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We consider a class of singularly perturbed parabolic equations for which the degenerate
equations obtained by setting the small parameter equal to zero are algebraic equations
that have several roots. We study boundary layer type solutions that, as time increases,
periodically go through two fairly long lasting stages with extremely fast transitions in
between. During one of these stages the solution outside the boundary layer is close to
one of the roots of the degenerate (reduced) equation, while during the other stage the
solution is close to the other root. Such equations may be used as models for bio-switches
where the transitions between various stationary states of biological systems are initiated
by comparatively slow changes within the systems.

Copyright © 2006 A. B. Vasil’eva and L. V. Kalachev. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Parabolic equations with several possible locally stable stationary solutions are often used
for modeling of biological switches (i.e., biological systems where transitions may occur
between various biologically meaningful stationary states); see, for example, Okubo and
Levin [5], Keener and Sneyd [2], Murray [3]. A particular current state of a bio-switch is
determined by the original initial condition that belongs to a domain of attraction of this
stable stationary state. Usually, to initiate a transition to another stationary state of the
biological system a perturbation of a dependent variable is required that translates the
instantaneous solution to the domain of attraction of this new stable stationary state.

Here we present a mathematical model that would describe a different type of transi-
tion between various states of the bio-switches. Unlike the cases mentioned above, these
new transitions are initiated by comparatively slow changes that occur within biological
systems (and caused, e.g., by the seasonal temperature, humidity, vegetation, etc.). In the
present paper we concentrate on a heuristic analysis of this new phenomena. Some short
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discussion on sensitivity and tuning of bio-switches is given at the end of the Conclusions
Section.

Specifically, in this paper we present formal results on the qualitative asymptotic anal-
ysis of alternating boundary layer type solutions of the bistable scalar parabolic equations
with periodic dependence. Our main goals are (1) to show how such solutions appear in
the cases where the non-linearity in the equation does not contain explicit dependence
on spatial variable, x, and (2) to clarify the effect of the presence of a slow convection-
like term on the initiation of fast transition between the two longer lasting states of the
periodic solution. During these stages the solution outside the boundary layer is close to
different roots of the nonlinearity. The main techniques of study used here are the bound-
ary function method algorithm (see Vasil’eva et al. [7]) and the phase-plane analysis of the
time dependent orbits describing the boundary layers near the endpoints of the spatial
interval of interest (here, x ∈ [0,1]).

When the right-hand side of the parabolic equation does not depend explicitly on the
spatial variable, x, the moving transition thresholds start symmetrically on both sides of
the spatial interval. This is not the case when the small convection-like term is present in
the equation. Depending on the sign of the convection-like term, the transition will now
start either on the left or on the right boundary of the spatial interval.

In this paper we only briefly discuss the structure of the fast moving transition layer
that accompanies the switching between the two mentioned above longer lasting stages
of the periodic solution. A more detailed description of the periodic traveling waves for
reaction-diffusion equations can be found, for example, in Alikakos et al. [1].

The paper is organized as follows. A brief overview of some recent results on bound-
ary layer type solutions of singularly perturbed parabolic equations is given in Section 2.
The new results on alternating boundary layer type solutions are presented in Section 3.
Conclusions following from the analysis are discussed in Section 4.

2. Boundary layer type solutions of singularly perturbed parabolic equations

2.1. Equation without explicit dependence on ux (the case where degenerate equation
has one root). Let us consider a problem for parabolic equation with Dirichlet type
boundary conditions and periodic conditions in t (0 < ε� 1 is a small parameter):

ε2(uxx −ut
)= F(u,x, t), 0 < x < 1, (2.1)

u(0, t,ε)= u(1, t,ε)= 0, (2.2)

u(x, t,ε)= u(x, t+ 2π,ε)= 0. (2.3)

Let the following assumptions hold.
(A1) Function F(u,x, t) is periodic in t and is continuous together with its first derivatives

in domain

G= {(x, t)∈D = [0,1]×R1, |u| ≤ K}. (2.4)

(A2) The degenerate equation F(u,x, t) = 0 has a root φ(x, t) in domain D, such that
Fu(φ(x, t),x, t) > 0.
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Next, consider the sum

U(x, t,ε)= φ(x, t) +Π
(
η0, t

)
+R

(
η1, t

)

= φ(x, t) +Π
(
x

ε
, t
)

+R
(

1− x
ε

, t
)
.

(2.5)

Here η0 = x/ε, η1 = (1− x)/ε are the, so-called, stretched variables, and Π, R are the
boundary functions. The left boundary function, Π, is determined as a solution of the
following problem:

d2Π

dη2
0
= F(φ(0, t) +Π,0, t

)
,

Π(0, t)=−φ(0, t), Π|η0→∞ −→ 0.
(2.6)

In this problem t is a parameter.
Consider a phase plane (Π,dΠ/dη0) for (2.6) (t fixed). By virtue of assumption (A2)

the point (0,0) (an equilibrium point for (2.6)) is a saddle.
(A3) Let the vertical line Π = −φ(0, t) intersect the separatrix entering the saddle point

(0,0) as η0 →∞.
The right boundary function, R, is found as a solution of the problem

d2R

dη2
1
= F(φ(1, t) +R,1, t

)
,

R(0, t)=−φ(1, t), R|η1→∞ −→ 0.
(2.7)

In the phase plane (R,dR/dη1) of the above equation the point (0,0) is also a saddle.
(A4) Let the vertical line R = −φ(1, t) intersect the separatrix entering the saddle point

(0,0) as η1 →∞.
The following theorem holds (see, e.g., Nefedov [4]).

Theorem 2.1. Under conditions (A1)–(A4) and for sufficiently small ε there exists a bound-
ary layer type periodic solution u(x, t,ε) of the problem (2.1)–(2.3) such that

∣
∣u(x, t,ε)−U(x, t,ε)

∣
∣ < Cε, for (x, t)∈D, (2.8)

where C > 0 is a constant that does not depend on ε.

Here U(x, t,ε) is defined by (2.5).

2.2. Equation with weak dependence on ux (the case where the ε = 0 equation has one
root). Now we consider the equation

ε2(uxx −ut
)= F(εux,u,x, t

)
, 0 < x < 1, (2.9)

with the same additional conditions (2.2), (2.3). Equation (2.9) differs from (2.1) by an
extra argument εux in the right-hand side.
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The new assumptions (A1∗) and (A2∗) must be formulated for (2.9), and they change
only slightly compared to corresponding assumptions (A1) and (A2) for (2.1). In par-
ticular, (A1∗) differs from (A1) by specification of a new domain on which function
F(z,u,x, t) must be periodic in t and be continuous together with its first derivatives:

G= {(x, t)∈D = [0,1]×R1, |u| ≤ K , |z| < K}. (2.10)

In the new assumption (A2∗), compared to (A2), function F(z,u,x, t) will have an addi-
tional argument z that is set to zero: F(0,u,x, t)= 0 has a root φ(x, t), such that

Fu(0,φ(x, t),x, t) > 0. (2.11)

Instead of problem (2.6), we now consider

d2Π

dη2
0
= F

(
dΠ

dη0
,φ(0, t) +Π,0, t

)
,

Π(0, t)=−φ(0, t), Π|η0→∞ −→ 0,
(2.12)

and instead of problem (2.7), we consider

d2R

dη2
1
= F

(
dR

dη1
,φ(1, t) +R,1, t

)
,

R(0, t)=−φ(1, t), R|η1→∞ −→ 0.
(2.13)

The assumptions (A3), (A4) will stay the same as in the previous subsection.
The difference between (2.12), (2.13) and (2.6), (2.7) is in that the problems (2.6) and

(2.7) have the first integral that can be found explicitly, while problems (2.12) and (2.13)
do not possess this property. In what follows, this difference will play an important role.

The following theorem holds (see Vasil’eva [6]).

Theorem 2.2. Under conditions (A1∗), (A2∗), (A3), (A4) and for sufficiently small ε there
exists a boundary layer type periodic solution u(x, t,ε) of the problem (2.9), (2.2), (2.3) which
is asymptotically close to φ(x, t) for 0 < x < 1.

We note that this theorem is weaker than Theorem 2.1 since it does not provide us
with asymptotics of the solution (i.e., the rate of convergence is not indicated).

2.3. The bistable case. Let the equation F(u,x, t)= 0 have several roots. We consider in
more detail the case of three roots in D:

φ1(x, t) < φ2(x, t) < φ3(x, t),

∂F

∂u

∣
∣
∣
∣
u=φi

> 0 (i= 1,3),
∂F

∂u

∣
∣
∣
∣
u=φ2

< 0.
(2.14)

Now the problem for parabolic equation (2.1) may have a solution described in Section
2.1 with φ = φ1(x, t), as well as a solution with φ = φ3(x, t). These two solutions may
co-exist.

Similar phenomena are also observed in the case where F = F(εux,u,x, t) and the ε = 0
equation F(0,u,x, t)= 0 has three roots (see Vasil’eva [6]).
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3. Break down of the boundary layer type solution

3.1. Bistable I. Consider the bistable equation

ε2(uxx −ut
)= (u2− 1

)(
u−φ(t)

)
, 0 < x < 1, (3.1)

with conditions (2.2), (2.3). Here φ1 = −1, φ2 = φ(t), and φ3 = 1. We assume that −1 <
φ(t) < 1 is a periodic function of t, and that conditions (A1)–(A4) hold. Since the form of
the right-hand side in (3.1) is now specified, we may explain the meaning of conditions
(A3), (A4) in more detail.

Consider, for example, requirement (A3). Let us construct separatrices on the phase
plane for corresponding equation mentioned in (A3). For convenience, we introduce a
new variable, ũ= φ3 +Π. (Here without loss of generality we start with the discussion of
the boundary layer type solution that is close to φ3 outside the boundary layer. We could
have chosen to start our discussion with the solution that is close to φ1 as well. Note that
in Section 2.1, in problem (2.6), only the case of a unique root of the degenerate equation
was mentioned.) Now the problem (2.6) will have the form

d2ũ

dη2
0
= (ũ2− 1

)(
ũ−φ(t)

)
,

ũ(0, t)= 0, ũ|η0→∞ −→ 1 (t is a parameter).
(3.2)

The first integral of this equation can be written out explicitly:

p2

2
=
∫ ũ

1

(
s2− 1

)(
s−φ(t)

)
ds, (3.3)

(here p = dũ/dη0).
Expression (3.3) describes separatrices passing through the saddle ũ = 1, p = 0. The

changes in the phase portrait of the equation that occur with changing t are shown in
Figure 3.1. (To make notation shorter in this figure as well as in the figures below tilde
is omitted, that is, in the figures u is used instead of ũ.) The arrows show the direction
corresponding to increasing values of η0. The value ũ= ψ is an abscissa of a point corre-
sponding to intersection of a homoclinic orbit loop with the ũ-axis (p = 0) and lying to
the left of ũ= 1.

Let us start with the case where φ(t) increases with t. In Figure 3.1(a) condition (A3)
is satisfied: the vertical line ũ= 0 intersects the separatrix L entering the saddle (1,0) for
η0 →∞.

As φ(t) continues to increase, we arrive at the critical case, shown in Figure 3.1(b),
where the vertical line ũ = 0 only touches the separatrix L (at the turning point of the
homoclinic loop).

In Figure 3.1(c) the value of φ(t) is so large that the vertical line ũ= 0 does not intersect
the separatrix L any more.

Thus, condition (A3) holds for cases shown in Figures 3.1(a) and (b), and Figure 3.1(b)
corresponds to the maximal value t = t1 for which (A3) is still true. For t = t1 + 0 the so-
lution with left boundary layer transition connecting the boundary condition ũ|x=0 = 0
with φ3 = 1 breaks down, and a new boundary layer transition connecting ũ|x=0 = 0 with
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Figure 3.1. Bold solid lines represent phase trajectories corresponding to the boundary layer transi-
tions near the left boundary point x = 0.

φ1 =−1 appears (a separatrix entering the saddle (−1,0) and intersecting ũ|x=0 = 0 exists
for some t < t1 as well, however, it does not correspond to a boundary layer transition
for t < t1). This new left boundary layer transition is defined as a solution of (3.2) with
ũ= φ1 +Π and the new condition ũ→−1 as η0 →∞.

Near the boundary point x = 1 a similar picture is observed (the behavior analogous
to that presented in Figures 3.1(a), (b), (c), for the separatrix entering the saddle for η1 →
∞, may be analyzed as well). So, the upper boundary layer type solution breaks down
simultaneously at both endpoints, x = 0 and x = 1, of the spatial domain of interest (this
happens due to the fact that φ2 = φ(t) is independent of x).

The formula for the instant of time t = t1 when the break down occurs can be derived
analytically. From (3.3), we obtain

p2

2
= 1

4

(
ũ4− 1

)− φ

3

(
ũ3− 1

)− 1
2

(
ũ2− 1

)
+φ(ũ− 1)

= (ũ− 1)2
[

1
4

(ũ+ 1)2− φ

3
(ũ+ 2)

]
.

(3.4)

The value of ψ is obtained from the above expression as follows: for p = 0 the term in the
square brackets must be zero. Thus,

[
1
4

(ũ+ 1)2− φ

3
(ũ+ 2)

]
= 0, (3.5)
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and then,

ũ= ψ =−1 +
2
3

(
φ±

√
φ2 + 3φ

)
. (3.6)

In the critical situation (shown in Figure 3.1(b)), ψ = 0, which leads to φ = 3/8 (the
second root is omitted since it is negative, and it lies to the left of ũ = −1). Now, the
particular value of t1 for which the upper boundary layer type solution (i.e., the one that
tends to root φ3 = 1 in the interior of spatial domain of interest as ε→ 0) breaks down is
found from the equation

φ
(
t1
)= 3

8
. (3.7)

For t = t1 + 0 the connection of a point corresponding to the boundary condition at x =
0 (where ũ = 0) with the saddle point (φ3,0) = (1,0) via one separatrix breaks down,
but the connection via another separatrix with the saddle (φ1,0) = (−1,0) remains (see
Figures 3.1(b) and (c)), and the lower boundary layer type solution starts to develop. This
phenomenon is illustrated in Figure 3.2 where the instantaneous profiles of the solution
are shown in coordinates (x,u) for certain values of t.

We may note that this phenomenon is symmetric with respect to boundaries x = 0 and
x = 1. In Figure 3.2(a) we show the upper boundary layer type solution; in Figure 3.2(b)
the critical form of the upper boundary layer type solution is presented (the solution in
this case has zero derivative, p(ψ) = 0, at the boundaries); in Figure 3.2(c) we illustrate
the appearance of lower boundary layer type solution via moving thresholds; and finally,
in Figure 3.2(d) the developed form of lower boundary layer type solution is shown. The
function φ(t) is periodic. So, after reaching some maximal value 3/8 < φmax < 1 it will
start to decrease. Here we address the case where for the minimal value of φ(t) the follow-
ing condition holds: −1 < φmin < −3/8. Then, after stage (d) the process similar to that
described in Figures 3.2(a)–(d) and corresponding to a transition from lower to upper
boundary layer type solution is observed. This latter transition completes the full cycle.

Thus, for (3.1) with conditions (2.2), (2.3) we have the situation for which the bound-
ary layer type solution of alternating type exits: for this problem the upper boundary
layer type solution at a certain instant of time is being transformed to the lower bound-
ary layer type solution which, in turn, at another instant of time transforms back into the
upper boundary layer type solution. This process repeats itself periodically in time. The
full analytical description of the process shown in Figures 3.2(a)–(d) is still open.

In the paper by Vasil’eva et al. [8] a method is given that describes the solution of
the moving layer type appearing in stage (b) and further developing in stage (c) (see
Figures 3.2(b), (c)). Following [8], consider the expression

ū= 1− exp
[
(−√2/ε)

(
x− r0

)]

1 + exp
[
(−√2/ε)

(
x− r0

)] . (3.8)

If r0 is considered to be a parameter, then ū is a solution of the equation

d2ū

dη2
= (ū2− 1

)
ū, (3.9)



8 Alternating solutions

−1

−0.5

0

0.5

1

u

0 0.2 0.4 0.6 0.8 1
x

(a)

−1

−0.5

0

0.5

1

u

0 0.2 0.4 0.6 0.8 1
x

(b)

−1

−0.5

0

0.5

1

u

0 0.2 0.4 0.6 0.8 1
x

(c)

−1

−0.5

0

0.5

1

u

0 0.2 0.4 0.6 0.8 1
x

(d)

Figure 3.2. Sample phases of the periodic behavior illustrating the switching between upper and lower
boundary layer type solutions.

that has the form of a transition layer since

lim
ε→0

ū−→
⎧
⎨

⎩
−1, x < r0,

1, x > r0.
(3.10)

It turns out that if r0 = r0(t,ε) is defined by the equation

ε
dr0

dt
=√2φ(t), (3.11)

the expression (3.8), where r0 = r0(t,ε) from (3.11) is substituted for r0, satisfies (3.1) with
discrepancy of order O(ε). This solution could be constructed so as to satisfy the initial
condition r0(t1,ε) = 0. Let φ(t) change with period 2π, and for t = t1 > 0 equal 3/8. For
some t it attains its maximal value φmax < 1, then starts to decrease, passes through zero
in the direction of negative values of φ(t) until it reaches its minimal value −1 < φmin < 0
(this minimal value could, e.g., be φmin = −φmax). After that φ(t) starts to increase and
becomes 3/8 again for t = t1 + 2π. The solution of (3.11) has the form

r0(t,ε)=
√

2
ε

∫ t

t1
φ(θ)dθ. (3.12)
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Function r0(t,ε) has a singularity of order 1/ε, that is, the motion of the layer occurs at a
very fast time scale. For t = t1 and x = 0, we have ū= 0, so we obtain stage (b) of the time
evolution of the solution that is followed by stage (c).

The layer connecting 1 on the left to 0 on the right is given by

û= 1− exp
[
(
√

2/ε)
(
x− r1

)]

1 + exp
[
(
√

2/ε)
(
x− r1

)] ,

ε
dr1

dt
=−√2φ(t), r1(t,ε)=−

√
2
ε

∫ t

t1
φ(θ)dθ + 1.

(3.13)

Similar to the case of r0, for t = t1 + 0, that is, just after φ(t) > 0 reaches 3/8, the value of
r1 starts to decay rapidly away from 1.

Mutual destruction of the two moving layers takes place at the end of stage (c) (see
Figure 3.2(c)). This transition to a lower boundary layer type solution occurs for r = 1/2
(due to symmetry), and at an instant of time t2 defined by the equation

ε

2
=√2

∫ t2

t1
φ(θ)dθ, (3.14)

that is, t2− t1 =O(ε).
After that, the stage corresponding to the lower boundary layer type solution starts

(Figure 3.4(d)). This stage lasts until it breaks down at an instant of time defined by the
equation (for t3): φ(t3) = −3/8. This equation is derived similar to (3.7). At an instant
of time t3 the transition back to the upper boundary layer type solution is initiated (this
transition process goes through the steps similar to those shown in Figure 3.2). Thus, the
duration of the transition stage (from one boundary layer type solution to the other) is
very short (of orderO(ε)), while the duration of stages corresponding to upper and lower
boundary layer type solutions is equal approximately to π. In the literature (see Vasil’eva
et al. [8]) the fast transition stage is usually referred to as a run, and the slow longer lasting
boundary layer type stage is called a halt. We note that in [8] a somewhat different case is
considered, but the terminology introduced there may be applied here as well.

In Figure 3.3 we show schematic representations of phase portraits for the boundary
layer transitions corresponding to the stages of time evolution of the periodic solution
discussed above. The bold solid lines correspond to the left boundary layer transitions
(near x = 0), and the dashed lines correspond to the right boundary layer transitions
(near x = 1). Arrows show the directions of increase in η0 (solid line) and in η1 (dashed
line).

The following values of φ(t) produce various phase portraits shown in Figure 3.3:
(a) φ(t) = 3/8—maximal critical value; the start of a run; switching from upper to

lower boundary layer type solution;
(b) 3/8 < φ(t) < φmax—increase of φ(t);
(c) 0 < φ(t) < φmax—decrease of φ(t);
(d) φ(t)= 0—value of φ(t) for which heteroclinic connections exist;
(e) −3/8 < φ(t) < 0—value of φ(t) continues to decrease;
(f) φ(t) =−3/8—minimal critical value; the start of a run; switching from lower to

upper boundary layer type solution;
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Figure 3.3. Phase portraits illustrating time dynamics of the boundary layer transitions present near
the left (solid line) and the right (dashed line) boundaries of the interval x ∈ [0,1].
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(g) φmin < φ(t) <−3/8—decrease of φ(t);
(h) φmin < φ(t) < 0—increase of φ(t);
(i) φ(t)= 0—value of φ(t) for which heteroclinic connections exist;
(j) 0 < φ(t) < 3/8—increase of φ(t).

Stage (a) follows stage (j), which completes the cycle. We note that the phase portraits
(g), (h), (i), (j) shown in Figure 3.3 correspond to various stages of solution phase (a)
presented in Figure 3.2, the phase portrait (a) in Figure 3.3 corresponds to solution phase
(b) in Figure 3.2, the phase portraits (b), (c), (d), (e) in Figure 3.3 correspond to various
stages of solution phase (d) in Figure 3.2.

3.2. Bistable II. Next we consider the equation

ε2(uxx −ut
)= εaux +

(
u2− 1

)(
u−φ(t)

)
, 0 < x < 1, (3.15)

with the same conditions (2.2), (2.3). The difference with (3.1) is due to the convection
term εaux. Here we begin with taking a= const > 0.

For (3.15) the formula of type (3.3) does not exist since, unlike (3.2), equation

d2ũ

dη2
0
= a dũ

dη0
+
(
ũ2− 1

)(
ũ−φ(t)

)
, (3.16)

with conditions

ũ(0, t)= 0, ũ|η0→∞ −→ 1 (t is a parameter), (3.17)

cannot be integrated in quadratures. Thus, the value for φ(t1) cannot be found explicitly
(cf. (3.7)).

Simple phase plane analysis can be performed for (3.16). Corresponding steady states
of the equivalent equation

p
dp

dũ
= ap+

(
ũ2− 1

)
(ũ−φ), (3.18)

on the (ũ, p)-plane are found analogously to the case of (3.1). They are (−1,0), (1,0), and
(φ,0). Once again, (−1,0) and (1,0) are saddles. However, (φ,0) now is either a focus (for
not too large values of a) or a node.

Eigenvalues of the Jacobian matrix in the case of (φ,0) are defined by the equation

det

( −λ 1(
φ2− 1

)
a− λ

)

≡ λ2− aλ− (φ2− 1
)= 0, (3.19)

that is,

λ1,2 = a

2
±
√
a2

4
+
(
φ2− 1

)
, (3.20)

and under condition a2 < 4(1−φ2) we obtain an unstable focus.
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ψ

ψ∗

ψ∗∗
ψ + δ

Figure 3.4. Separatrices related to the saddle point (1,0) for a = 0 (solid lines) and a > 0 (dashed
lines).

To determine (in the linear approximation) the slopes of the tangent lines to sepa-
ratrices passing through the saddle (1,0), we compute corresponding eigenvalues of the
Jacobian matrix evaluated at this steady state from the equation

det

( −λ 1
2(1−φ) a− λ

)

≡ λ2− aλ− 2(1−φ)= 0. (3.21)

Thus,

λ1,2 = a

2
±
√
a2

4
+ 2(1−φ), (3.22)

and λ1 = a/2−
√
a2/4 + 2(1−φ) < 0, while λ2 = a/2 +

√
a2/4 + 2(1−φ) > 0.

The tangent line to the separatrix entering this saddle point for η0 → +∞ is defined by
equation p = λ1(ũ− 1), and the tangent line to the separatrix entering saddle for η0 →
−∞ (or, equivalently, for η1 → +∞) has equation p = λ2(ũ− 1).

Let us impose an additional condition, that is, assume that a is sufficiently small, to ob-
tain a phase portrait for the case a 
= 0 from the phase portrait for a= 0 using asymptotics
in a.

First, we note that, compared to the case a = 0, for increasing a > 0 the negative λ1

decays in absolute value, and positive λ2 grows. In Figure 3.4 corresponding separatrices
for a= 0 and a > 0 are shown (the changes in the slopes of the tangent lines to separatrices
at (0,1) are evident from the figure).

Let us follow the separatrix with the tangent slope λ2 for growing η0 (or, equivalently,
for decaying η1). Let us look for the solution of (3.18) in the form of an expansion

p = p0 + ap1. (3.23)

Substituting the above into (3.18), in the leading order approximation we obtain

p0
dp0

dũ
= (ũ2− 1

)
(ũ−φ). (3.24)
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This separatrix (corresponding to a = 0) is the lower part of the closed loop (p0 < 0)
shown in Figure 3.4. In the next order approximation, we write

p0
dp1

dũ
+ p1

dp0

dũ
= d

dũ

(
p0p1

)= p0. (3.25)

Thus,

p0p1 =
∫ ũ

1
p0(η)dη, (3.26)

p1 = 1
p0

∫ ũ

1
p0(η)dη < 0. (3.27)

This expression will be used for the values of ũ changing between 1 and ψ + δ where
p0 < 0. (From the expression for p1, and the fact that p0 < 0, it follows immediately that
p1 < 0 as well.) At ũ= ψ + δ the roles of ũ and p must be changed. We now must consider
the equation

dũ

dp

(
ap+

(
ũ2− 1

)
(ũ−φ)

)= p, (3.28)

with condition

ũ
(
p∗
)= ũ(p0(ψ + δ) + ap1(ψ + δ)

)= ψ + δ. (3.29)

We construct its solution in the form of an expansion

ũ= u0 + au1. (3.30)

We now have for the leading order (after substitution of the above expansion into the
equation and condition):

du0

dp

((
u2

0− 1
)(
u0−φ

))= du0

dp
F
(
u0
)= p, (3.31)

where F(u)= (u2− 1)(u−φ). Thus,

du0

dp
= p

F
(
u0
) ,

u0
(
p0(ψ + δ)

)= ψ + δ,
(3.32)

which describes the same closed loop (homoclinic orbit) corresponding to a= 0.
Next,

du1

dp
F
(
u0
)

+
du0

dp

(
p+F′

(
u0
)
u1
)= 0. (3.33)

This equation must be considered with condition

u1
(
p0(ψ + δ)

)=−du0

dp

(
p0(ψ + δ)

)× p1(ψ + δ). (3.34)
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Since on the homoclinic orbit in the vicinity of ũ= ψ and for p < 0 we have dp0/dũ < 0,
then du0/dp < 0. Taking into account that for p0 < 0 it follows from (3.26) that p1 < 0, we
finally get

u1
(
p0(ψ + δ)

)
< 0. (3.35)

From the equation for u1, we obtain

du1

dp
F
(
u0
)

+
p

F
(
u0
)
(
p+F′

(
u0
)
u1
)= 0, (3.36)

or

du1

dp
=− p

F2
(
u0
)
(
p+F′

(
u0
)
u1
)

=−u1
pF′

(
u0
)

F2
(
u0
) − p2

F2
(
u0
) =−u1

(
du0

dp

)
F′
(
u0
)

F
(
u0
) − p2

F2
(
u0
) .

(3.37)

The solution of this equation can be written as follows (here we use notation p∗0 = p0(ψ +
δ)):

u1(p)= u1
(
p∗0
)

exp
(
−
∫ p

p∗0

F′
(
u0
)

F
(
u0
)
du0

dη
dη
)

−
∫ p

p∗0

ξ2

F2
(
u0
) exp

(
−
∫ p

ξ

F′
(
u0
)

F
(
u0
)
du0

dη
dη
)
dξ

= u1
(
p∗0
)

exp
[

(− lnF)|pp∗0
]
−
∫ p

p∗0

ξ2

F2
(
u0
) exp

[
(− lnF)|pξ

]
dξ

= u1
(
p∗0
)F
(
u0
(
p∗0
))

F
(
u0(p)

) − 1
F
(
u0(p)

)
∫ p

p∗0

du0

dξ
ξ dξ.

(3.38)

Taking into account that du0/dp is of order p for small p, we may omit the second term
in the above expression. Then, approximately,

u1(p)= u1
(
p∗0
)F
(
u0
(
p∗0
))

F
(
u0(p)

) , (3.39)

and thus, u1(p) has the same sign as u1(p∗0 ):

u1(p) < 0. (3.40)
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The value ψ∗ (abscissa of a point corresponding to p = 0) is defined in the vicinity of
the left-most point of the separatrix loop by the formula

ψ∗ = ψ + au1(0)= ψ + au1
(
p∗0
)F
(
u0
(
p∗0
))

F(ψ)
< ψ. (3.41)

(The inequality in the above formula follows from (3.40), relation u0(0)= ψ, and the fact
that F(ψ) and F(u0(p∗0 )) have the same sign.)

When p passes through zero, the trajectory moves into the upper half of the phase
plane. The construction of an approximation for the trajectory may be continued by
switching at some point back to ũ being an independent and p being a dependent vari-
able.

In a similar manner we can construct the trajectory corresponding to λ1 < 0 and inter-
secting the ũ-axis (p = 0) at a point with abcissa ψ∗∗ > ψ (see Figure 3.4).

Thus, the phase portrait of (3.16) has changed compared to the phase portrait of (3.2).
As a result of that the changes will also be observed in the motion of the fronts leading
to switching between the upper and the lower boundary layer type solutions shown in
Figure 3.2. In particular, for a = 0 the destruction of the boundary layer transitions at
the left and the right boundaries of the spatial interval occurs via the two moving fronts
that appear simultaneously for the value of φ = 3/8. On the other hand, for a > 0 the
moving fronts will always start at the left boundary of the interval [0,1] for some value of
φ = φr < 3/8 (for transitions from the upper to the lower boundary layer type solution),
and for a value φ = φl >−3/8 (for transitions from the lower to the upper boundary layer
type solution). This happens because for a > 0 as φ increases above φr (decreases below
φl) the vertical line ũ= 0 ceases to intersect the separatrix going to saddle point (1,0) (or
separatrix tending to (−1,0)) as η0 →∞ and describing the left transition layer, while it
still intersects the separatrix going to (1,0) (or separatrix tending to (−1,0)) as η1 →∞
and describing the right transition layer.

A more detailed illustration of the behavior of the boundary layer transitions at both
sides of the spatial interval [0,1] is given in Figures 3.5 and 3.6. Explanations of the rela-
tion between changing values of φ and switching from the upper to the lower boundary
layer type solution and back are also presented below.

In Figure 3.5 we show schematic representations of phase portraits for the boundary
layer transitions corresponding to various stages of time evolution of the periodic solu-
tion that exists for a > 0. Same as in Figure 3.3, the bold solid line corresponds to the
left boundary layer transition (near x = 0), and the dashed line corresponds to the right
boundary layer transition (near x = 1). Also, to simplify notation in Figure 3.5, tilde is
omitted, that is, u is used instead of ũ. Arrows show the directions of increase in η0 (solid
line) and in η1 (dashed line). In Figure 3.6 characteristic instantaneous profiles of the
solution are shown in coordinates (x,u) for certain values of t.

The following values of φ(t) produce various phase portraits shown in Figure 3.5 (and
characteristic instantaneous solution shapes shown in Figure 3.6):

(a) φ(t) < φr < 3/8—increase of φ(t); characteristic solution shape for this case is pre-
sented in Figure 3.6(a);
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Figure 3.5. Phase portraits illustrating the time dynamics of the boundary layer transitions present
near the left (solid line) and the right (dashed line) boundaries of the interval x ∈ [0,1] for a > 0.
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Figure 3.5. (continued).
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(b) φ(t)= φr < 3/8—maximal critical value; characteristic solution shape is shown in
Figure 3.6(b);

(c) φ(t) = φr + 0—the start of a non-symmetric run; switching from upper to lower
boundary layer type solution via a layer moving from left to right; characteristic solution
behavior is illustrated in Figure 3.6(c);

(d) φ(t) = φr + 0—the non-symmetric run phase is completed; characteristic lower
boundary layer type solution is shown in Figure 3.6(d);

(e), (f) φr < φ(t) < φmax—increase of φ(t); characteristic solution shape is in Figure
3.6(d);

(g), (h), (i), (j) −3/8 < φl < φ(t) < φmax—decrease of φ(t); the same characteristic so-
lution shape shown in Figure 3.6(d);

(k) φ(t)= φl >−3/8—minimal critical value; characteristic solution shape is shown in
Figure 3.6(e);

(l) φ(t) = φl − 0—the start of another non-symmetric run; switching from lower to
upper boundary layer type solution via a threshold moving from the left to the right
boundary of the interval [0,1]; characteristic solution behavior is illustrated in Figure
3.6(f);

(m) φ(t) = φl − 0—the non-symmetric run phase is completed; characteristic upper
boundary layer type solution is shown in Figure 3.6(a);

(n), (o) φmin < φ(t) < φl—decrease of φ(t); characteristic solution shape is in Figure
3.6(a);

(p), (q), (r), (s), (t) φmin < φ(t) < φr—increase of φ(t); same characteristic solution
shape shown in Figure 3.6(a).

Stage (a) follows stage (t), which completes the cycle.
Once again, we emphasize an important new feature that appears for a > 0 compared

to the case of a = 0: the moving layers that lead to switching between the lower and the
upper boundary layer type solutions now always start on the left boundary of the spatial
interval [0,1].

The description of a moving front corresponding to transition, for example, from the
upper to the lower boundary layer type solution (shown in Figure 3.6(c)) is similar to
that presented for the case a= 0. We may use the same formula (3.8) with r0 now defined
from the equation

ε
dr0

dt
=√2

(
φ(t)− a√

2

)
. (3.42)

Then the following conjecture holds.
Conjecture expression (3.8) in which r0 is defined by (3.42) satisfies (3.15) with dis-

crepancy of order O(ε).
Similar phenomenon is also observed for a < 0. However, in this case the perturbations

of the homoclinic loop in the (ũ, p) plane will lead to corrections for ψ of opposite signs
compared to those computed for the case of a > 0. Corresponding separatrices together
with ψ∗ and ψ∗∗ are presented in Figure 3.7. Analysis, similar to that performed for a > 0
case, shows that for a < 0 the moving thresholds leading to switches between the upper
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Figure 3.6. Sample phases of the periodic solution behavior illustrating the switching between the
upper and the lower boundary layer type solutions. Now the transition always starts at the left end
point of the spatial interval x ∈ [0,1].

and the lower boundary layer type solutions will now be formed at the right boundary
and move towards the left boundary of the spatial interval [0,1].

4. Conclusions

In this paper we presented the analysis of alternating boundary layer type solutions for
singularly perturbed parabolic equations. Compared to the cases considered earlier, we
addressed the situations where the non-linearities do not depend on spatial variable ex-
plicitly. The problems with and without convection-like terms (i.e., the terms depending
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ψ
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Figure 3.7. Separatrices related to the saddle point (1,0) for a = 0 (solid lines) and a < 0 (dashed
lines).

on the first derivative of the unknown function with respect to spatial variable) were dis-
cussed. In the former case, when the explicit dependence on ux is present, the switch
from upper to lower boundary layer type solution (and back) is always initiated on one
side (left or right boundary) of the one-dimensional spatial domain. The actual side of
initiation is defined by the sign of the convection-like term. In the latter case, without
explicit dependence on ux, the transition starts symmetrically on both sides of the one-
dimensional spatial domain.

Here, for problem with a 
= 0, we only discussed the case of fast transitions between the
two longer lasting stages of the periodic solution where the moving layer runs from one
side of the spatial domain to the other without interruptions. Under certain conditions
(e.g., on the magnitude of a, etc.) the following more complex scenario is possible: the
moving layer starts at one (e.g., left) boundary of the domain, and after a short time in-
terval, before the first layer reaches the right boundary, another moving layer is initiated
at the right boundary. The two layers will move non-symmetrically and meet (and de-
stroy) each other at some point in the interior of the spatial domain of interest (not in the
middle of the domain!). This problem will be addressed in the future and corresponding
analysis will be published elsewhere.

Finally, we would like to briefly comment on conclusions following from the analysis
and related to sensitivity and possibilities for tuning of bio-switches that are modeled by
the singularly perturbed parabolic equations studied above. Heuristically, it could have
been expected that the transitions must occur when the value of periodic function φ(t)
equals zero. We note, however, that the actual transitions between the steady states in
bistable problems I and II occurred when the slowly changing function φ(t) passed be-
yond some critical values (e.g., 3/8 and −3/8 for bistable problem I). In fact, the delay
in starting the transitions, that is, how much φ(t) had to change compared to 0 for the
switching wave to form, was defined not only by the structure of the right-hand sides of
the equations, but also by the choice of zero Dirichlet boundary conditions. The critical
values mentioned above will change if the Dirichlet boundary conditions are chosen to
be non-symmetric: for example, if u(0, t,ε) < 0 < u(1, t,ε) in bistable problem I, then the
transitions for increasing φ(t) will always start at the left boundary x = 0, and will occur
for φr < 3/8, while for decreasing φ(t) they will always start at the right boundary x = 1,
and will occur for φl > −3/8. This means that the sensitivity of the bio-switches, that is,
how much φ(t) must grow or decay compared to zero before the transition starts, could
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be changed by appropriate choice of the boundary conditions. One may also tune the pa-
rameters of the above models to produce a specific required delay. It also follows from the
analysis that the bio-switch models with convection-like terms are more sensitive com-
pared to similar models without convection.
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