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1. Introduction

Electrorheological fluids are smart materials that are concentrated suspensions of polar-
izable particles in a nonconducting dielectric liquid. In moderately large electric fields the
particles form chains along the field lines and these chains then aggregate into the form of
columns. These chainlike and columnar structures yield dramatic changes in the rheolog-
ical properties of the suspensions. The fluid becomes anisotropic, the apparent viscosity
(the resistance to flow) in the direction, orthogonal to that of the electric field, abruptly
increases, while the apparent viscosity in the direction of the electric field changes not so
drastically.

Let Ω⊂Rn be a bounded domain, in which a fluid flows, n∈ {2,3}. Let the boundary
S of Ω be Lipschitz continuous. As it is well known, the stationary movement of any fluid
is described by the equation in Cauchy form:

n∑

j=1

uj
∂ui
∂xj

−
n∑

j=1

∂σi j
∂xj

= Fi, (1.1)

where x ∈Ω, u= (u1, . . . ,un) is the velocity field of the fluid, {σi j}ni, j=1 is the stress tensor,
F = (F1, . . . ,Fn) is the volume force. We also add the condition of incompressibility to
(1.1):

divu=
n∑

i=1

∂ui
∂xi

= 0. (1.2)
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2 ERF flow under slip boundary conditions

We will consider the following constitutive equation (see [2]):

σi j(p,u)=−pδi j + 2ϕ
(
I(u),|E|,μ(u,E)

)
εi j(u), (1.3)

where δi j are the components of the unit tensor, εi j(u) are the components of the rate of
strain tensor, εi j(u)= (1/2)(∂ui/∂xj + ∂uj/∂xi), p is the spherical part of the stress tensor,
ϕ is the viscosity function, I(u)=∑n

i, j=1(εi j(u))2,

μ(u,E)(x)=
(

αθ +u(x)
α
√
n+

∣∣u(x)
∣∣ ,

E(x)∣∣E(x)
∣∣

)2

Rn

, (1.4)

α is a small positive constant, and Rn � θ = (1, . . . ,1), E = (E1, . . . ,En) is the electric field
strength.

We consider the condition of slip on S (see [4, 6]). Let f = ( f1, . . . , fn) be an external
surface force acting on the fluid,

fi =
n∑

j=1

[− pδi j + 2ϕ
(
I(u),|E|,μ(u,E)

)
εi j(u)

]
ηj|S, (1.5)

where η = (η1, . . . ,ηn) is the unit outward normal to S. We represent f in the form

f (s)= f η(s) + f τ(s) ∀s∈ S, (1.6)

where f η and f τ are the normal and the tangent vectors:

f η(s)= fη(s)η(s), fη(s)=
n∑

i=1

fi(s)ηi(s),

f τ(s)= f (s)− f η(s)=
n∑

i=1

fτi(s)ei, fτi(s)= fi(s)− fη(s)ηi(s),

(1.7)

{e1, . . . ,en} is an orthonormal basis in Rn.
For the field u, a similar decomposition is valid.
The slip conditions on the boundary are the following [4]:

uη(s)= 0 ∀s∈ S, (1.8)

f τ(s)=−χ
(
fη(s),

∣∣uτ(s)
∣∣2
)
uτ(s) ∀s∈ S (1.9)
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(by | · | we denote the norm in Euclidian space Rn). Instead of (1.9) we will consider the
regularized condition

f τ(s)=−χ
(
frη(s),

∣∣uτ(s)
∣∣2
)
uτ(s) ∀s∈ S, (1.10)

frη(p,u)=
[
−Pp+

n∑

i, j=1

2ϕ
(
I(Pu),|E|,μ(Pu,E)

)
εi j(Pu)ηiηj

]∣∣∣∣∣
S

,

Pv(x)=
∫

Rn
ω
(|x− x́|)v(x́)dx́, x ∈Ω,

(1.11)

where ω ∈ C∞(R+), suppω ∈ [0,a], a∈R+, ω(z) � 0 at z ∈R+,
∫
Rn ω(|x|)dx = 1.

Here R+ is the set of nonnegative numbers.
Equation (1.10) means that the model of slip is not local, this is natural from the

physical view point (see [1]).
We assume that

∫

Ω
p(x)dx = 0. (1.12)

Let us describe the concept of a weak solution of (1.1)–(1.3), (1.8), (1.10), (1.12). We
introduce some Hilbert spaces (see [4]):

Z =
{
v : v ∈H1(Ω)n, vη|S = 0,

∫

Ω
[divv](x)dx = 0

}
,

W = {v : v ∈ Z, divv = 0}.
(1.13)

The expression

(u,v)Z =
n∑

i, j=1

∫

ω
εi j[u](x)εi j[v](x)dx+

n∑

i=1

∫

S
uτi(s)vτi(s)ds (1.14)

defines a scalar product on Z (and in W).
Multiplying (1.1) by a function h in L2(Ω)n, and using Green’s formula and (1.3),

(1.8), (1.10), we see that

n∑

i, j=1

∫

ω
2ϕ
(
I(u)(x),

∣∣E(x)
∣∣,μ(u,E)[x]

)
εi j[u](x)εi j[h](x)dx

+
n∑

i=1

∫

S
χ
[
frn
(
p(s),u(s)

)
,
∣∣uτ(s)

∣∣2]
uτi(s)hτi(s)ds

+
n∑

i, j=1

∫

ω
uj(x)

∂ui
∂xj

(x)hi(x)dx−
∫

ω
p(x)[divh](x)dx =

n∑

i=1

∫

ω
Fi(x)hi(x)dx

(1.15)

(here we suppose that F ∈ L2(Ω)n).
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Definition 1.1. A couple of functions (u, p) ∈W × L2(Ω) is a weak solution of problem
(1.1)–(1.3), (1.8), (1.10), (1.12) if it satisfies equality (1.15) for all h∈ Z.

The following conditions are imposed on the functions ϕ and χ.
(C1) There are positive constants a1 and a2 such that

a1 � ϕ
(
y1, y2, y3

)
� a2 ∀(y1, y2, y3

)∈R2
+× [0,1]. (1.16)

(C2) The function ϕ(y1,·, y3) : R+ → R is measurable in y2 for all specified (y1, y3) ∈
R+× [0,1].

(C3) The function ϕ(·, y2,·) : R+ × [0,1]→ R is jointly continuous in (y1, y3) for all
y2 ∈R+.

(C4) The function y1 	→ ϕ(y2
1, y2, y3)y1 is not decreasing at nonnegative values of y1.

(C5) There are positive constants b1 and b2 such that

b1 � χ
(
z1,z2

)
� b2 ∀(z1,z2

)∈R×R+. (1.17)

(C6) The function χ :R×R+ →R is continuous.
Note that conditions (C1)–(C6) have a physical meaning (see [2, 4]).

The main result of this paper is the following theorem.

Theorem 1.2. Suppose that conditions (C1)–(C6) are satisfied. Then there exists a weak
solution of problems (1.1)–(1.3), (1.8), (1.10), (1.12).

For the proof of Theorem 1.2 we use the approximating-topological method [8]. For
this purpose, in the beginning, we determine an equivalent operational treatment of the
problem under consideration. After that for the obtained operational equation, we in-
troduce an approximating family of equations depending on a parameter δ and by use
of Skrypnik’s version of the topological degree [7], on the basis of a priori estimates, we
prove existence of solutions of the approximating equations. As a result, making limiting
transition for δ→ 0, we obtain the solvability of problem (1.1)–(1.3), (1.8), (1.10), (1.12).

2. Operational treatment

Let us introduce some notations. By X∗ we denote the space, conjugate to some Banach
space X , 〈g, y〉 denotes the action of the functional g ∈ X∗ on the element y ∈ X , Xm is
the topological product of m copies of the space X .

Determine several mappings as follows:

A : Z −→ Z∗,
〈
A(u),h

〉=
n∑

i, j=1

∫

ω
2ϕ
(
I(u),|E|,μ(u,E)

)
εi j(u)εi j(h)dx,

K : Z×L2(Ω)−→ Z∗,

〈
K(u, p),h

〉=
n∑

i=1

∫

S
χ
[
frn
(
p(s),u(s)

)
,
∣∣uτ(s)

∣∣2]
uτi(s)hτi(s)ds,

M : Z −→ Z∗,
〈
M(u),h

〉=
n∑

i, j=1

∫

ω
uj(x)

∂ui
∂xj

(x)hi(x)dx.

(2.1)
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Take

D : Z −→ L2(Ω), D(u)= divu. (2.2)

Identifying L2(Ω)n and (L2(Ω)n)∗ we obtain

D∗ : L2(Ω)n ≡ (L2(Ω)n
)∗ −→ Z∗,

〈
D∗(p),h

〉=
∫

Ω
p(x)[divh](x)dx. (2.3)

It is obvious that the set of weak solutions of problem (1.1)–(1.3), (1.8), (1.10), (1.12)
coincides with the set of couples (u, p)∈W ×L2(Ω) that satisfy the following operational
equation:

A(u) +K(u, p) +M(u)−D∗(p)= F. (2.4)

3. Properties of operators

Everywhere below the expressions vk −−−→
k→∞

v0 and vk
k→∞

v0 will denote strong and

weak convergences, respectively, of the sequence {vk}∞k=1 to an element v0. The case when
the sequence {vk}∞k=1 does not converge to v0 in strong sense is denoted as vk

k→∞
v0 .

Lemma 3.1. The following statements hold.
(1) The operator A is bounded and demicontinuous (the latter means that if uk −−−→

k→∞
u0

in Z, then 〈A(uk),h〉 −−−→
k→∞

〈A(u0),h〉 ∀h∈ Z).

(2) For the operator

〈
�(u,v),h

〉=
n∑

i, j=1

∫

ω
2ϕ
(
I(u),|E|,μ(v,E)

)
εi j(u)εi j(h)dx, (3.1)

the following inequality holds

〈
�
(
u1,v

)−�(u2,v),u1−u2
〉

� 0 ∀u1,u2,v ∈ Z. (3.2)

(3) Specify an element u∈ Z. Then from any bounded sequence {vk}∞k=1 in Z it is possible
to choose a subsequence {vkl}∞l=1 such that �(u,vkl)−−−→

l→∞
�(u,v0) in Z∗.

Proof. (a) Boundedness of the operator A is obvious. Let us show that it is demicontinu-
ous. So, let uk −−−→

k→∞
u0 in Z. Clearly, there is a subsequence {ukl}∞l=1, for which

I
(
ukl
)
[x]−−−→

l→∞
I
(
u0
)
[x], ukl[x]−−−→

l→∞
u0[x] for a.e. x ∈Ω. (3.3)

Assume that 〈A(uk), h̆〉
k→∞ 〈A(u0), h̆〉 for some h̆∈ Z. Without loss of generality for

a sequence {ukl}∞l=1 the following inequality holds with some ζ > 0:

∣∣〈A
(
ukl
)
, h̆
〉− 〈A(u0

)
, h̆
〉∣∣ > ζ. (3.4)
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We estimate
∣∣〈A

(
ukl
)−A

(
u0
)
, h̆
〉∣∣

�
∣∣∣∣∣

n∑

i, j=1

2
∫

Ω
ϕ
(
I
(
ukl
)
,|E|,μ(ukl ,E

))
εi j
(
ukl −u0

)
εi j(h̆)dx

∣∣∣∣∣

+

∣∣∣∣∣

n∑

i, j=1

2
∫

Ω

[
ϕ
(
I
(
ukl
)
,|E|,μ(ukl ,E

))−ϕ
(
I
(
u0
)
,|E|,μ(u0,E

))]
εi j
(
u0
)
εi j(h̆)dx

∣∣∣∣∣

� 2a2‖ukl−u0‖Z‖h̆‖Z

+ 2

{∫

Ω

[
ϕ
(
I
(
ukl
)
,|E|,μ(ukl ,E

))−ϕ
(
I
(
u0
)
,|E|,μ(u0,E

))]2
I
(
u0
)
dx

}1/2

‖h̆‖Z.
(3.5)

The first component in the last part of inequality (3.5) tends to zero because of the conver-
gence of uk −−−→

k→∞
u0 in Z, the second component tends to zero by the Lebesgue theorem.

Hence, 〈A(ukl)−A(u0), h̆〉 −−−→
l→∞

0, that contradicts inequality (3.4).

(b) Introduce the notation φ(u,v)= ϕ(I(u),|E|,μ(v,E)). With the help of the Cauchy
inequality and condition (C4) we obtain that
〈
�
(
u1,v

)−�
(
u2,v

)
,u1−u2

〉

=
n∑

i, j=1

2
∫

Ω

[
φ
(
u1,v

)
εi j
(
u1
)−φ

(
u2,v

)
εi j
(
u2
)][

εi j
(
u1−u2

)]
dx

= 2
∫

Ω

[
φ
(
u1,v

)
I
(
u1
)

+φ
(
u2,v

)
I
(
u2
)]
dx

−
n∑

i, j=1

2
∫

Ω

[
φ
(
u1,v

)
εi j
(
u1
)
εi j
(
u2
)−φ

(
u2,v

)
εi j
(
u1
)
εi j
(
u2
)]
dx

� 2
∫

Ω

[
φ
(
v,u1

)
I1/2(u1

)−φ
(
u2,v

)
I1/2(u2

)](
I1/2(u1

)− I1/2(u2
))
dx � 0.

(3.6)

(c) Let {vk}∞k=1 be a bounded sequence in Z,u∈ Z. There is a subsequence {vkl}∞l=1 and
an element v0 ∈ Z such that

vkl(x)−−−→
l→∞

v0(x) for a.e. x ∈Ω. (3.7)

We have
∥∥�
(
u,vkl

)−�
(
u,v0

)∥∥
Z∗

= sup
‖h‖Z=1

n∑

i, j=1

2
∫

ω

[
ϕ
(
I(u),E,μ

(
vkl ,E

))
εi j(u)−ϕ

(
I(u),E,μ

(
v0,E

))
εi j(u)

]
εi j(h)dx

� 2n
{∫

ω

[
ϕ
(
I(u),E,μ

(
vkl ,E

))−ϕ
(
I(u),E,μ

(
v0,E

))]2
I(u)dx

}1/2

.

(3.8)
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The last expression in inequality (3.8) tends to zero by conditions (C1)–(C3) and by the
Lebesgue theorem. �

Lemma 3.2. The operator K possesses the following properties.

(1) For any sequence {uk,hk, pk}∞k=1 from Z×Z×L2(Ω)n, for which (uk,hk, pk)
k→∞

(u0,h0, p0), there is a subsequence {ukl ,hkl , pkl}∞l=1 such that 〈K(ukl , pkl),hkl〉 −−−→
l→∞

〈K(u0, p0),h0〉 (from this property, in particular, it follows that the operator K is
bounded and demicontinuous).

(2) The operator K(·,T(·)) is compact for any operator T : Z → L2(Ω).

Proof. (a) So, let the limits from the condition take place. Using the fact that the embed-
ding Z↩L2(S)n is compact, we take a subsequence {ukl ,hkl}∞l=1 such that

(
ukl ,hkl

)−−−→
l→∞

(
u0,h0) in L2(S)n×L2(S)n, (3.9)

(
ukl[s],hkl[s]

)−−−→
l→∞

(
u0[s],h0[s]

)
in R2n for a.e. s∈ S. (3.10)

Extend the functions of the sequence {pk}∞k=1 (and the function p0) onto the entire space
Rn. For this purpose we take p̃k(x) = pk(x) if x ∈Ω, otherwise p̃k(x) = 0. It is obvious

that p̃kl
l→∞ p̃0 in L2(Rn). Thus we have

∫

Rn
ω
(|ξ − x́|) p̃kl(x́)dx́ = P

(
pkl
)
[ξ]−−−→

l→∞
P
(
p0)[ξ] ∀ξ ∈ S. (3.11)

Similarly

[
−Ppkl +

n∑

i, j=1

2ϕ
(
I
(
Pukl

)
,|E|,μ(Pukl ,E))εi j

(
Pukl

)
ηiηj

]
(s)

= frη
(
pkl ,ukl

)
[s]−−−→

l→∞
frη
(
p0,u0)[s]

(3.12)

for all s∈ S.
We estimate
∣∣〈K

(
ukl , pkl

)
,hkl
〉− 〈K(u0, p0),h0〉∣∣

�
n∑

i=1

∣∣∣∣
∫

S

{
χ
(
frη
(
pkl ,ukl

)
,
∣∣uklτ

∣∣2
)
− χ
(
frη
(
p0,u0),

∣∣u0
τ

∣∣2
)}

u0
τih

0
τids

∣∣∣∣

+
n∑

i=1

∣∣∣∣
∫

S

{
χ
(
frη
(
pkl ,ukl

)
,
∣∣uklτ

∣∣2
)}(

u0
τi−uklτi

)
h0
τids

∣∣∣∣

+
n∑

i=1

∣∣∣∣
∫

S

{
χ
(
frη
(
pkl ,ukl

)
,
∣∣uklτ

∣∣2
)}

uklτi
(
h0
τi−hklτi

)
ds
∣∣∣∣.

(3.13)

Using condition (C5) and (3.11), (1.2) we conclude that the first summand in the right-
hand side of inequality (3.13) tends to zero by the Lebesgue theorem, the other summands
tend to zero by (3.9).
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(b) We will use Gelfand’s criterion, having reformulated it according to the following
lemma.

Lemma 3.3. The subset M of a separable Banach space � is relatively compact, if from any
sequence of functionals {fk}∞k=1 belonging to �∗ and such that

fk(y)−−−→
k→∞

0 ∀y ∈�, (3.14)

it is possible to take a subsequence {fkl}∞l=1 such that (3.14) is valid for it uniformly for all y
from M.

The proof of Lemma 3.3 is similar to that of [3, Theorem 3(1.IX), page 274], minor
changes are connected with transition to a subsequence in the formulation of the state-
ment.

Now, let T : Z → L2(Ω) be an operator, let M be some bounded set from Z, and let

hk
k→∞ 0 in the space (Z∗)∗ ≡ Z. For all u from M we have

〈
hk,K(u,Tu)

〉
� b2‖u‖L2(S)n

∥∥hk
∥∥
L2(S)n . (3.15)

However, the embedding Z↩L2(S)n is compact, therefore for some subsequence {hkl}∞l=1

we obtain that 〈hkl ,K(u,Tu)〉 −−−→
l→∞

0 uniformly for all u from M. Hence, the set K(M,

T(M)) is relatively compact as it was required to show. �

Lemma 3.4. Let Mδ , δ > 0, be an approximation of the operator M, that is

Mδ : Z −→ Z∗,
〈
Mδ(u),h

〉= 1
1 + δ1/4‖u‖L4(Ω)n

n∑

i, j=1

∫

Ω
uj

∂ui
∂xj

hidx. (3.16)

(1) The operator Mδ is compact.

(2) Take any sequences {uk}∞k=1 and {hk}∞k=1 in the space Z such that uk
k→∞ u0 in

Z, hk
k→∞ h0 in Z. Then there are subsequences {ukl}∞l=1 and {hkl}∞l=1 such that

〈Mδ(ukl),hkl〉 −−−→
l→∞

〈Mδ(u0),h0〉.

Proof. (1) The proof of boundedness and continuity of the operator Mδ is standard. The
property of compactness is shown similarly to item (2) of Lemma 3.2. Here the following
inequality is in use:

〈
Mδ(u),h

〉
� ‖u‖L4(Ω)n‖u‖H1(Ω)n

1 + δ1/4‖u‖L4(Ω)n
‖h‖L4(Ω)n . (3.17)

(2) Let uk
k→∞ u0 and hk

k→∞ h0 in Z. It follows from here that there are the sub-

sequences {ukl}∞l=1 and {hkl}∞l=1 such that

(
ukl ,hkl

)−−−→
l→∞

(
u0,h0) in

(
L4(Ω)n

)2
. (3.18)
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Thus
∣∣〈Mδ

(
u0),h0〉− 〈Mδ

(
ukl
)
,hkl
〉∣∣

�
∣∣∣∣∣

1
1 + δ1/4

∥∥u0
∥∥
L4(Ω)n

n∑

i, j=1

∫

ω
u0
j

(
∂u0

i

∂xj
− ∂ukli

∂xj

)
h0
i dx

∣∣∣∣∣

+

∣∣∣∣∣
1

1 + δ1/4
∥∥u0

∥∥
L4(Ω)n

n∑

i, j=1

∫

ω

(
u0
j −uklj

)∂ukli
∂xj

h0
i dx

∣∣∣∣∣

+

∣∣∣∣∣
1

1 + δ1/4
∥∥u0

∥∥
L4(Ω)n

n∑

i, j=1

∫

ω
uklj

∂ukli
∂xj

(
h0
i −hkli

)
dx

∣∣∣∣∣

+

∣∣∣∣∣

(
1

1 + δ1/4
∥∥u0

∥∥
L4(Ω)n

− 1
1 + δ1/4

∥∥ukl
∥∥
L4(Ω)n

) n∑

i, j=1

∫

ω
uklj

∂ukli
∂xj

hkli dx

∣∣∣∣∣.

(3.19)

The first summand on the right-hand side of (3.19) tends to zero since ukl
l→∞ u0 in

Z, the other summands tend to zero by (3.18). �

4. Approximation equation and an a priori estimate

For any δ > 0 we introduce an auxiliary equation in the unknown function uδ :

A+(uδ
)

+A
(
uδ
)

+Kδ
(
uδ
)

+Mδ
(
uδ
)

+ δ−1D∗D
(
uδ
)= F, (4.1)

where

〈
Kδ(u),h

〉=
n∑

i=1

∫

S
χ
(
frn
(− δ−1Du,u

)
,
∣∣uτ

∣∣2
)
uτihτids,

〈
A+(u),h

〉= δ
n∑

i, j=1

∫

ω
εi j(u)εi j(h)dx.

(4.2)

Let 〈K+(u),h〉 = (b1/2)
∑n

i=1

∫
S uτihτids.

Lemma 4.1. For the following family of the operational equations, depending on the param-
eter t ∈ [0,1]:

Λδ
t

(
uδ
)= A+(uδ

)
+K+(uδ

)

+ t
(
A
(
uδ
)

+Kδ
(
uδ
)−K+(uδ

)
+Mδ

(
uδ
)

+ δ−1D∗D
(
uδ
)−F

)= 0,
(4.3)

the estimate

∥∥uδ
∥∥
Z � C

(‖F‖Z∗ ,a1,b1,n,Ω
)

(4.4)

holds for 0 < δ � c(a1,b1,n,Ω). Here c and C are variables that depend only on the specified
parameters.
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Proof. For t = 0 there is only a zero solution, in this case estimation (4.4) is obvious. Let
uδ be a solution of (4.3) for some t ∈ (0,1]. Apply both sides of (4.3) to uδ . We obtain

〈
A+(uδ

)
+K+(uδ

)
,uδ
〉

� 0, (4.5)

thus

〈
A
(
uδ
)
,uδ
〉

+
〈
Kδ
(
uδ
)
,uδ
〉− 〈K+(uδ

)
,uδ
〉

+
〈
Mδ
(
uδ
)
,uδ
〉

+ δ−1〈D∗D
(
uδ
)
,uδ
〉

�
〈

f ,uδ
〉
.

(4.6)

Notice that

〈
A
(
uδ
)
,uδ
〉

+
〈
Kδ
(
uδ
)
,uδ
〉− 〈K+(uδ

)
,uδ
〉

� min
(
2a1,b1/2

)∥∥uδ
∥∥2
Z. (4.7)

At the same time

∣∣〈Mδ
(
uδ
)
,uδ
〉∣∣= 1

1 + δ1/4
∥∥uδ

∥∥
L4(Ω)n

∣∣∣∣∣

n∑

i, j=1

∫

ω
uδj

∂uδi
∂xj

uδi dx

∣∣∣∣∣

= 1
1 + δ1/4

∥∥uδ
∥∥
L4(Ω)n

∣∣∣∣∣

(
− 1

2

∫

Ω
D
(
uδ
)|uδ|2dx+

1
2

n∑

i=1

∫

S
uδτiηi

∣∣uδ
∣∣2
ds

)∣∣∣∣∣

� n

2

∥∥D
(
uδ
)∥∥

L2(Ω)

∥∥uδ
∥∥2
L4(Ω)n

1 + δ1/4
∥∥uδ

∥∥
L4(Ω)n

� n

2

∥∥D
(
uδ
)∥∥

L2(Ω)

∥∥uδ
∥∥2
L4(Ω)n

δ1/4
∥∥uδ

∥∥
L4(Ω)n

�
∥∥D
(
uδ
)∥∥

L2(Ω)

δ1/2
δ1/4 n

2
ϑ
∥∥uδ

∥∥
Z �

∥∥D
(
uδ
)∥∥2

L2(Ω)

2δ
+ δ1/2 n

2

8
ϑ2
∥∥uδ

∥∥2
Z

(4.8)

(ϑ is the norm of the operator of embedding of the space Z into the space L4(Ω)n).
It is easy to see that

δ−1〈D∗D
(
uδ
)
,uδ
〉= δ−1〈D

(
uδ
)
,D
(
uδ
)〉= δ−1‖D(uδ)‖2

L2(Ω),

‖F‖Z∗
∥∥uδ

∥∥
Z � l2

2
‖F‖2

Z∗ +
1

2l2
∥∥uδ

∥∥2
Z.

(4.9)

Now for sufficiently large l and small δ we obtain the required estimate (4.4). �

5. Existence of a solution of the approximation equation

For the proof of existence of a solution of the approximation equation we apply the
method of topological degree for generalized monotonous maps (see [7]). We show that
the family Λδ

t carries out homotopy of the maps Λδ
0 and Λδ

1. For this purpose, we will
notice first that from the a priori estimate (4.4) it follows that there is a sphere of nonzero
radius R, with the center at zero, such that on its boundary there are no solutions of the
equation Λδ

t (uδ)= 0(t ∈ [0,1]).
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For our purpose it is necessary to prove first the following statements.
(a) For any sequence {uk}∞k=1 on the border of the sphere ∂ΘR, and for any sequence

{tk}∞k=1 of points from the interval [0,1] such that uk
k→∞

u0 in Z, Λδ
tk (uk)

k→∞ 0

in Z∗, and 〈Λδ
tk (uk),uk −u0〉 −−−→

k→∞
0, the convergence uk −−−→

k→∞
u0 in Z also takes place.

(b) For any sequence {uk}∞k=1 from the closure of the sphere ΘR such that uk −−−→
k→∞

u0

in Z, for any sequence of points {tk}∞k=1 (tk ∈ [0,1]) such that tk −−−→
k→∞

t0, there is a limit

Λδ
tk (uk)

k→∞ Λδ
t0 (u0) in Z∗.

Proof. (a) Assume the contrary, that is, let uk
k→∞

u0 in Z. Then for some subsequence

{ukl}∞l=1 and some fixed number ε > 0 the following inequality:

∥∥ukl −u0
∥∥
Z > ε (5.1)

holds. We will show that this inequality is not valid.
From the hypothesis of statement (a) we have

lim
l→∞

〈
Λδ
tkl

(
ukl
)
,ukl −u0

〉= lim
l→∞

〈
Λδ
tkl

(
ukl
)−Λδ

t0

(
ukl
)

+Λδ
t0

(
ukl
)−Λδ

t0

(
u0
)
,ukl−u0

〉= 0.

(5.2)

Without loss of generality we may suppose that the subsequence {tkl}∞l=1 is such that
tkl −−−→

l→∞
t0 ∈ [0,1]. All operators, that we have determined, are bounded. Hence

lim
l→∞

〈
Λδ
tkl

(
ukl
)−Λδ

t0

(
ukl
)
,ukl −u0

〉

= lim
l→∞

〈(
tkl − t0

)[
A
(
ukl
)

+Kδ
(
ukl
)−K+(ukl

)

+Mδ
(
ukl
)

+ δ−1D∗D
(
ukl
)−F

]
,ukl −u0

〉= 0.

(5.3)

At the same time, from the properties of the operator, that we have proved, it follows that
from the sequence {ukl}∞l=1 it is possible to take a subsequence {uklm }∞m=1 such that

lim
m→∞

〈
A
(
uklm

)−�
(
uklm ,u0

)
,uklm −u0

〉= 0,

lim
m→∞

〈
�
(
uklm ,u0

)−A
(
u0
)
,uklm −u0

〉
� 0,

lim
m→∞

〈
Kδ
(
uklm

)−Kδ
(
u0
)

+K+(uklm
)−K+(u0

)
+Mδ

(
uklm

)−Mδ
(
u0
)
,uklm −u0

〉= 0.

(5.4)

Clearly,

lim
m→∞

〈
δ−1D∗D

(
uklm −u0

)
,uklm −u0

〉
� 0. (5.5)

From (5.3)–(5.5) it follows that

lim
m→∞

〈[
A+ +K+](uklm −u0

)
,uklm −u0

〉
� 0. (5.6)
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The limiting relation (5.6) contradicts (5.1), since the operator A+ +K+ is strictly mo-
notonous:

〈[
A+ +K+](u−w

)
,u−w

〉
� min

(
δ,
b1

2

)
‖u−w‖2

Z ∀u,w ∈ Z. (5.7)

Proof of statement (b). Obviously for any h∈ Z the equality

lim
k→∞

〈
Λδ
tk

(
uk
)−Λδ

t0

(
u0
)
,h
〉= lim

k→∞
〈
Λδ
tk

(
uk
)−Λδ

t0

(
uk
)
,h
〉

+ lim
k→∞

〈
Λδ
t0

(
uk
)−Λδ

t0

(
u0
)
,h
〉

(5.8)

holds. The first summand in equality (5.8) tends to zero since tk −−−→
k→∞

t0, the second

summand tends to zero since all operators in (5.8) are demicontinuous. �

Thus, the maps Λδ
0 and Λδ

1 are homotopic, at the same time the degree deg(Λδ
0,ΘR,0) is

an odd number, as Λδ
0 is an odd map. Therefore, the solutions of the equation Λδ

1(uδ)= 0
exist for sufficiently small δ, as it was required to show.

6. Limiting transition

Take a sequence δk −−−→
k→∞

0 and assign to every δk the solution uk ∈ Z of the equation

Λδk
1 (uk)= 0. We have

δ−1
k D∗D

(
uk
)= F −A+(uk

)−A
(
uk
)−Kδk

(
uk
)−Mδk

(
uk
)
. (6.1)

From the results of [5] it follows that the operator D∗ carries the out isomorphism of the
spaces

�0 =
{
ρ ∈ L2(Ω) :

∫

Ω
ρ(x)dx = 0

}
,

W0 =
{

f ∈ Z∗ : 〈f ,u〉 = 0∀u∈W
}
.

(6.2)

From the a priori estimate and (6.1) it follows that there are elements u0 ∈ Z, p0 ∈
L2(Ω) such that

uk
k→∞

u0 in Z,

uk −−−→
k→∞

u0 in norm of L2(Ω)n, a.e. in Ω,

uk −−−→
k→∞

u0 in norm of L2(S)n, a.e. on S,

D
(
uk
)−−−→

k→∞
0 in L2(Ω),

δ−1
k D

(
uk
)

k→∞
−p0 in �0.

(6.3)
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Let

Υ
(
uk,v

)= 〈A+(uk
)

+A
(
uk
)−�

(
v,uk

)
+Kδk

(
uk
)−K

(
u0, p0

)

+Mδk

(
uk
)−M

(
u0
)

+ δ−1
k D∗D

(
uk
)

+D∗
(
p0
)
,uk − v

〉
.

(6.4)

Taking into account Lemmas 3.1–3.4 and (6.3), we obtain

lim
k→∞

〈
A
(
uvk
)−�

(
v,uvk

)
,uvk − v

〉
� 0,

lim
k→∞

〈
Kδk

(
uvk
)−K

(
u0, p0

)
+Mδk

(
uvk
)−M

(
u0),uvk − v

〉= 0,

lim
k→∞

〈
δ−1
k D∗D

(
uvk
)

+D∗
(
p0
)
,uvk − v

〉= 0,

lim
k→∞

〈
A+(uvk

)
,uvk − v

〉= 0.

(6.5)

It follows from relations (6.5) that

lim
k→∞

Υ
(
uvk,v

)
� 0 ∀v ∈ Z. (6.6)

On the other hand,

lim
k→∞

Υ
(
uvk,v

)= lim
k→∞

〈
A+(uvk

)
,uvk − v

〉

+ lim
k→∞

〈
A
(
uvk
)

+Kδk

(
uvk
)

+Mδk

(
uvkbig) + δ−1

k D∗D
(
uvk
)
,uvk − v

〉

+ lim
k→∞

〈−�
(
v,uvk

)−K
(
u0, p0

)−M
(
u0
)

+D∗
(
p0
)
,uvk − v

〉

= 〈F −�
(
v,u0

)−K
(
u0, p0

)−M
(
u0
)

+D∗
(
p0
)
,u0− v

〉 ∀v ∈ Z.
(6.7)

Now, take v = u0− γh, where γ > 0, h∈ Z, and pass to the limit as γ→ 0. From relations
(6.6) and (6.7) we get the inequality

〈
F −A

(
u0
)−K

(
u0, p0

)−M
(
u0
)

+D∗
(
p0
)
,h
〉

� 0 ∀h∈ Z. (6.8)

Since h is arbitrary, after replacing h with −h, we obtain that (u = u0, p = p0) is the
solution of (2.4).
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