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The integral limit theorem as to the probability distribution of the random number νm of
summands in the sum

∑νm
k=1 ξk is proved. Here, ξ1,ξ2, . . . are some nonnegative, mutually

independent, lattice random variables being equally distributed and νm is defined by the
condition that the sum value exceeds at the first time the given level m ∈ N when the
number of terms is equal to νm.
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1. Introduction

The following problem arises in some applications of the theory of random processes.
Let {ξ(t); t ∈ R+ = [0,∞)} be a stationary ergodic random process such that it has

nonnegative trajectories with probability one. Consider the random process {J[t;ξ]; t ∈
[0,∞)},

J[t;ξ]=
∫ t

0
ξ(s)ds (1.1)

that is defined as a functional on the process {ξ(t); t ∈ [0,∞)}. It is naturally implied that
the process {ξ(t)} is measurable with probability one. Further, let each trajectory of the
process {ξ(t)} with probability one have no temporal interval, where it equals to zero. It
is required to calculate the probability distribution of the random time τ that is a solution
of

J[τ;ξ]= E (1.2)

for the given value E > 0. It is a well-posed random variable. First, if there exists a solution
of (1.1), then it is unique under restrictions pointed out. It is because the function J[t;ξ]
increases for each realization ξ(t) if the integral (1.1) is defined at t ∈ [0,∞) for it. Then
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its graph may cross the level E only once and the constancy interval is absent in this
situation. Second, due to the ergodicity of the stationary process {ξ(t); t ∈ [0,∞)}, the
following equality:

lim
t→∞ t

−1J[t;ξ]= Eξ(s), s∈ [0,∞), (1.3)

is fulfilled with probability one. Then, choosing an ε ∈ (0,Eξ(s)) (further, the symbol
E denotes the mathematical expectation everywhere), there exists almost surely such a
random number θ for this ε and for given realization ξ(t) when it is fulfilled t−1J[t;ξ] >
Eξ(s)− ε at t > θ. Then J[t;ξ] > t(Eξ(s)− ε) and, consequently, there exists a solution of
(1.2) with the probability one.

The calculation problem of probability distribution for the random variable τ defined
by (1.2) arises, for example, in the control theory of stochastic systems and in the relia-
bility theory (Homenko [4]), in the statistical theory of material destruction (Virchenko
[6, 7]), in the statistical radiophysics (Mazmanishvili [5]). Note, we may expect that the
probability distribution pointed out has a universal behaviour in some sense when E
tends to infinity. It is due to the ergodicity of the process {ξ(t); t ∈ [0,∞)} and if tending
to the limit (1.3) is sufficiently fast. In this case, the integral in (1.2) may be considered
as the sum of large number of weakly dependent, equally distributed random variables
approximately equal to TEξ(s) with overwhelming probability. This circumstance makes
the study of the probability distribution of the random variable τ a very important prob-
lem from the viewpoint of mentioned applications.

The problem, described above, admits some natural generalizations. This is important
for its study since, in frameworks of more general problem setting, this may find such
its particular cases that are more simple from the analytical viewpoint. The condition
of almost sure absence of the interval where ξ(t) = 0 for each process trajectory is not
optional. If we define the variable τ by

τ = inf
{

t;
∫ t

0
ξ(s)ds≥ E

}

, (1.4)

then we may ignore this condition. Arguments guaranteeing the nonemptiness of the set
where the inequality is fulfilled are the same as above in the proof of solution existence
for (1.2).

Moreover, it may set the analogous problem for random processes with discrete time,
that is, for random stationary ergodic sequences {ξk; k ∈ N} for which ξk ≥ 0. Such a
problem arises in the mathematical statistics, that is, in the so-called sequential statistical
analysis. In the case of sequences, it is necessary to introduce (Wald [9], Basharinov [1])
the process {Jn[ξ]; n∈N} with realizations

Jn[ξ]=
n∑

k=1

ξk (1.5)

and the random variable νE defined as

νE =min
{
n; Jn[ξ]≥ E

}
. (1.6)
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In particular, such a problem makes sense in the case when the sequence {ξk, k ∈ N}
presents the collection of independent, equally distributed, nonnegative random vari-
ables. Just this case is investigated in our work under the additional condition. Namely,
we assume that random variables ξk are lattice.

2. The problem setting

As it was mentioned above, the calculation problem of the probability distribution
Pm(n) = Pr{νm = n} of a random variable νm was considered by A. Wald when he de-
veloped the sequential statistical analysis. The random variable νm is determined by the
formula

νm =min
{
l; ηl ≥m

}
, (2.1)

where m∈N, n∈N, ηl =
∑l

k=1 ξk, l ∈N and ξ1,ξ2, . . . is a sequence of independent values,
ξk ∈ {0,1}, k = 1,2, . . . with the success probability equal to p = Pr{ξ = 1} > 0.

Probabilities Pm(n) are approximated by the following way:

Pr
{
νm = n; np/m∈ [x,x+dx)

}∼ f (x)dx (2.2)

in the limit m→∞, n→∞. Here, x = np/m, dx = p/m, and

f (x)=
(

m

2π(1− p)x

)1/2

exp

[

− m

2(1− p)

(
x1/2− x−1/2)2

]

(2.3)

is the density of the probability distribution of a suitable continuous random variable.
Further, this result was spread (Virchenko [8]) for the general case of arbitrary se-

quences ξ1,ξ2, . . . of statistically independent and equally distributed, nonnegative, lattice
random variables under the following restrictions on the probability distribution pk =
Pr{ξ = k} of their typical representative ξ. First, it is nontriviality condition 1 > p0 > 0 for
the distribution pk. Second, the fast decrease limk→∞(pk)1/k = ρ−1 < 1 of the probabilities
must take place. If m,n→∞ and m= nEξ +O(n1/2), then the probability distribution of
the variable νm is approximated by the formula

Pr
{
νm = n; nEξ/m∈ [x,x+dx)

}∼ f (x)dx (2.4)

similar to (1.2) with the density

f (x)=
(

mEξ
2πxDξ

)1/2

exp
[

− mEξ
2Dξ

(
x1/2− x−1/2)2

]

. (2.5)

Equations (2.2) and (2.4) can be considered as some local limit theorems for proba-
bility distribution of the variable νm. They present some asymptotic formulas provided
m→∞ at the mentioned restrictions concerning the n variation. But these formulas are
defined only up to a factor ∼ 1 in this limit. In connection with this fact a natural further
step is to prove of the corresponding integral theorem at m,n→∞ relative to the distri-
bution of Pm(n). Such a theorem determines uniquely the limit probability distribution
unlike the local one.
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Here, we will prove the integral theorem of probability distribution for the random
variable

ζm =
(

νmEξ
m

− 1
)(

mEξ
Dξ

)1/2

(2.6)

centering the variable νm.

3. The integral representation

In this section we obtain the integral representation for the probability Pm(n)≡ Pr{νm =
n}. It will be used further for proving the integral theorem.

At first, we make use the following decomposition of the event {νm = n} on events
{ηn−1 = k}, k = 0, . . . ,m− 1 that are pairwise disjoint,

{
νm = n

}= {ηn−1 <m, ηn ≥m
}=

m−1⋃

k=0

{
ηn−1 = k, ξn ≥m− k

}

=
m−1⋃

k=0

{
ηn−1 = k

}∩ {ξn ≥m− k
}
.

(3.1)

We obtain the following formula for probability Pm(n):

Pm(n)=
m−1∑

k=0

Pr
{
ηn−1 = k

}
Pr
{
ξn ≥m− k

}
, (3.2)

based on the decomposition and using the total probability formula with the indepen-
dence condition for variables ξ1,ξ2, . . . ,ξn.

Now, we introduce the generating function F(z) of probability distribution of the typ-
ical representative ξ of the sequence ξ1,ξ2, . . . :

F(z)=
∞∑

k=0

zkPr{ξ = k}. (3.3)

Taking into account the independence condition for random variables ξ1,ξ2, . . . ,ξn, we
have

Fn(z)≡
∞∑

k=0

zkPr
{
ηn = k

}= [F(z)
]n

, n∈N. (3.4)

Using this fact, we express the following generating function:

Gn(z)=
∞∑

m=1

zmPm(n) (3.5)
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via the function F(z). For this, we multiply (3.2) by zm and sum all those equalities over
m∈N. As a result, we get

Gn(z)=
∞∑

m=1

zm
m−1∑

k=0

Pr
{
ηn−1 = k

}
Pr
{
ξn ≥m− k

}

=
∞∑

k=0

zkPr
{
ηn−1 = k

} ∞∑

m=k+1

zm−kPr
{
ξn ≥m− k

}

= z
[
F(z)

]n−1
∞∑

l=1

Pr
{
ξn = l

} l−1∑

m=0

zm = z

1− z

(
1−F(z)

)[
F(z)

]n−1
.

(3.6)

The function Gn(z) is analytical into the unit disk {z : |z| < 1}. This follows from the
fact that the function F(z) is always analytical into the closed unit disk since the power
series defining F(z) converges uniformly in it,

∣
∣F(z)

∣
∣≤

∞∑

k=0

|z|k pk ≤
∞∑

k=0

pk = 1. (3.7)

The probability Pm(n) is defined as the mth coefficient of the Taylor series of the function
Gn(z). Therefore, the probability Pm(n) may be represented by the Cauchy formula

Pm(n)= 1
2πi

∮

C
z−(m+1)Gn(z)dz = 1

2πi

∮

C

(
1−F(z)

)

1− z

[
F(z)

]n−1 dz

zm
, (3.8)

where C = {z; |z| = r}, r < 1 is a closed countour with the positive going around.
We formulate the obtained result in the form of the separate statement.

Theorem 3.1. Let ξ1,ξ2, . . . be a sequence of statistically independent and equally distributed,
nonnegative, lattice random variables. Let pk, k = 1,2, . . . , be an arbitrary probability distri-
bution of its typical representative ξ. Then the probability Pm(n) is defined by (3.8).

4. The extremal property of the holomorphic function
H(z) with nonnegative coefficients

In this section we prove the theorem on the module maximum of the holomorphic func-
tion H(z) that has nonnegative coefficients in its expansion in the power series. This
property will be used hereinafter for the proof of the limit theorem.

Theorem 4.1 (Fedoryuk [2]). Let

H(z)=
∞∑

k=0

akz
k, z ∈ C, (4.1)

be a holomorphic function in the circle Cρ = {z : |z| ≤ ρ} ⊂ C of the radius ρ having non-
negative coefficients {ak ≥ 0; k = 0,1,2, . . .}. If

(a) a0 > 0;
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(b) there exists an integer j ≥ 2, j ∈ N such that ak = 0 at k �= jn, n ∈ N, then the
module of function H(z) reaches the maximum on the positive part of real axe.

Consider the point z∗ ∈ {z : |z| = r∗} where max{|H(z)|; |z| = r∗} is reached on the
circle with the zero center and with the radius r∗ ∈ (0,ρ].

Prove that the point z∗ coincides with r∗ provided a0 > 0. Assume that z∗ �= |z∗| = r∗.
We will show that there exists such an integer j ≥ 2 for which the following formula:

H(z)=
∞∑

k=0

ajkz
jk (4.2)

is valid in this case. Thus, we will come to the contradiction with the condition (b) of the
theorem formulation.

Due to the non-negativity of ak, we have the following inequality for any z = r∗eiϕ:

∣
∣H(z)

∣
∣=

∣
∣
∣
∣
∣

∞∑

k=0

akr
k
∗e

ikϕ

∣
∣
∣
∣
∣
≤

∞∑

k=0

akr
k
∗. (4.3)

On the other hand, since the maximum is reached at the point z∗ on the circle {z : |z| =
r∗}, then the equality is realized in the obtained inequality. Because of the fact that ak ≥ 0,
it is possible only if all the summands have the same argument, that is, einϕ = 1 at all
k = 0,1,2, . . . if ak �= 0. This follows from the condition a0 > 0. Let k1,k2, . . . be integers
corresponding to nonzero coefficients in the series of H(z), that is, 1 < k1 < k2 < ··· and
eiknϕ = 1, n ∈ N. Then there exist the integers ln ∈ N such that knϕ = 2πln, ln ≤ kn, n =
1,2, . . . . Therefore, we obtain kn = (k1/l1)ln for all n ∈ N. The rational number k1/l1 is
represented as irreducible fraction k1/l1 = j/l where j ≥ 2 and l ≥ 1 are relatively prime
numbers. The latter is valid since at j = 1 we have kn = ln and, consequently, ϕ= 2π that is
not true. Then kn = jln/l, that is, ln is divided by l, ln = lmn, mn ∈N. Therefore, kn = jmn,
that is, the function H(z) has form (4.2).

5. The integral limit theorem

Main Theorem 5.1. Let the probability distribution {pk; k ∈N+} satisfy the collection of
following conditions:

(a) p0 > 0, p0 �= 1;
(b) the number j ≥ 2, j ∈N, such that pk = 0 at k �= jl, l ∈N, is absent (this condition

indicates that the unit is the proper (minimal) step of the lattice probability distribu-
tion of the random variable ξ);

(c) the fast decrease takes place

lim
k→∞

(
pk
)1/k = ρ−1 < 1. (5.1)

Then the limit formula

lim
m→∞Pr

{
a≤ ζm < b

}= (2π)−1/2
∫ b

a
exp

{− x2/2
}
dx (5.2)
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for the probability distribution of random variable

ζm =
(

νmEξ
m

− 1
)(

mEξ
Dξ

)1/2

(5.3)

is valid provided m→∞ uniformly in a and b (−∞≤ a < b ≤ +∞).

Our proof of the theorem will be affected in several steps.
(A) We find the expression of the characteristic function of the variable ζm. The char-

acteristic function of the variable νm is expressed in the following form in terms of the
integral representation (3.8):

Eeitνm =
∞∑

n=1

eitn Pm(n)= 1
2πi

∮

C

1−F(z)
zm(1− z)

dz
∞∑

n=1

eitn
[
F(z)

]n−1

= eit

2πi

∮

C

1−F(z)
zm(1− z)

(
1− eitF(z)

)dz.

(5.4)

Then the formula

Eeitζm = exp

[

− it
(
mEξ
Dξ

)1/2
]

Eexp

⎡

⎣iνm

⎛

⎝ t(Eξ)3/2
√
mDξ

⎞

⎠

⎤

⎦= Km

∮

C
h(z)dz (5.5)

is valid. Here,

Km = 1
(2πi)

exp

[

− it
(
mEξ
Dξ

)1/2(

1−Eξ
m

)]

,

h(z)= 1−F(z)
zm(1− z)

⎛

⎝1−F(z)exp

⎡

⎣it
(Eξ)3/2
√
mDξ

⎤

⎦

⎞

⎠

−1

.

(5.6)

(B) We calculate the limit value of the integral (5.5) provided m→∞. For this, we
introduce the auxiliary circumferential circuit C′ = {z : |z| = r′} having the negative go-
ing around. The value r′ meets the condition 1 < r′ < ρ. The latter is possible in view
of the condition (b) of the theorem. For a given small real number ε > 0, we draw di-
rected segments L+ = 〈(r2− ε2)1/2 + iε, (r′2− ε2)1/2 + iε〉 and L− = 〈(r′2− ε2)1/2− iε, (r2−
ε2)1/2 − iε〉. Here, they are characterized by ordered pairs representing their initial and
finish points. Further, we cut out small arcs from circuits C and C′ included between in-
tersection points of these circuits with segments L±. As a result, we get contours Cε and
C′ε with the preserved direction of going around on them, corresponding to going around
on contours C and C′.

We consider the closed circuit L that consists of the sequential passage of circuits Cε,
L−, C′ε, L+. It is negatively oriented. Therefore,

∮

L
h(z)dz =−2πi

∑

zk(m)

(
Resh(z)

)
z=zk(m), (5.7)
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where the summation is done on the set of poles {zk(m)} that are solutions of

F(z)= exp

⎡

⎣−it (Eξ)3/2
√
mDξ

⎤

⎦ , (5.8)

depending on parameter m.
Since the function F(z) is analytical in a small neighborhood of the point z = 1 and

(dF(z)/dz)z=1 = Eξ �= 0 in view of p0 �= 1, then the inverse analytical function y(z) ex-
ists when the variable z is being changed in this neighborhood. It is defined by F(z)= y
and the condition y(1)= 1 (it is clear that it is impossible to guarantee the uniqueness of
the solution in general case without the condition pointed out. For instance, if p2k+1 = 0,
k = 0,1,2, . . ., then there is a solution satisfying the condition y(1) = −1 together with
the mentioned solution). Further, in view of the condition (b) of the theorem formu-
lation and Theorem 4.1, we may state that, for any circle centered at zero, the function
F(z) reaches its module maximum on the positive part of real axe when it is varied on
the circle. Therefore, the solution z = 1 of F(z) = 1 is unique. It is valid due to the in-
equality |F(z)| ≤ F(|z|) ≤ F(1) = 1. Here, the equality is reached only if |z| = 1. But if
this condition holds, then F(1) > F(z) provided z �= 1.

Thus, in a sufficiently small neighborhood of the point z = 1, there exists the unique
inverse function y(z) of the function F(z). Therefore, since the right-hand side of (5.8)
tends to 1 provided m→∞, then, under sufficiently large value m, there exists the unique
solution z(m) of this equation. In this connection, formula (5.7) takes the form

∮

L
h(z)dz =−2πi

(
Resh(z)

)
z=z(m). (5.9)

The integral in the left-hand side of this equality is decomposed into the sum of four
integrals

∮

L
h(z)dz =

∮

Cε

h(z)dz+
∫

L+

h(z)dz+
∮

C′ε
h(z)dz+

∫

L−
h(z)dz. (5.10)

We go to the limit ε→ +0. Then integrals over segments L+ and L− compensate each other
due to the integration in opposite directions. Furthermore, circuits Cε and C′ε turn into
circuits C and C′ under such a passage to the limit. Further, the integral over the circuit
C′ tends to zero when m→∞,

lim
m→∞Km

∮

C′
h(z)dz = 0, (5.11)

because |z| = r′ > 1 on this circuit and, therefore, |h(z)| < constr′−m. Due to these facts,
we find from (5.9)

lim
m→∞ lim

ε+0
Km

∮

L
h(z)dz = lim

m→∞Km

∮

C
h(z)dz =−2πi lim

m→∞Km
(

Resh(z)
)
z=z(m). (5.12)
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Now we proceed to the limit m→∞ in formula (5.5) taking into account the limiting
relationship (5.12). As a result, we get

lim
m→∞Eeitζm = lim

m→∞
[
F′
(
z(m)

)]−1
exp

[

− it
(
mEξ
Dξ

)1/2
]

· 1−F(z(m))
z(m)m

(
1− z(m)

) . (5.13)

(Note that the obtained formula makes sense only if p0 < 1, otherwise, F(z)≡ 1 and F′ =
0.)

(C) We calculate the limit in (5.13). For this, we represent z(m) as the expansion in
half-integer powers

z(m)= 1 +
w1√
m

+
w2

m
+ o
(
m−1). (5.14)

Correspondingly, we represent the generating function F(z) with the same accuracy in
the following form taking into account that F(1)= 1, F′(1)= Eξ, and F′′(1)=Dξ −Eξ +
(Eξ)2,

F
(
z(m)

)= 1 + Eξ

(
w1√
m

+
w2

m

)

+
w2

1

2m

(
Dξ −Eξ + (Eξ)2)+ o

(
m−1). (5.15)

Using (5.8), we get

F
(
z(m)

)= 1− it
(Eξ)3/2
√
mDξ

− t2 (Eξ)3

2mDξ
+ o
(
m−1). (5.16)

Equating coefficients at powersm−1/2 andm−1 in (5.15) and (5.16), we find the expression
for w1,

w1 =−it
(

Eξ
Dξ

)1/2

(5.17)

and the equation for w2,

w2Eξ +
w2

1

2

(
Dξ −Eξ + (Eξ)2)=− t2(Eξ)3

2Dξ
(5.18)

from which it follows

w2 =− t2(Eξ)2

2Dξ
− w2

1

2Eξ

(
Dξ −Eξ + (Eξ)2)= t2

2

(

1− Eξ
Dξ

)

. (5.19)

The substitution of these expressions into (5.14) gives us the formula for z(m),

z(m)= 1− it
(

Eξ
mDξ

)1/2

+
t2

2mDξ
(Dξ −Eξ) + o

(
m−1). (5.20)
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Find an asymptotic formula for z(m)−m. Since

lnz(m)−m =m

(

it
(

Eξ
mDξ

)1/2

− t2

2mDξ
(Dξ −Eξ)− t2Eξ

2mDξ

)

+ o
(
m−1)

= it
(
mEξ
Dξ

)1/2

− t2

2
+ o
(
m−1),

(5.21)

then

z(m)−m = exp

[

it
(
mEξ
Dξ

)1/2

− t2

2
+ o
(
m−1)

]

. (5.22)

Passing to the limit in the expression (1− F(z(m)))/(1− z(m)), we can change it by
F′(z(m)) in accordance with L’Hospital rule. Then the direct substitution of this expres-
sion and expression (5.22) into (5.13) gives the limit of the characteristic function

lim
m→∞Eeitζm = exp

{− t2/2
}
. (5.23)

Using the theorem of the connection between the characteristic functions sequence con-
vergence and the convergence of corresponding sequence of probability distributions
(Gnedenko [3]), we obtain the theorem statement.

6. The Wald representation

Consider the random variable

ζm =
(

νmEξ
m

− 1
)(

mEξ
Dξ

)1/2

. (6.1)

Denote

ρm = νmEξ
m

= 1 + ζm

(
Dξ

mEξ

)1/2

. (6.2)

Since the sequence {ζm; m= 1,2, . . .} is bounded with probability one when m→∞, then

ρ±1/2
m = 1± 1

2
ζm

(
Dξ

mEξ

)1/2

+O
(
m−1). (6.3)

Consequently,

ρ1/2
m − ρ−1/2

m = ζm

(
Dξ

mEξ

)1/2

+O
(
m−1) (6.4)
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and, therefore, it follows that

ζm =
(
mEξ
Dξ

)1/2(
ρ1/2
m − ρ−1/2

m

)
+O

(
m−1/2)≡ g

(
ρm
)

+O
(
m−1/2), (6.5)

where the function

g(x)=
(
mEξ
Dξ

)1/2(
x1/2− x−1/2) (6.6)

has the inverse one.
From the formula (5.2) it follows that the limit distribution density fζ(x) of the ran-

dom variable ζm equals to

fζ(x)= (2π)−1/2 exp
(− x2/2

)
. (6.7)

Then we have

fρ(x)= g′(x) fζ
(
g(x)

)
. (6.8)

It is valid by the transformation of the probability distribution density of the continuous
random variable ζ to the probability distribution density of the random variable being
the function ρ = g(ζ). The density fρ(x) approximates asymptotically the probability dis-
tribution density of the variable ρm. We have the following formula for it:

fρ(x)=
(

mEξ
8πxDξ

)1/2(
1 + x−1)exp

(

− mEξ
2Dξ

(
x1/2− x−1/2)2

)

. (6.9)

Acknowledgment

The authors are grateful to RFBR and Belgorod State University for the financial support
of this work.

References

[1] A. E. Basharinov and B. S. Fleishmann, Metody statisticheskogo posledovatelnogo analiza i ikh
prilozhenia, Sovet. Radio, Moscow, 1962.

[2] M. V. Fedoryuk, Metod perevala, Izdat. “Nauka”, Moscow, 1977.
[3] B. V. Gnedenko, Course of the Probability Theory, Nauka, Moscow, 1969.
[4] L. P. Homenko, Analiz nadezhnosti udarnoi modeli markovskogo tipa, Avtomatika i tele-

mekhanika 11 (1991), 177–184 (Russian).
[5] A. S. Mazmanishvili, Kontinual’noe integrirovanie kak metod resheniya fizicheskikh zadach,

“Naukova Dumka”, Kiev, 1987.
[6] Yu. P. Virchenko, Percolation mechanism of material ageing and distribution of the destruction

time, Functional Materials 5 (1998), no. 1, 7–13.
[7] Yu. P. Virchenko and O. I. Sheremet, The formation of destruction time distribution of material

aging by statistically independent perturbations, Functional Materials 6 (1999), no. 1, 5–12.



12 The integral limit theorem in the first passage problem

[8] Yu. P. Virchenko and M. I. Yastrubenko, The local limit theorem in the first passage problem of the
sum with random number of independent random variables, Trudy Voronezhskoi zymnei matem-
aticheskoi shkoly, Voronezh State University, Voronezh, 2004, pp. 56–74.

[9] A. Wald, Sequential Analysis, John Wiley & Sons, New York; Chapman & Hall, London, 1947.

Yuri P. Virchenko: Belgorod State University, Pobedy 85, 308015 Belgorod, Russia
E-mail address: virch@bsu.edu.ru

M. I. Yastrubenko: Belgorod State University, Pobedy 85, 308015 Belgorod, Russia
E-mail address: yastrubenko@bsu.edu.ru

mailto:virch@bsu.edu.ru
mailto:yastrubenko@bsu.edu.ru

	1. Introduction
	2. The problem setting
	3. The integral representation
	4. The extremal property of the holomorphic function H(z) with nonnegative coefficients
	5. The integral limit theorem
	6. The Wald representation
	Acknowledgment
	References

