
A NOTE ON PROPERTIES THAT IMPLY THE FIXED
POINT PROPERTY

S. DHOMPONGSA AND A. KAEWKHAO

Received 7 January 2005; Accepted 4 March 2005

We give relationships between some Banach-space geometric properties that guarantee
the weak fixed point property. The results extend some known results of Dalby and Xu.

Copyright © 2006 S. Dhompongsa and A. Kaewkhao. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

A Banach space X is said to satisfy the weak fixed point property (fpp) if every nonempty
weakly compact convex subset C, and every nonexpansive mapping T : C→ C (i.e., ‖Tx−
Ty‖ ≤ ‖x− y‖ for every x, y ∈ C) has a fixed point, that is, there exists x ∈ C such that
T(x) = x. Many properties have been shown to imply fpp. The most recent one is the
uniform nonsquareness which is proved by Mazcuñán [20] solving a long stand open
problem. Other well known properties include Opial property (Opial [21]), weak nor-
mal structure (Kirk [17]), property (M) (Garcı́a-Falset and Sims [12]), R(X) < 2 (Garcı́a-
Falset [10]), and UCED (Garkavi [13]). Connection between these properties were inves-
tigated in Dalby [3] and Xu et al. [27]. We aim to continue the study in this direction. In
contrast to [3], we do not assume that all Banach spaces are separable.

2. Preliminaries

Let X be a Banach space. For a sequence (xn) in X , xn
w−−→ x denotes the weak convergence

of (xn) to x ∈ X . When xn
w−−→ 0, we say that (xn) is a weakly null sequence. B(X) and S(X)

stand for the unit ball and the unit sphere of X , respectively. It becomes a common ingre-
dient that when working with a weak null sequence (xn), we consider the type function
limsupn→∞‖xn− x‖ for all x ∈ X . As for a starting point, we recall Opial property.

Opial property [21] states that

if xn
w−→ 0, then limsup

n→∞

∥
∥xn
∥
∥ < limsup

n→∞

∥
∥xn− x
∥
∥∀x ∈ X , x �= 0. (2.1)
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If the strict inequality becomes≤, this condition becomes a nonstrict Opial property. On
the other hand, if for every ε > 0, for each xn

w→ 0 with ‖xn‖ → 1, there is an r > 0 such
that

1 + r ≤ limsup
n→∞

∥
∥xn + x
∥
∥ (2.2)

for each x ∈ X with ‖x‖ ≥ ε, then we have the locally uniformly Opial property (see [27]).
The coefficient R(X), introduced in Garcı́a-Falset [9], is defined as

R(X) := sup
{

liminf
n→∞
∥
∥xn− x
∥
∥ : xn

w−→ 0,
∥
∥xn
∥
∥≤ 1∀n, ‖x‖ ≤ 1

}

. (2.3)

So 1≤ R(X)≤ 2 and it is not hard to see that in the definition of R(X), “liminf” can be
replaced by “limsup.” Some values of R(X) are R(c0)= 1 and R(lp)= 21/p,1 < p <∞.

A Banach space X has property (M) if whenever xn
w→ 0, then limsupn→∞‖xn− x‖ is a

function of ‖x‖ only. Property (M) which is introduced by Kalton [15] is equivalent to:

if xn
w−→ 0, ‖u‖ ≤ ‖v‖, then limsup

n→∞

∥
∥xn +u
∥
∥≤ limsup

n→∞

∥
∥xn + v
∥
∥. (2.4)

Sims [23] introduced a property called weak orthogonality (WORTH) for Banach
spaces. A Banach space X is said to have property WORTH if,

for every xn
w−→ 0, x ∈ X , limsup

n→∞

∥
∥xn + x
∥
∥= limsup

n→∞

∥
∥xn− x
∥
∥. (2.5)

It remains unknown if property WORTH implies fpp. In many situations, the fixed point
property can be easily obtained when we assume, in addition, that the spaces being con-
sidered have the property WORTH. For examples, WORTH and ε0-inquadrate for some
ε0 < 2 ([24]), WORTH and 2-UNC ([11]) imply fpp.

The following results will be used in Section 3.

Proposition 2.1 [12, Proposition 2.1]. For the following conditions on a Banach space
X , we have (i)⇒(ii)⇒(iii)⇒(iv).

(i) X has property (M).
(ii) X has property WORTH.
(iii) If xn

w→ 0, then for each x ∈ X we have limsupn→∞‖xn− tx‖ is an increasing function
of t on [0,∞).

(iv) X satisfies the nonstrict Opial property.

Property (M) implies the nonstrict Opial property but not weak normal structure. c0

has property (M) but does not have weak normal structure. In [3, 25] it had been shown
that R(X)= 1 implies X has property (M).

A generalization of uniform convexity of Banach spaces which is due to Sullivan [26]
is now recalled. Let k ≥ 1 be an integer. Then a Banach space X is said to be k-UR (k-
uniformly rotund) if given ε > 0, there exists δ(ε) > 0 such that if {x1, . . . ,xk+1} ⊂ B(X)
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satisfying V(x1, . . . ,xk+1)≥ ε, then
∥
∥
∥
∥
∥

∑k+1
i=1 xi
k+ 1

∥
∥
∥
∥
∥
≤ δ(ε). (2.6)

Here, V(x1, . . . ,xk+1) is the volume enclosed by the set {x1, . . . ,xk+1}, that is,

V
(

x1, . . . ,xk+1
)= sup

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 ··· 1
f1
(

x1
) ··· f1

(

xk+1
)

...
. . .

...
fk(x1) ··· fk

(

xk+1
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (2.7)

where the supremum is taken over all f1, . . . , fk ∈ B(X∗).
Let K be a weakly compact convex subset of a Banach space X and (xn) a bounded

sequence in X . Define a function f on X by

f (x)= limsup
n→∞

∥
∥xn− x
∥
∥, x ∈ X. (2.8)

Let

r ≡ rK
((

xn
))

:= inf
{

f (x) : x ∈ K
}

,

A≡AK
((

xn
))

:= {x ∈ K : f (x)= r
}

.
(2.9)

Recall that r andA are, respectively, called the asymptotic radius and center of (xn) relative
to K . As K is weakly compact convex, we see that A is nonempty, weakly compact and
convex (see [14]). In [18], Kirk proved that the asymptotic center of a bounded sequence
w.r.t a bounded closed convex subset of a k-uniformly convex spaces X is compact. This
fact will be used in proving Theorem 3.8.

Being k-UR and Opial property are related in the following way.

Theorem 2.2 [19, Theorem 3.5]. If X is k-UR and satisfies the Opial property, then X
satisfies locally uniform Opial property.

One last concept we need to mention is ultrapowers of Banach spaces. Ultrapowers of
a Banach space are proved to be useful in many branches of mathematics. Many results
can be seen more easily when treated in this setting. We recall some basic facts about the
ultrapowers. Let � be a filter on an index set I and let {xi}i∈I be a family of points in a
Hausdorff topological space X . {xi}i∈I is said to converge to x with respect to �, denoted
by lim� xi = x, if for each neighborhood U of x,{i ∈ I : xi ∈ U} ∈�. A filter � on I is
called an ultrafilter if it is maximal with respect to the set inclusion. An ultrafilter is called
trivial if it is of t́he form {A : A ⊂ I , i0 ∈ A} for some fixed i0 ∈ I , otherwise, it is called
nontrivial. We will use the fact that

(i) � is an ultrafilter if and only if for any subset A⊂ I , either A∈� or I \A∈�,
and

(ii) if X is compact, then the lim� xi of a family {xi} in X always exists and is unique.
Let {Xi}i∈I be a family of Banach spaces and let l∞(I ,Xi) denote the subspace of the

product space Πi∈IXi equipped with the norm ‖(xi)‖ := supi∈I ‖xi‖ <∞.
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Let � be an ultrafilter on I and let

N� =
{(

xi
)∈ l∞
(

I ,Xi
)

: lim
�

∥
∥xi
∥
∥= 0
}

. (2.10)

The ultraproduct of {Xi} is the quotient space l∞(I ,Xi)/N� equipped with the quotient
norm. Write (xi)� to denote the elements of the ultraproduct. It follows from (ii) above
and the definition of the quotient norm that

∥
∥
(

xi
)

�

∥
∥= lim

�

∥
∥xi
∥
∥. (2.11)

In the following, we will restrict our index set I to beN, the set of natural numbers, and let
Xi = X , i∈N, for some Banach space X . For an ultrafilter � on N, we write X̃ to denote
the ultraproduct which will be called an ultrapower of X . Note that if � is nontrivial,
then X can be embedded into X̃ isometrically (for more details see [1] or [22]).

3. Main results

Recall that a Banach space X is said to have Schur’s property if

for every sequence
(

xn
)

, xn
w−→ 0 implies xn −→ 0. (3.1)

An element x ∈ X is said to be an H-point if

xn
w−→ x,
∥
∥xn
∥
∥−→ ‖x‖ imply xn −→ x. (3.2)

X has property (H) if every element of X is an H-point. These concepts are related, in
conjunction with the condition R(X)= 1, as follow.

Theorem 3.1. A Banach space X has Schur’s property if and only if R(X)= 1 and X has at
least one H-point.

Proof. “⇒” It is well known that Schur’s property implies property (H). From the defini-
tion of R(X) and Schur’s property, we have

R(X)= sup
{

liminf
n→∞
∥
∥xn− x
∥
∥ : xn

w−→ 0,
∥
∥xn
∥
∥≤ 1∀n,‖x‖ ≤ 1

}

= sup
{‖x‖ : ‖x‖ ≤ 1

}= 1.
(3.3)

“⇐” Suppose that there exists a sequence (xn) converges weakly to 0 but ‖xn‖� 0.
By passing through a subsequence if necessary, we can assume that ‖xn‖ → a �= 0. Put
yn = xn/a. Clearly yn

w→ 0 and ‖yn‖→ 1. Let x0 be an H-point. If x0 = 0, we are done. We
assume now that x0 �= 0 and in fact we assume that x0 ∈ S(X). Thus, as R(X)= 1 and the
weak lower semicontinuity of the norm,

(

x0− yn
) w−→ x0, liminf

n→∞
∥
∥x0− yn
∥
∥= 1. (3.4)

Choose a subsequence (yn′) of (yn) such that

lim
n′→∞
∥
∥x0− yn′

∥
∥= 1. (3.5)
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We see that (x0− y′n)→ x0 and y′n→ 0. Thus ‖y′n‖→ 0 and 0= a, a contradiction. �

A Banach space X has property mp (resp., m∞) (cf. [27]) if for all x ∈ X , whenever

xn
w→ 0,

limsup
n→∞

∥
∥x+ xn
∥
∥
p = ‖x‖p + limsup

n→∞

∥
∥xn
∥
∥
p

(

resp., limsup
n→∞

∥
∥x+ xn
∥
∥=max

{

‖x‖, limsup
n→∞

∥
∥xn
∥
∥

})

.
(3.6)

Clearly the above properties imply property (M) and property m1 implies Opial property.
Property m1 implies property (H). For, if xn

w→ x and ‖xn‖ → ‖x‖ for some sequence
(xn) and x ∈ X , we have, by m1,

‖x‖ = limsup
n→∞

∥
∥xn
∥
∥= limsup

n→∞

∥
∥
(

xn− x
)

+ x
∥
∥= ‖x‖+ limsup

n→∞

∥
∥xn− x
∥
∥. (3.7)

This implies that limsupn→∞‖xn− x‖ = 0 and thus xn→ x.
It also turns out that property m∞ and the condition R(X)= 1 coincide as the follow-

ing result shows.

Theorem 3.2. A Banach space X has property m∞ if and only if R(X)= 1.

Proof. “⇒” Suppose that X has property m∞. Thus,

R(X)= sup
{

limsup
n→∞

∥
∥xn− x
∥
∥ : xn

w−→ 0,
∥
∥xn
∥
∥≤ 1∀n,‖x‖ ≤ 1

}

= sup
{

max
{

‖x‖, limsup
n→∞

∥
∥xn
∥
∥

}

: xn
w−→ 0,
∥
∥xn
∥
∥≤ 1∀n,‖x‖ ≤ 1

}

= 1.
(3.8)

“⇐” To show that X has property m∞. Given xn
w→ 0 and x ∈ X − {0}. Put a =

max{‖x‖, limsupn→∞‖xn‖}. Clearly, limsupn→∞(‖xn‖/a)≤ 1 and ‖x‖/a∈ B(X). We note
here that R(X)= 1 implies property (M) and it in turn implies the nonstrict Opial prop-
erty. By the weak lower semicontinuity of ‖ · ‖ and the nonstrict Opial property, we see
that ‖x‖ ≤ limsupn→∞‖xn − x‖ and limsupn→∞‖xn‖ ≤ limsupn→∞‖xn − x‖. Thus a ≤
limsupn→∞‖xn − x‖. On the other hand, as R(X) = 1, we can show that
limsupn→∞‖xn/a− x/a‖ ≤ 1. So we can conclude that,

limsup
n→∞

∥
∥
∥
∥

xn
a
− x

a

∥
∥
∥
∥= 1, (3.9)

and thus limsupn→∞‖xn − x‖ = a = max{‖x‖, limsupn→∞‖xn‖} and the proof is com-
plete. �

For p <∞, we have the following proposition.

Proposition 3.3. If X has property mp(1 ≤ p <∞), then R(X) ≤ 21/p. Moreover, if in
addition X does not have Schur’s property, then R(X)= 21/p.
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Proof. Define

Rp(X) := sup
{

limsup
n→∞

∥
∥xn− x
∥
∥
p

: xn
w−→ 0,
∥
∥xn
∥
∥≤ 1∀n,‖x‖ ≤ 1

}

. (3.10)

By property mp, we have

Rp(X)= sup
{

‖x‖p + limsup
n→∞

∥
∥xn
∥
∥
p

: xn
w−→ 0,
∥
∥xn
∥
∥≤ 1∀n,‖x‖ ≤ 1

}

. (3.11)

Thus, Rp(X) ≤ 2 which implies R(X) ≤ 21/p. On the other hand, if, in addition, X does
not have Schur’s property, then there exists a weakly null sequence (xn) such that xn � 0.
From this we can construct a weakly null sequence (yn) in the unit sphere. We can now
see that Rp(X)≥ 2 and hence R(X)≥ 21/p. Therefore R(X)= 21/p. �

Example 3.4. In lp (1 < p <∞), we have en ∈ S(X) and en
w→ 0, where (en) is the standard

basis. Clearly

∥
∥en− e1
∥
∥

n→∞−−−−→ 21/p, (3.12)

thus R(lp)= 21/p. Note that lp has property mp (cf. [27]).

Some properties are equivalent in a space X with R(X)= 1.

Theorem 3.5. Let X be a Banach space with R(X)= 1. The following conditions are equiv-
alent:

(i) X has property m1;
(ii) X satisfies Opial property;

(iii) X has Schur’s property.

Proof. (i)⇒(ii) and (iii)⇒(i) are clear. It needs to prove (ii)⇒ (iii).
Let xn

w→ 0. To show xn → 0, let 0 �= x ∈ X . By Opial property together with property
m∞, we have

limsup
n→∞

∥
∥xn
∥
∥ < limsup

n→∞

∥
∥xn + x
∥
∥=max

{

‖x‖, limsup
n→∞

∥
∥xn
∥
∥

}

. (3.13)

Thus

limsup
n→∞

∥
∥xn
∥
∥ < ‖x‖, (3.14)

for all x ∈ X −{0}. This means that limsupn→∞‖xn‖ = 0 and thus limn→∞‖xn‖ = 0. Con-
sequently, xn→ 0, and therefore X has Shur’s property. �
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The Jordan-von Neumann constant CNJ(X) of X is defined by

CNJ(X)= sup

{‖x+ y‖2 +‖x− y‖2

2
(‖x‖2 +‖y‖2

) : x, y ∈ X not both zero

}

([2])

= sup

{‖x+ y‖2 +‖x− y‖2

2
(‖x‖2 +‖y‖2

) : x ∈ S(X), y ∈ B(X)

}

([16]).

(3.15)

Another important constant which is closely related to CNJ(X) is the James constant J(X)
defined by Gao and Lau [7] as:

J(X)= sup
{‖x+ y‖∧‖x− y‖ : x, y ∈ S(X)

}

= sup
{‖x+ y‖∧‖x− y‖ : x, y ∈ B(X)

}

.
(3.16)

In general we have

1
2
J(X)2 ≤ CNJ(X)≤ J(X)2

(

J(X)− 1
)2

+ 1
([16]). (3.17)

With or without having WORTH, Mazcuñán [20] showed that R(1,X) < 2 whenever
CNJ(X) < 2. In gerneral, R(1,X) ≤ R(X). The constant R(a,X) is introduced by Domin-
guez [6] as: for a given real number a

R(a,X) := sup
{

liminf
n→∞
∥
∥x+ xn
∥
∥

}

, (3.18)

where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all weakly null sequences
(xn) in the unit ball of X such that

limsup
n→∞

(

limsup
n→∞

∥
∥xn− xm

∥
∥

)

≤ 1. (3.19)

Replacing R(1,X) in [20] by R(X) we obtain the following theorem.

Theorem 3.6. If X has property WORTH and CNJ(X) < 2, then R(X) < 2.

Proof. Suppose on the contrary that R(X) = 2. Thus there exist sequences (xmn ),(xm) ∈
B(X) such that for each m, xmn

w→ 0 as n→∞ and

liminf
n→∞
∥
∥xmn − xm

∥
∥ > 2− 1

m
(3.20)

for all m∈N . Now, by WORTH, we have, for each m,

∥
∥xmn + xm

∥
∥

2
+
∥
∥xmn − xm

∥
∥

2

2
(∥
∥xmn
∥
∥

2
+
∥
∥xm
∥
∥

2) >
2
(

2− 1/m)2

4
= 2− 2

m
+

1
2m2

(3.21)

for all large n. This impliesCNJ(X)= 2, a contradiction, and therefore R(X) < 2 as desired.
�
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Remark 3.7. Theorem 3.6 says that every Banach space X with property WORTH has fpp
or CNJ(X)= 2= R(X).

Theorem 3.8. If X is k-UR and satisfies property (M), then X satisfies Opial property.

Proof. Suppose that there exist xn
w→ 0 and 0 �= x0 ∈ X such that

limsup
n→∞

∥
∥xn
∥
∥≥ limsup

n→∞

∥
∥xn− x0
∥
∥. (3.22)

Observe that X is therefore not finite dimensional. By the nonstrict Opial property (see
Proposition 2.1) we have

limsup
n→∞

∥
∥xn
∥
∥= limsup

n→∞

∥
∥xn− x0
∥
∥= α �= 0. (3.23)

We may assume that ‖x0‖ = 1. Define the type function by

f (u)= limsup
n→∞

∥
∥xn−u
∥
∥. (3.24)

Then f is a function of ‖u‖ and is also nondecreasing in ‖u‖. Now since f (0)= f (x0)=α
and since ‖x0‖=1, it follows that f (u)≡ α for all u∈ B(X). This implies that AB(X)(xn)=
B(X). Since X is k-UR, Kirk [18] implies that AB(X)(xn) and so B(X) is compact, that is,
X is finite dimensional, a contradiction. �

Corollary 3.9. If X is k-UR and has property (M), then X has the locally uniform Opial
property. In particular, properties UR and (M) imply the locally uniform Opial property.

Proof. This follows from Theorem 2.2 and Theorem 3.8. �

Definition 3.10. Let X be a Banach space.
(i) We say that X has property strict (M) [27, Definition 2.2] if, for each weakly null

sequence (xn), for u,v ∈ X such that ‖u‖ < ‖v‖, limsupn→∞‖xn−u‖ < limsupn→∞‖xn−
v‖.

(ii) We say that X has property strict (W) if, for each weakly null sequence (xn), for
x ∈ X we have limsupn→∞‖xn− tx‖ is an strictly increasing function of t on [0,∞).

It is easy to see that

property strict (M)=⇒ property strict (W)=⇒Opial property. (3.25)

Proposition 3.11. Let X be a Banach space, then X has property strict (M) if and only if it
has both properties (M) and strict (W).

Proof. “⇒” Clear.
“⇐” Suppose X has properies (M) and strict (W). Let (xn) be a weakly null sequence,

u,v ∈ X with ‖u‖ < ‖v‖. By property strict (W) we have

limsup
n→∞

∥
∥xn−u
∥
∥ < limsup

n→∞

∥
∥
∥
∥
∥
xn− ‖v‖‖u‖u

∥
∥
∥
∥
∥
. (3.26)
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Since ‖(‖v‖/‖u‖)u‖ = ‖v‖, so by property (M) we have limsupn→∞‖xn− (‖v‖/‖u‖)u‖ =
limsupn→∞‖xn− v‖. Hence

limsup
n→∞

∥
∥xn−u
∥
∥ < limsup

n→∞

∥
∥xn− v
∥
∥. (3.27)

This shows that X has property strict (M). �

Proposition 3.12. Let X be a Banach space which satisfies Opial property and has property
(M). Then X satisfies the locally uniform Opial property.

Proof. Let (xn) be a weakly null sequence in X satisfying ‖xn‖ → 1 and c > 0. Set r =
limsupn→∞‖xn− (c/‖x‖)x‖− 1, where x ∈ X −{0}. Since X satisfies Opial property, we
have r > 0. Hence, for u∈ X such that ‖u‖ ≥ c, we have

limsup
n→∞

∥
∥xn−u
∥
∥≥ limsup

n→∞

∥
∥
∥
∥
∥
xn− c

‖u‖u
∥
∥
∥
∥
∥
= limsup

n→∞

∥
∥
∥
∥
∥
xn− c

‖x‖x
∥
∥
∥
∥
∥
= 1 + r. (3.28)

Thus, X satisfies the locally uniform Opial property. �

Corollary 3.13 [27, Theorem 2.1]. Let X be a Banach space which has property strict
(M). Then X satisfies the locally uniform Opial property.

Recall that a Banach space X is uniformly convex in every direction (UCED) Day
et al. [4] if, for each z ∈ X such that ‖z‖ = 1 and ε > 0, we have

δz(ε)= inf
{

1−
∥
∥
∥
x+ y

2

∥
∥
∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, x− y = tz, |t| ≥ ε

}

> 0. (3.29)

Theorem 3.14. Suppose that a Banach space X has property WORTH and is also UCED.
Then X has the property strict (W).

Proof. Suppose X fails to have the property strict (W), then there exist a weakly null
sequence (xn), x ∈ S(X), t1, t2 ∈ [0,∞), where t1 < t2, with

limsup
n→∞

∥
∥xn + t1x

∥
∥≥ limsup

n→∞

∥
∥xn + t2x

∥
∥. (3.30)

By property WORTH we must have equality. Put a = limsupn→∞‖xn + t1x‖, it follows
that

limsup
n→∞

∥
∥
∥
∥xn +

t1 + t2
2

x
∥
∥
∥
∥= limsup

n→∞

∥
∥
∥
∥

xn + t1x+ xn + t2x

2

∥
∥
∥
∥

≤ a
[

1− δx

(
t2− t1
a

)]

< a= limsup
n→∞

∥
∥xn + t1x

∥
∥

(3.31)

contradicting to having WORTH of X . �

From Proposition 3.11 and Theorem 3.14 we have the following corollary.

Corollary 3.15. Suppose that a Banach space X has property (M) and is also UCED. Then
X has property strict (M).
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Finally, we improve the latest upper bound of the Jordan-von Neumann constant
CNJ(X) at (3 +

√
5)/4 for X to have uniform normal structure which is proved in [5].

Theorem 3.16. If CNJ(X) < (1 +
√

3)/2, then X has uniform normal structure.

Proof. Since CNJ(X) < 2, X is uniformly nonsquare, and consequently, X is reflexive.
Thus, normal structure and weak normal structure coincide. By [8, Theorem 5.2], it suf-
fices to prove that X has weak normal structure.

Suppose on the contrary that X does not have weak normal structure. Thus, there
exists a weak null sequence (xn) in S(X) such that for C := c̄o{xn : n≥ 1},

lim
n→∞
∥
∥xn− x
∥
∥= diamC = 1 ∀x (3.32)

(cf. [24]). Let α =
√

1 +
√

3. We choose first an x ∈ C with ‖x‖ = 1. We will consider,
without loss of generality

lim
n→∞
∥
∥xn + x
∥
∥≤ R(1,X)≤ J(X) ([20])

≤
√

2CNJ(X) ([16]) < α.
(3.33)

By Hanh-Banach theorem there exist fn,g ∈ S(X∗) satisfying fn(xn − (1/2)x) = ‖xn −
(1/2)x‖, ∀n∈N and g(x)= 1. Set f̃ = (̃ fn). Then f̃ , ġ ∈ S(X̃∗) and satisfy

f̃
(
 
(

xn
))= 1, f̃ (ẋ)= 0, ġ

(
 
(

xn
))= 0, ġ(ẋ)= 1. (3.34)

Now consider

∥
∥ f̃ − ġ
∥
∥≥ ( f̃ − ġ

)(
 
(

xn
)− ẋ
)

= f̃
(
 
(

xn
))− f̃ (ẋ)− ġ

(
 
(

xn
))

+ ġ(ẋ)

= 1 + 0− 0 + 1≥ 2.

(3.35)

On the other hand,

∥
∥ f̃ + ġ
∥
∥≥ ( f̃ + ġ

)
(

1
α

(
 
(

xn
)

+ ẋ
))

= f̃
(

1
α
 
(

xn
)
)

+ f̃
(

1
α
ẋ
)

− ġ
(

1
α
 
(

xn
)
)

+ ġ
(

1
α
ẋ
)

= 1
α

+ 0− 0 +
1
α
= 2

α
.

(3.36)

Thus we have

CNJ
(

X̃∗
)≥
∥
∥ f̃ + ġ
∥
∥

2
+
∥
∥ f̃ − ġ
∥
∥

2

2
(‖ f̃ ‖2 +‖ġ‖2

) ≥ 4 + 4/α2

4
= 1 +

1
α2

. (3.37)
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Since the Jordan-von Neumann constants of X∗, X , X̃ , and X̃∗ are all equal, we must
have CNJ(X)≥ 1 + 1/α2, that is,

CNJ(X)≥ 1 +
√

3
2

, (3.38)

a contradiction. �

The following corollary is a consequence of the proof of Theorem 3.16.

Corollary 3.17. If CNJ(X) < 1 + 1/J(X)2, then X has uniform normal structure.

Acknowledgments

This work was supported by the Thailand Research Fund under grant BRG4780013. The
second author was also supported by the Royal Golden Jubilee program under grant
PHD/0216/2543. The authors are grateful to the referee for his/her suggestion that led
to the improvement of Proposition 3.3 and Theorem 3.8.

References

[1] A. G. Aksoy and M. A. Khamsi, Nonstandard Methods in Fixed Point Theory, Universitext,
Springer, New York, 1990.

[2] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue spaces, Annals of Mathematics.
Second Series 38 (1937), no. 1, 114–115.

[3] T. Dalby, Relationships between properties that imply the weak fixed point property, Journal of
Mathematical Analysis and Applications 253 (2001), no. 2, 578–589.

[4] M. M. Day, R. C. James, and S. Swaminathan, Normed linear spaces that are uniformly convex in
every direction, Canadian Journal of Mathematics 23 (1971), 1051–1059.

[5] S. Dhompongsa, P. Piraisangjun, and S. Saejung, Generalised Jordan-von Neumann constants and
uniform normal structure, Bulletin of the Australian Mathematical Society 67 (2003), no. 2, 225–
240.

[6] T. Dominguez Benavides, A geometrical coefficient implying the weak fixed point property and
stability results, Houston Journal of Mathematics 22 (1996), no. 4, 835–849.

[7] J. Gao and K.-S. Lau, On the geometry of spheres in normed linear spaces, Australian Mathematical
Society. Journal. Series A 48 (1990), no. 1, 101–112.

[8] , On two classes of Banach spaces with uniform normal structure, Studia Mathematica 99
(1991), no. 1, 41–56.

[9] J. Garcı́a-Falset, Stability and fixed points for nonexpansive mappings, Houston Journal of Math-
ematics 20 (1994), no. 3, 495–506.

[10] , The fixed point property in Banach spaces with the NUS-property, Journal of Mathemat-
ical Analysis and Applications 215 (1997), no. 2, 532–542.

[11] J. Garcı́a-Falset, E. Llorens-Fuster, and E. M. Mazcuñán-Navarro, Banach spaces which are r-
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