣dr ≤

∫∞

M
r2m−1

∣
∣ϕ(r)

∣
∣dr, (2.36)

which, using (2.28), tends to zero as M →∞ and so ϕ verifies (1.6). This completes the
proof. �

We close this section by giving a class of functions included in K∞m,n(Rn) and we precise
the behaviour of the m-potential of functions in this class. We need the following lemma.
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Lemma 2.12. Let α > 0 and a,b > 0 such that a+ b < n. Then

∫

|x−y|≤α
dy

|y|a|x− y|b � αn−(a+b). (2.37)

Proof. Let α > 0 and a, b be nonnegative real numbers such that a+ b < n. Then

∫

|x−y|≤α
dy

|y|a|x− y|b ≤
∫

(|x−y|≤α)∩(|x−y|≤|y|)
dy

|x− y|a+b
+
∫

(|y|≤|x−y|≤α)

dy

|y|a+b

�
∫ α

0
rn−1−(a+b)dr

� αn−(a+b).

(2.38)

�

Proposition 2.13. Let p > n/2m. Then for λ < 2m−n/p < μ, we have

Lp
(
Rn
)

(
1 + | · |)μ−λ| · |λ

⊂ K∞m,n

(
Rn
)
. (2.39)

Proof. Let p > n/2m and q ≥ 1 such that 1/p + 1/q = 1. Let a be a function in Lp(Rn)
and λ < 2m−n/p < μ. First, we will prove that the function ϕ(x) := a(x)/(1 + |x|)μ−λ|x|λ
satisfies (1.4). Let α > 0, then by the Hölder inequality and Lemma 2.12, we have for
x ∈Rn

∫

|x−y|≤α

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy ≤ ‖a‖p

(∫

|x−y|≤α
dy

(
1 + |y|)(μ−λ)q|y|λq|x− y|(n−2m)q

)1/q

≤ ‖a‖p
(∫

|x−y|≤α
dy

|y|qλ+|x− y|(n−2m)q

)1/q

� ‖a‖pα2m−n/p−λ+
,

(2.40)

which converges to zero as α→ 0.
Secondly, we claim that ϕ satisfies (1.6). To show the claim we use the Hölder inequal-

ity. Let M > 1, then we have

∫

|y|≥M

∣
∣ϕ(y)

∣
∣

|x− y|n−2m
dy ≤ ‖a‖p

(∫

|y|≥M
dy

(
1 + |y|)(μ−λ)q|y|λq|x− y|(n−2m)q

)1/q

∼ ‖a‖p
(∫

|y|≥M
dy

|y|μq|x− y|(n−2m)q

)1/q

= ‖a‖p
(
A(x)

)1/q
.

(2.41)
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Furthermore

A(x)� sup
|x|≤M/2

∫

|y|≥M
dy

|y|(n−2m+μ)q

+ sup
|x|≥M/2

1
|x|μq

∫

(|y|≥M)∩(|x−y|≤|x|/2)

dy

|x− y|(n−2m)q

+ sup
|x|≥M/2

1
|x|(n−2m)q

∫

(|y|≥M)∩(|x|/2≤|x−y|≤2|x|)
dy

|y|μq

+ sup
|x|≥M/2

∫

(|y|≥M)∩(|x−y|≥2|x|)
dy

|x− y|(n−2m+μ)q

� 1
M(n−2m+μ)q−n + sup

|z|≥M/2

Log(3|z|/M)
|z|(n−2m)q ,

(2.42)

which converges to zero as M→∞. This ends the proof. �

Remark 2.14. It is obvious to see that for each ϕ∈�+(Rn), we have

km,n
(|x|+ 1

)n−2m

∫

Rn

ϕ(y)
(|y|+ 1

)n−2m dy ≤Vϕ(x). (2.43)

We precise in the following, some upper estimates on the m-potential of functions in
the class Lp(Rn)/(1 + | · |)μ−λ| · |λ. Indeed, put for a nonnegative function a∈ Lp(Rn) and
x ∈Rn

Wa(x) :=V

⎛

⎝ a
(
1 + | · |)μ−λ| · |λ

⎞

⎠(x)=
∫

Rn
Gm,n(x, y)

a(y)
(
1 + |y|)μ−λ|y|λ

dy. (2.44)

Then we have the following.

Proposition 2.15. Let p > n/2m and λ < 2m− n/p < μ. Then there exists c > 0 such that
for each nonnegative function a∈ Lp(Rn) and x ∈Rn, we have the following estimates

Wa(x)≤ c
∥
∥a
∥
∥
p

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
(
1 + |x|)n−2m Log

(|x|+ 1
)p/(p−1)

, if μ+
n

p
= n

1
(
1 + |x|)(n−2m)∧(μ+n/p−2m) , if μ+

n

p
�= n.

(2.45)
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Proof. Let p > n/2m and q ≥ 1 such that 1/p + 1/q = 1. Let a be a nonnegative function
in Lp(Rn) and λ < 2m− n/p < μ. Put ϕ(x) = a(x)/(1 + |x|)μ−λ|x|λ, then by the Hölder
inequality, we have for each x ∈Rn

Vϕ(x)≤ ‖a‖p
(∫

Rn

dy

|x− y|(n−2m)q
(
1 + |y|)(μ−λ)q|y|λq

)1/q

= ‖a‖p
(
I(x)

)1/q
.

(2.46)

Furthermore,
(i) if |x| ≤ 1, we have by Lemma 2.12, that

I(x)�
∫

B(x,2)

dy

|x− y|(n−2m)q|y|qλ+ +
∫

Bc(x,2)

dy

|x− y|(n−2m)q|y|μq

�
∫

B(x,2)

dy

|x− y|(n−2m)q|y|qλ+ +
∫

Bc(0,2)

dy

|x− y|(n−2m+μ)q

� 1,

(2.47)

(ii) if |x| ≥ 1, we have

I(x)�
∫

(|y|≤1/2)

dy

|x− y|(n−2m)q|y|λq +
∫

(|y|≥1/2)∩(|x−y|≤|x|/2)

dy

|x− y|(n−2m)q|y|μq

+
∫

(|y|≥1/2)∩(|x|/2≤|x−y|≤2|x|)
dy

|x− y|(n−2m)q|y|μq

+
∫

(|y|≥1/2)∩(|x−y|≥2|x|)
dy

|x− y|(n−2m)q|y|μq

� 1
|x|(n−2m)q

∫

(|y|≤1/2)

dy

|y|λq +
1

|x|μq
∫

(|x−y|≤|x|/2)

dy

|x− y|(n−2m)q

+
1

|x|(n−2m)q

∫

(1/2≤|y|≤3|x|)
dy

|y|μq +
∫

(|x−y|>2|x|)
dy

|x− y|(n−2m+μ)q

� 1
|x|(n−2m)q

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Log
(|x|+ 1

)
, if μ+

n

p
= n

|x|n−μq, if μ+
n

p
< n

1, if μ+
n

p
> n.

(2.48)

By combining the above inequalities, we get the result. �

Corollary 2.16. The class of functions L∞(Rn)/(1 + | · |)μ−λ| · |λ is included in K∞m,n(Rn)
if and only if λ < 2m< μ.
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Proof. “⇐” follows from Proposition 2.13.
“⇒” Suppose that the function ϕ defined on Rn by ϕ(x) = 1/(1 + |x|)μ−λ|x|λ is in

K∞m,n(Rn). Then by Proposition 2.10, we have
∫∞

0 r2m−1ϕ(r)dr <∞. This implies that λ <
2m< μ. �
Remark 2.17. Let λ < 2m < μ and ϕ(x) = 1/(1 + |x|)μ−λ|x|λ, for x ∈ Rn, then by simple
calculus, we obtain the following behaviour on the m-potential

Vϕ(x)∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
(
1 + |x|)n−2m Log

(|x|+ 1
)
, if μ= n

1
(
1 + |x|)(n−2m)∧(μ−2m) , if μ �= n.

(2.49)

3. First existence result

In this section, we aim at proving Theorem 1.4. The following lemmas are useful.

Lemma 3.1. Let ϕ be a nonnegative function in K∞m,n(Rn). Then we have

‖Vϕ‖∞ ≤ αϕ ≤ 2n−2m‖Vϕ‖∞. (3.1)

Proof. By (1.3) we obtain easily that αϕ ≤ 2n−2m‖Vϕ‖∞. On the other hand, by letting
|y| →∞ in (1.24), we deduce from Fatou Lemma that ‖Vϕ‖∞ ≤ αϕ. �

Lemma 3.2. Let ϕ be a nonnegative function in K∞m,n(Rn). Then for each x ∈Rn, we have

V
(
ϕGm,n(·, y)

)
(x)≤ αϕGm,n(x, y). (3.2)

Proof. The result holds by (1.24). �

In the sequel, let q be a nonnegative function in K∞m,n(Rn) such that αq ≤ 1/2. For f ∈
�+(Rn), we will define the potential kernel Vq f :=Vm,n,q f as a solution for the perturbed
polyharmonic equation (1.9).

We put for x, y ∈Rn,

�m,n(x, y)=
⎧
⎪⎨

⎪⎩

∑

k≥0

(−1)k
(
V(q·))k(Gm,n(·, y)

)
(x), if x �= y

∞, if x = y.
(3.3)

Then we have the following comparison result.

Lemma 3.3. Let q be a nonnegative function in K∞m,n(Rn) such that αq ≤ 1/2. Then for
x, y ∈Rn, we have

(
1−αq

)
Gm,n(x, y)≤�m,n(x, y)≤Gm,n(x, y). (3.4)
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Proof. Since αq ≤ 1/2, we deduce from (3.2), that

∣
∣�m,n(x, y)

∣
∣≤

∑

k≥0

(
αq
)k
Gm,n(x, y)

= 1
1−αq

Gm,n(x, y).
(3.5)

Furthermore, we have for x �= y in Rn

�m,n(x, y)=Gm,n(x, y)−V
(
q�m,n(·, y)

)
(x), (3.6)

which together with (3.2), imply that

�m,n(x, y)≥Gm,n(x, y)− αq
1−αq

Gm,n(x, y)

= 1− 2αq
1−αq

Gm,n(x, y)

≥ 0.

(3.7)

Hence the result follows from (3.6) and (3.2). �

Let us define the operator Vq on �+(Rn) by

Vq f (x)=
∫

B
�m,n(x, y) f (y)dy, x ∈Rn. (3.8)

Then we obtain the following.

Lemma 3.4. Let f ∈�+(Rn). Then Vq f satisfies the following resolvent equation

V f =Vq f +Vq(qV f )=Vq f +V
(
qVq f

)
. (3.9)

Proof. From the expression of �m,n, we deduce that for f ∈�+(Rn) such that V f <∞,

Vq f =
∑

k≥0

(−1)k
(
V(q·))kV f . (3.10)

So we obtain that

Vq(qV f )=
∑

k≥0

(−1)k
(
V(q·))k[V(qV f )

]

=−
∑

k≥1

(−1)k
(
V(q·))kV f

=V f −Vq f .

(3.11)

The second equality holds by integrating (3.6). �

Proposition 3.5. Let f ∈ L1
loc(Rn) such that V f ∈ L1

loc(Rn). Then Vq f is a solution (in
the sense of distributions) of the perturbed polyharmonic equation (1.9).
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Proof. Using the resolvent equation (3.9), we have

Vq f =V f −V
(
qVq f

)
. (3.12)

Applying the operator (−Δ)m on both sides of the above equality, we obtain that

(−Δ)m
(
Vq f

)= f − qVq f (in the sense of distributions). (3.13)

This completes the proof. �

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let c > 0. Then by (H2), there exists a nonnegative function q :=
qc ∈ K∞m,n(Rn), such that αq ≤ 1/2 and for each x ∈Rn, the map

t −→ t
(
q(x)−ϕ(x, t)

)
is continuous and nondecreasing on [0,c], (3.14)

which implies in particular that for each x ∈Rn and t ∈ [0,c],

0≤ ϕ(x, t)≤ q(x), (3.15)

Let

Λ := {u∈�+(Rn
)

:
(
1−αq

)
c ≤ u≤ c

}
. (3.16)

We define the operator T on Λ by

Tu(x) := c
(
1−Vq(q)(x)

)
+Vq

[(
q−ϕ(·,u)

)
u
]
(x). (3.17)

First, we prove that Λ is invariant under T . Indeed, for each u∈Λ, we have

Tu≤ c
(
1−Vq(q)(x)

)
+ cVq(q)(x)≤ c. (3.18)

Moreover, from (3.15), (3.4) and Lemma 3.1 we deduce that for each u∈Λ, we have

Tu≥ c
(
1−Vq(q)(x)

)≥ c
(
1−V(q)(x)

)≥ c
(
1−αq

)
. (3.19)

Next, we prove that the operator T is nondecreasing on Λ. Indeed, let u,v ∈ Λ such that
u≤ v, then from (3.14) we obtain that

Tv−Tu=Vq
([(

q−ϕ(·,v)
)
v
]− [(q−ϕ(·,u)

)
u
])≥ 0. (3.20)

Now, consider the sequence (uk) defined by u0 = (1− αq)c and uk+1 = Tuk, for k ∈ N.
Then since Λ is invariant under T , we obtain obviously that u1 = Tu0 ≥ u0 and so from
the monotonicity of T , we have

u0 ≤ u1 ≤ ··· ≤ uk ≤ c. (3.21)
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So from (3.14) and the dominated convergence theorem we deduce that the sequence
(uk) converges to a function u∈Λ which satisfies

u= c
(
1−Vq(q)(x)

)
+Vq

[(
q−ϕ(·,u)

)
u
]
(x). (3.22)

That is

u−Vq(qu)= c
(
1−Vq(q)(x)

)−Vq
(
uϕ(·,u)

)
. (3.23)

Applying the operator (I +V(q·)) on both sides of the above equality and using (3.9) we
deduce that u satisfies

u= c−V
(
uϕ(·,u)

)
. (3.24)

Finally, we claim that u is a positive continuous solution for the Problem (1.6). To prove
the claim, we use Lemma 2.4. Indeed, since u∼ c on Rn and

0≤ uϕ(·,u)≤ cq, (3.25)

we deduce that either u and uϕ(·,u) are in L1
loc(Rn).

Now, from (3.24) we can easily see that V(uϕ(·,u)) ∈ L1
loc(Rn). Hence u satisfies (in

the sense of distributions) the elliptic differential equation

(−Δ)mu+uϕ(·,u)= f in Rn. (3.26)

On the other hand, it follows from (3.25) that uϕ(·,u) ∈Mq and so by Proposition 2.8,
we obtain that V(uϕ(·,u)) is in C+

0 (Rn).
This implies by (3.24) that lim|x|→∞u(x)= c, which completes the proof. �

Remark 3.6. Let c > 0 and u be a solution of (1.8). Then we have by Theorem 1.4 that
for each x ∈Rn, 0≤ u(x)≤ c. Let q be the nonnegative function in K∞m,n(Rn) given in the
proof of Theorem 1.4. Then we deduce from (3.24) and (3.25), that

0≤ c−u(x)=V
(
uϕ(·,u)

)
(x)≤ cV(q)(x). (3.27)

Example 3.7. Let p > n/2m and a be a nonnegative function in Lp(Rn). Let λ < 2m−n/p <
μ and α, β be two nonnegative constants.

Put q(x) = a(x)/(1 + |x|)μ−λ|x|λ. Then, for each c > 0, the following polyharmonic
problem

(−�)mu+βuα+1q = 0, in Rn (in the sense of distributions)

lim
|x|→∞

u(x)= c, (3.28)

has a positive continuous solution satisfying c/2≤ u(x)≤ c, provided that β is sufficiently
small.
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Moreover, by Remark 3.6 and Proposition 2.15, we have

0≤ c−u(x)≤ c‖a‖p

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
(
1 + |x|)n−2m Log

(|x|+ 1
)p/(p−1)

, if μ+
n

p
= n

1
(
1 + |x|)(n−2m)∧(μ+n/p−2m) , if μ+

n

p
�= n.

(3.29)

Remark 3.8. It is interesting to compare the asymptotics (3.29) with the results of Trubek
[10], for the case m= 1.

4. Second existence result

In this section, we aim at proving Theorem 1.5.

Proof of Theorem 1.5. Assuming (H3) and (H4), we will use the Schauder fixed point the-
orem. From (1.14), there exists η > 0 such that

h(t)≥m0t, for each t ∈ [0,η]. (4.1)

On the other hand, let α∈ (g∞,M0), then by (1.15), there exists ρ > 0 such that for t ≥ ρ,
we have g(t)≤ αt. Put β = sup0≤t≤ρ g(t). So we deduce that

0≤ g(t)≤ αt+β, for each t ≥ 0. (4.2)

By Remark 2.14, we note that there exists a constant α1 > 0 such that

α1
(
1 + |x|)n−2m ≤Vq(x). (4.3)

Let a∈ (0,η) and b =max{a/α1, β/(1−α‖Vq‖∞)}. So we consider the closed convex set

Λ=
{
u∈ C0

(
Rn
)
,

a
(
1 + |x|)n−2m ≤ u(x)≤ bVq(x), ∀x ∈Rn

}
. (4.4)

Obviously by (4.3) we have that the set Λ is nonempty. Next we define the operator T on
Λ by

Tu(x)=
∫

Rn
Gm,n(x, y) f

(
y,u(y)

)
dy. (4.5)

Let us prove that TΛ⊂Λ. Let u∈Λ, then by (4.2) we have

Tu(x)≤
∫

Rn
Gm,n(x, y)q(y)g

(
u(y)

)
dy

≤
∫

Rn
Gm,n(x, y)q(y)

[
αu(y) +β

]
dy

≤ (αb‖Vq‖∞ +β
)
Vq(x)

≤ bVq(x).

(4.6)



H. Mâagli and M. Zribi 21

Moreover, since h is nondecreasing, we deduce by (4.1) and (1.14) that

Tu(x)≥
∫

Rn
Gm,n(x, y)p(y)h

(
u(y)

)
dy

≥
∫

Rn
Gm,n(x, y)p(y)h

(
a

(
1 + |y|)n−2m

)

dy

≥m0a
∫

Rn
Gm,n(x, y)

p(y)
(
1 + |y|)n−2m dy

≥ m0akm,n
(
1 + |x|)n−2m

∫

Rn

p(y)
(
1 + |y|)2(n−2m) dy

= a
(
1 + |x|)n−2m .

(4.7)

On the other hand, by (1.13), we have that for each u∈Λ

f (·,u)≤ g
(
b‖Vq‖∞

)
q. (4.8)

This implies by Proposition 2.8 that Tu∈V(Mq)⊂ C0(Rn). So TΛ⊂Λ.
Next, we prove the continuity of T in Λ. Let (uk) be a sequence in Λ, which converges

uniformly to a function u ∈ Λ. Then using (4.8) and (H3), we deduce by Theorem 1.3
and the dominated convergence Theorem that for x ∈Rn,

Tuk(x)−→ Tu(x) as k −→∞. (4.9)

Now, since TΛ⊂ V(Mq), we deduce by Proposition 2.8 that TΛ is relatively compact in
C0(Rn), which implies that

∥
∥Tuk −Tu

∥
∥∞ −→ 0 as k −→∞. (4.10)

Hence T is a compact map from Λ to itself. So the Schauder fixed point theorem leads to
the existence of u∈Λ such that

u=V
(
f (·,u)

)
. (4.11)

Finally by (4.8) and Lemma 2.4, we conclude that y → f (y,u(y)) is in L1
loc(Rn), which

together with (4.11) imply that u satisfies (in the sense of distributions) the elliptic dif-
ferential equation

(−�)mu= f (·,u) in Rn. (4.12)

This ends the proof. �

Example 4.1. Let p be a nonnegative function in K∞m,n(Rn) and 0 ≤ α < 1. Then the fol-
lowing problem

(−�)mu+ p(x)uα = 0, x ∈Rn,

lim
|x|→∞

u(x)= 0, (4.13)
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has a positive solution u∈ C0(Rn) satisfying for each x ∈Rn

1
(
1 + |x|)n−2m � u(x)�V p(x). (4.14)

5. Third existence result

In this section, we aim at proving Theorem 1.6.

Proof of Theorem 1.6. Let c > 0 be the constant given by (H7) and c∗ = c−‖V(q(·,c))‖∞.
Let δ ∈ (0,c∗]. We will use the Schauder fixed point theorem, so we consider the closed
convex set

Λ= {u∈ C
(
Rn∪{∞}) : δ ≤ u(x)≤ c, ∀x ∈Rn

}
(5.1)

and we define the integral operator T on Λ by

Tu(x)= δ +V
(
f (·,u)

)
(x). (5.2)

First, we prove that TΛ⊂ Λ. Let u∈ Λ, then since f is a nonnegative function, we have
that Tu(x)≥ δ, for each x ∈Rn. Moreover by (H6), we have for x ∈Rn,

Tu(x)≤ δ +V
(
q(·,u)

)
(x)≤ c∗ +V

(
q(·,c))(x)≤ c. (5.3)

Furthermore by (H7), since for all u ∈ Λ, f (·,u) ∈ Mq(·,c), then it follows from
Proposition 2.8 that V( f (·,u)) ∈ C0(Rn) and more precisely TΛ is relatively compact
in C(Rn∪{∞}). Therefore TΛ⊂Λ.

Next, let us prove the continuity ofT inΛ. Let (uk) be a sequence inΛ, which converges
uniformly to a function u∈Λ. Since f is continuous with respect to the second variable,
we deduce by the dominated convergence theorem that for each x ∈Rn∪{∞},

Tuk(x)−→ Tu(x) as k −→∞. (5.4)

Now, since TΛ is relatively compact in C(Rn∪{∞}), then

∥
∥Tuk −Tu

∥
∥∞ −→ 0 as k −→∞. (5.5)

Finally the Schauder fixed point theorem implies the existence of u∈Λ such that

u(x)= δ +V
(
f (·,u)

)
(x), ∀x ∈Rn. (5.6)

Using (H6), (H7) and Lemma 2.4, we deduce that the function y → f (y,u(y)) is in
L1

loc(Rn). So u satisfies (in the sense of distributions) the elliptic differential equation

(−�)mu= f (·,u) in Rn. (5.7)

Moreover since V( f (·,u))∈ C0(Rn), then by (5.6) it follows that lim|x|→∞u(x)= δ. This
ends the proof. �
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Corollary 5.1. Assume that q(x, t) = p(x)g(t), where g is a nonnegative nondecreasing
measurable function and p is a nonnegative function in K∞m,n(Rn). If the function g satisfies
either g(t) = o(t) as t → 0 or g(t) = o(t) as t →∞, then the problem (1.19) has a positive
solution u∈ C(Rn∪{∞}).

Example 5.2. Among the equations of form (1.1), we have the Emden-Fowler equation
of order m

(−�)mu+ p(x)uα = 0, α > 0, x ∈Rn, n > 2m, (5.8)

where p ∈ K∞m,n(Rn).
(i) For the sublinear (0 < α < 1) or the superlinear (α > 1) case, let c > 0 such that

‖V p‖∞cα−1 < 1. (5.9)

Then applying Theorem 1.6, we deduce that for each δ ∈ (0,c(1− cα−1‖V p‖∞)), (5.8)
with α �= 1 has a continuous positive solution u in Rn with δ ≤ u(x) ≤ c, for all x ∈ Rn

and lim|x|→∞u(x)= δ.
(ii) For the linear case (α= 1). If ‖V p‖∞ < 1, then applying Theorem 1.6, we deduce

that for each c > 0 and δ ∈ (0,c(1−‖V p‖∞)), (5.8) has a continuous positive solution u
in Rn with δ ≤ u(x)≤ c, for all x ∈Rn and lim|x|→∞u(x)= δ.

Remark 5.3. We improve in this section the Yin’s result in [11]. Indeed, Yin proved in
particular the existence of bounded positive solutions for the Emden-Fowler equation

�u+ p(x)uα = 0, 0 < α �= 1, x ∈Rn, n≥ 3, (5.10)

provided that the function p satisfies

∫∞

0
smax
|x|=s

{
p(x)

}
ds <∞. (5.11)

However by taking λ > (n− 1)/2 and

p(x)= p(x′,xn)= 1
(
1 + x2

n

)(
1 +

∑n−1
i=1 x2

i

)λ , x ∈Rn, (5.12)

then we have

max
|x|=s

p(x)≥ p(0,s)= 1
1 + s2

(5.13)

which implies that (5.11) is not satisfied. On the other hand, we have that p ∈ L∞(Rn)∩
L1(Rn)⊂ K∞m,n(Rn). This implies by Corollary 5.1 that the Emden-Fowler equation (5.8)
has a positive solution u∈ C(Rn∪{∞}), for each m≥ 1.
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