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We consider a biharmonic equation under the Navier boundary condition and with a
nearly critical exponent (Pε): Δ2u= u9−ε, u > 0 in Ω and u= Δu= 0 on ∂Ω, where Ω is a
smooth bounded domain in R5, ε > 0. We study the asymptotic behavior of solutions of
(Pε) which are minimizing for the Sobolev quotient as ε goes to zero. We show that such
solutions concentrate around a point x0 ∈Ω as ε→ 0, moreover x0 is a critical point of
the Robin’s function. Conversely, we show that for any nondegenerate critical point x0 of
the Robin’s function, there exist solutions of (Pε) concentrating around x0 as ε→ 0.
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and reproduction in any medium, provided the original work is properly cited.

1. Introduction and results

Let us consider the following biharmonic equation under the Navier boundary condition

Δ2u= up−ε, u > 0 in Ω

Δu= u= 0 on ∂Ω,
(Qε)

where Ω is a smooth bounded domain in Rn, n≥ 5, ε is a small positive parameter, and
p+ 1= 2n/(n− 4) is the critical Sobolev exponent of the embedding H2(Ω)∩H1

0 (Ω)↩
L2n/(n−4)(Ω).

It is known that (Qε) is related to the limiting problem (Q0) (when ε = 0) which ex-
hibits a lack of compactness and gives rise to solutions of (Qε) which blow up as ε→ 0.
The interest of the limiting problem (Q0) grew from its resemblance to some geometric
equations involving Paneitz operator and which have widely been studied in these last
years (for details one can see [4, 6, 10, 12–14, 17] and references therein).

Several authors have studied the existence and behavior of blowing up solutions for
the corresponding second order elliptic problem (see, e.g., [1, 3, 9, 18, 21, 22, 24–26]
and references therein). In sharp contrast to this, very little is known for fourth order
elliptic equations. In this paper we are mainly interested in the asymptotic behavior and
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2 Single blow-up solutions for a biharmonic equation

the existence of solutions of (Qε) which blow up around one point, and the location of
this blow up point as ε→ 0.

The existence of solutions of (Qε) for all ε ∈ (0, p− 1) is well known for any domain Ω
(see, e.g., [16]). For ε = 0, the situation is more complex, Van Der Vorst showed in [28]
that if Ω is starshaped (Q0) has no solution whereas Ebobisse and Ould Ahmedou proved
in [15] that (Q0) has a solution provided that some homology group of Ω is nontrivial.
This topological condition is sufficient, but not necessary, as examples of contractible
domains Ω on which a solution exists show [19].

In view of this qualitative change in the situation when ε = 0, it is interesting to study
the asymptotic behavior of the subcritical solution uε of (Qε) as ε→ 0. Chou and Geng
[11], and Geng [20] made a first study, when Ω is strictly convex. The convexity assump-
tion was needed in their proof in order to apply the method of moving planes (MMP
for short) in proving a priori estimate near the boundary. Notice that in the Laplacian
case (see [21]), the MMP has been used to show that blow up points are away from the
boundary of the domain. The process is standard if domains are convex. For nonconvex
regions, the MMP still works in the Laplacian case through the applications of Kelvin
transformations [21]. For (Qε), the MMP also works for convex domains [11]. How-
ever, for nonconvex domains, a Kelvin transformation does not work for (Qε) because
the Navier boundary condition is not invariant under the Kelvin transformation of biha
rmonic operator. In [5], Ben Ayed and El Mehdi removed the convexity assumption of
Chou and Geng for higher dimensions, that is n ≥ 6. The aim of this paper is to prove
that the results of [5] are true in dimension 5. In order to state precisely our results, we
need to introduce some notations.

We consider the following problem

Δ2u= u9−ε, u > 0 in Ω

Δu= u= 0 on ∂Ω,
(Pε)

where Ω is a smooth bounded domain in R5 and ε is a small positive parameter.
Let us define on Ω the following Robin’s function

ϕ(x)=H(x,x), with H(x, y)= |x− y|−1−G(x, y), for (x, y)∈Ω×Ω, (1.1)

where G is the Green’s function of Δ2, that is,

∀x ∈Ω Δ2G(x,·)= cδx in Ω

ΔG(x,·)=G(x,·)= 0 on ∂Ω,
(1.2)

where δx denotes the Dirac mass at x and c = 3ω5, with ω5 is the area of the unit sphere
of R5. For λ > 0 and a∈R5, let

δa,λ(x)= c0λ1/2

(
1 + λ2|x− a|2)1/2 , c0 = (105)1/8. (1.3)

It is well known (see [23]) that δa,λ are the only solutions of

Δ2u= u9, u > 0 in R5 (1.4)
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and are also the only minimizers of the Sobolev inequality on the whole space, that is

S= inf
{|Δu|2L2(R5)|u|−2

L10(R5), s.t. Δu∈ L2, u∈ L10, u �= 0
}
. (1.5)

We denote by Pδa,λ the projection of δa,λ on �(Ω) :=H2(Ω)∩H1
0 (Ω), defined by

Δ2Pδa,λ = Δ2δa,λ in Ω, ΔPδa,λ = Pδa,λ = 0 on ∂Ω. (1.6)

Let

θa,λ = δa,λ−Pδa,λ,

‖u‖ =
(∫

Ω
|Δu|2

)1/2

, 〈u,v〉 =
∫

Ω
ΔuΔv, u,v ∈H2(Ω)∩H1

0 (Ω)

‖u‖q = |u|Lq(Ω).

(1.7)

Thus we have the following result.

Theorem 1.1. Let (uε) be a solution of (Pε), and assume that

∥
∥uε

∥
∥2∥∥uε

∥
∥−2

10−ε −→ S as ε −→ 0, (H)

where S is the best Sobolev constant in R5 defined by (1.5). Then (up to a subsequence) there
exist aε ∈Ω, λε > 0, αε > 0 and vε such that uε can be written as

uε = αεPδaε ,λε + vε (1.8)

with αε → 1, ‖vε‖→ 0, aε ∈Ω and λεd(aε,∂Ω)→ +∞ as ε→ 0.
In addition, aε converges to a critical point x0 ∈Ω of ϕ and we have

lim
ε→0

ε
∥
∥uε

∥
∥2
L∞(Ω) =

(
c1c

2
0/c2

)
ϕ
(
x0
)
, (1.9)

where c1 = c10
0

∫
R5 (dx/(1 + |x|2)9/2), c2 = c10

0

∫
R5 (log(1 + |x|2)(1−|x|2)/(1 + |x|2)6)dx and

c0 = (105)1/8.

Our next result provides a kind of converse to Theorem 1.1.

Theorem 1.2. Assume that x0 ∈Ω is a nondegenerate critical point of ϕ. Then there exists
an ε0 > 0 such that for each ε ∈ (0,ε0], (Pε) has a solution of the form

uε = αεPδaε ,λε + vε (1.10)

with αε → 1, ‖vε‖→ 0, aε → x0 and λεd(aε,∂Ω)→ +∞ as ε→ 0.

Our strategy to prove the above results is the same as in higher dimensions. However,
as usual in elliptic equations involving critical Sobolev exponent, we need more refined
estimates of the asymptotic profiles of solutions when ε→ 0 to treat the lower dimensional
case. Such refined estimates, which are of self interest, are highly nontrivial and use in a
crucial way careful expansions of the Euler-Lagrange functional associated to (Pε), and its
gradient near a small neighborhood of highly concentrated functions. To perform such
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expansions we make use of the techniques developed by Bahri [2] and Rey [25, 27] in the
framework of the Theory of critical points at infinity.

The outline of the paper is the following: in Section 2 we perform some crucial esti-
mates needed in our proofs and Section 3 is devoted to the proof of our results.

2. Some crucial estimates

In this section, we prove some crucial estimates which will play an important role in
proving our results. We first recall some results.

Proposition 2.1 [8]. Let a∈Ω and λ > 0 such that λd(a,∂Ω) is large enough. For θ(a,λ) =
δ(a,λ)−Pδ(a,λ), we have the following estimates

0≤ θ(a,λ) ≤ δ(a,λ), θ(a,λ) = c0λ
−1/2H(a,·) + f(a,λ), (2.1)

where f(a,λ) satisfies

f(a,λ) =O
(

1
λ5/2d3

)
, λ

∂ f(a,λ)

∂λ
=O

(
1

λ5/2d3

)
,

1
λ

∂ f(a,λ)

∂a
=O

(
1

λ7/2d4

)
, (2.2)

where d is the distance d(a,∂Ω),

∣
∣θ(a,λ)

∣
∣
L10 =O

(
(λd)−1/2),

∥
∥θ(a,λ)

∥
∥=O((λd)−1/2),

∣
∣
∣
∣λ
∂θ(a,λ)

∂λ

∣
∣
∣
∣
L10
=O

(
1

(λd)1/2

)

,
∣
∣
∣
∣

1
λ

∂θ(a,λ)

∂a

∣
∣
∣
∣
L10
=O

(
1

(λd)3/2

)

.
(2.3)

Proposition 2.2 [5]. Let uε be a solution of (Pε) which satisfies (H). Then, there exist
aε ∈Ω, αε > 0, λε > 0 and vε such that

uε = αεPδaε ,λε + vε (2.4)

with αε → 1, λεd(aε,∂Ω)→∞, c−2
0 ‖uε‖2∞/λε → 1, ‖uε‖ε∞ → 1 and ‖vε‖→ 0.

Furthermore, vε ∈ E(aε ,λε) which is the set of v ∈�(Ω) such that

〈
v,Pδaε ,λε

〉= 〈v,∂Pδaε ,λε /∂λε
〉= 0,

〈
vε,∂Pδaε ,λε /∂a

〉= 0. (V0)

Lemma 2.3 [5]. λεε = 1 + o(1) as ε goes to zero implies that

δ−εε − c−ε0 λε(4−n)/2
ε =O(ε log

(
1 + λ2

ε

∣
∣x− aε

∣
∣2))

in Ω, (2.5)

where δε = δaε ,λε and dε = d(aε,∂Ω).

Proposition 2.4 [5]. Let (uε) be a solution of (Pε) which satisfies (H). Then vε occurring
in Proposition 2.2 satisfies

∥
∥vε
∥
∥≤ C(ε+

(
λεdε

)−1)
, (2.6)

where C is a positive constant independent of ε.
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Now, we are going to state and prove the crucial estimates needed in the proof of our
theorems. In order to simplify the notations, we set δε = δaε ,λε , Pδε = Pδaε ,λε , θε = θaε ,λε
and dε = d(aε,∂Ω).

Lemma 2.5. For ε small, we have the following estimates
(i)
∫
Ω δ

9
ε (1/λε)(∂Pδε/∂a)=−(c1/2λ2

ε )(∂H/∂a)(aε,aε) +O(1/(λεdε)3),
(ii)

∫
ΩPδ

9−ε
ε (1/λε)(∂Pδε/∂a)=−(c1/λ2+ε/2

ε )(∂H/∂a)(aε,aε) +O(1/(λεdε)3 + ε/(λεdε)2),
where c1 is the constant defined in Theorem 1.1.

Proof. Notice that

∫

Ω\Bε
δ10
ε =O

(
1

(λεdε)5

)

. (2.7)

Thus, we have, for 1≤ k ≤ 5

∫

Ω
δ9
ε

1
λε

∂Pδε
∂ak

=
∫

Ω
δ9
ε

1
λε

∂δε
∂ak

−
∫

Ω
δ9
ε

1
λε

∂θε
∂ak

=−
∫

Bε
δ9
ε

1
λε

∂θε
∂ak

+O

(
1

(λεdε)5

)

, (2.8)

where Bε = B(aε,dε). Expanding ∂θε/∂ak around aε and using Proposition 2.1, we obtain

∫

Bε
δ9
ε

1
λε

∂θε
∂ak

= c0

2λ3/2
ε

∂H
(
aε,aε

)

∂a

∫

Bε
δ9
ε +O

⎛

⎝ 1
(
λεdε

)3

⎞

⎠ . (2.9)

Estimating the integral on the right-hand side in (2.9) and using (2.8), we easily derive
claim (i). To prove claim (ii), we write

∫

Ω
Pδ9−ε

ε
1
λε

∂Pδε
∂ak

=
∫

Ω
δ9−ε
ε

1
λε

∂δε
∂ak

−
∫

Ω
δ9−ε
ε

1
λε

∂θε
∂ak

− (9− ε)
∫

Ω
δ8−ε
ε θε

1
λ

∂δε
∂ak

+
(9− ε)(8− ε)

2

∫

Ω
δ7−ε
ε θ2

ε
1
λ

∂δε
∂ak

+O

(∫

Ω
δ8−ε
ε θε

∣
∣
∣
∣

1
λε

∂θε
∂ak

∣
∣
∣
∣+

∫

δ7−ε
ε θ3

ε

)

(2.10)

and we have to estimate each term on the right-hand side of (2.10).
Using Proposition 2.1 and Lemma 2.3, we have

∫

Ω
δ7−ε
ε θ3

ε ≤ c
∥
∥θε

∥
∥3
∞

∫

δ7
ε =O

(
1

(λεdε)3

)

,

∫

Ω
δ8−ε
ε θε

∣
∣
∣
∣

1
λε

∂θε
∂ak

∣
∣
∣
∣≤ c

∥
∥θε

∥
∥∞

∣
∣
∣
∣

∣
∣
∣
∣

1
λε

∂θε
∂ak

∣
∣
∣
∣

∣
∣
∣
∣
∞

∫

Ω
δ8
ε =O

(
1

(λεdε)3

)

.

(2.11)

We also have

∫

Ω
δ9−ε
ε

1
λε

∂δε
∂ak

=
∫

Ω\Bε
δ9−ε
ε

1
λε

∂δε
∂ak

=O
(

1
(λεdε)5

)

. (2.12)
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Expanding θε around aε and using Proposition 2.1 and Lemma 2.3, we obtain

9
∫

Bε
δ8−ε
ε θε

1
λε

∂δε
∂ak

= c1

2λ2+ε/2
ε

∂H(aε,aε)
∂a

+O

(
1

(λεdε)3
+

ε

(λεdε)2

)

,

∫

Bε
δ7−ε
ε θ2

ε
1
λε

∂δε
∂ak

=O
(

1
(λεdε)3

)

.

(2.13)

In the same way, we find

∫

Ω
δ9−ε
ε

1
λε

∂θε
∂ak

= c1

2λ2+ε/2
ε

∂H
(
aε,aε

)

∂a
+O

⎛

⎝ 1
(
λεdε

)3 +
ε

(
λεdε

)2

⎞

⎠ . (2.14)

Combining (2.10)–(2.14), we obtain claim (ii). �

To improve the estimates of the integrals involving vε, we use an idea of Rey [27],
namely we write

vε =Πvε +wε, (2.15)

where Πvε denotes the projection of vε onto H2∩H1
0 (Bε), that is

Δ2Πvε = Δ2vε in Bε; ΔΠvε =Πvε = 0 on ∂Bε, (2.16)

where Bε = B(aε,dε). We split Πvε in an even part Πveε and an odd part Πvoε with respect
to (x− aε)k, thus we have

vε =Πveε +Πvoε +wε in Bε with Δ2wε = 0 in Bε. (2.17)

Notice that it is difficult to improve the estimate (2.6) of the vε-part of solutions. However,
it is sufficient to improve the integrals involving the odd part of vε with respect to (x−
aε)k, for 1 ≤ k ≤ 5 and to know the exact contribution of the integrals containing the
wε-part of vε. Let us start by the terms involving wε.

Lemma 2.6. For ε small, we have that

∫

Bε
δ8
ε

(

δ−εε − 1

cε0λ
ε/2
ε

)
1
λε

∂δε
∂ak

wε =O
⎛

⎝ ε
∥
∥vε
∥
∥

(
λεdε

)1/2

⎞

⎠ . (2.18)

Proof. Let ψ be the solution of

Δ2ψ = δ8
ε

(

δ−εε − 1

cε0λ
ε/2
ε

)
1
λε

∂δε
∂ak

in Bε; Δψ = ψ = 0 on ∂Bε. (2.19)

Thus we have

Iε :=
∫

Bε
Δ2ψwε =

∫

∂Bε

∂ψ

∂ν
Δwε +

∫

∂Bε

∂Δψ

∂ν
wε. (2.20)
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Let Gε be the Green’s function for the biharmonic operator on Bε with the Navier bound-
ary conditions, that is,

Δ2Gε(x,·)= cδx in Bε; ΔGε(x,·)=G(x,·)= 0 on ∂Bε, (2.21)

where c = 3w5. Therefore ψ is given by

ψ(y)=
∫

Bε
Gε(x, y)δ8

ε

(

δ−εε − 1

cε0λ
ε/2
ε

)
1
λε

∂δε
∂ak

, y ∈ Bε (2.22)

and its normal derivative by

∂ψ

∂ν
(y)=

∫

Bε

∂Gε

∂ν
(x, y)δ8

ε

(

δ−εε − 1

cε0λ
ε/2
ε

)
1
λε

∂δε
∂ak

, y ∈ ∂Bε. (2.23)

Notice that for y ∈ ∂Bε we have the following estimates: for x ∈ Bε \B(y,dε/2), we have

∂Gε

∂ν
(x, y)=O

(
1
d2
ε

)

;
∂ΔGε

∂ν
(x, y)=O

(
1
d4
ε

)

(2.24)

for x ∈ Bε∩B(y,dε/2), we have

∣
∣
∣
∣
∂Gε

∂ν
(x, y)

∣
∣
∣
∣≤

c

|x− y|2 ;
∣
∣
∣
∣
∂ΔGε

∂ν
(x, y)

∣
∣
∣
∣≤

c

|x− y|4 (2.25)

for x ∈ Bε∩B(y,dε/2), we have

δ8
ε

(

δ−εε − 1

cε0λ
ε/2
ε

)
1
λε

∂δε
∂ak

=O
(
ε logλεdε
(λεdε)9

)
, (2.26)

for x ∈ Bε \B(y,dε/2), we have

δ8
ε

(

δ−εε − 1

cε0λ
ε/2
ε

)
1
λε

∂δε
∂ak

=O(δ9
ε ε log

(
1 + λ2

ε

∣
∣x− aε

∣
∣2))

. (2.27)

Therefore

∣
∣
∣
∣
∂ψ

∂ν
(y)
∣
∣
∣
∣=O

(
ε

λ1/2
ε d2

ε

)

. (2.28)

In the same way, we have

∣
∣
∣
∣
∂Δψ

∂ν
(y)
∣
∣
∣
∣=O

(
ε

λ1/2
ε d4

ε

)

. (2.29)

Using (2.20), (2.28), (2.29), we obtain

Iε =O
(

ε

λ1/2
ε d2

ε

∫

∂Bε

∣
∣Δwε

∣
∣+

ε

λ1/2
ε d4

ε

∫

∂Bε

∣
∣wε

∣
∣
)

. (2.30)
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To estimate the right-hand side of (2.30), we introduce the following function

w̄(X)= d1/2
ε wε

(
aε +dεX

)
, v̄(X)= d1/2

ε vε
(
aε +dεX

)
for X ∈ B(0,1). (2.31)

w̄ satisfies

Δ2w̄ = 0 in B := B(0,1); Δw̄ = Δv̄, w̄ = v̄ on ∂B. (2.32)

We deduce that

∫

∂B
|Δw̄|+

∫

∂B
|Δw̄| ≤ C

(∫

B
|Δv̄|2

)1/2

= C
(∫

Bε

∣
∣Δvε

∣
∣2
)1/2

. (2.33)

But, we have

∫

∂B
|Δw̄|+

∫

∂B
|Δw̄| =

(
1
dε

)3/2∫

∂Bε

∣
∣Δwε

∣
∣+

(
1
dε

)7/2∫

∂Bε

∣
∣wε

∣
∣. (2.34)

Using (2.30), (2.33) and (2.34), the lemma follows. �

Lemma 2.7. For ε small, we have
(i)
∫
Bε Δ((1/λε)(∂Πδε/∂ak))Δwε =O(‖vε‖/(λεdε)3/2),

(ii)
∫
Bε δ

8−ε
ε Πvoεwε =O(‖vε‖‖Πvoε‖/(λεdε)1/2).

Proof. Using (2.17), we obtain

∫

Bε
Δ

(
1
λε

∂Πδε
∂ak

)

Δwε =
∫

∂Bε

∂ψk
∂ν

Δwε, with ψk = 1
λε

∂Πδε
∂ak

. (2.35)

Using an integral representation for ψk as in (2.23), we obtain for y ∈ ∂Bε,

∂ψ

∂ν
(y)=

∫

Bε

∂Gε

∂ν
(x, y)Δ2ψk, (2.36)

where Gε is the Green’s function defined in (2.21). Clearly, we have

Πδε(x)= δε(x)− c0λ1/2
ε

(
1 + λ2

εd2
ε

)1/2 −
cε
(
aε,dε

)

10

(∣∣x− aε
∣
∣2−d2

ε

)
, (2.37)

with cε(aε,dε)= Δδε|∂Bε . Thus we deduce that

∂ψ

∂ν
(y)= 9

∫

Bε

∂Gε

∂ν
(x, y)δ8

ε
1
λε

∂δε
∂ak

. (2.38)

In Bε \B(aε,dε/2), we argue as in (2.28) and (2.25), we obtain

∫

Bε

∂Gε

∂ν
(x, y)δ8

ε
1
λε

∂δε
∂ak

=O
(

1

λ9/2
ε d6

ε

)

. (2.39)
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Furthermore, since

∣
∣
∣
∣∇

∂Gε

∂ν
(x, y)

∣
∣
∣
∣=O

(
1
d3
ε

)

for (x, y)∈ B(aε,dε/2
)× ∂Bε, (2.40)

we obtain

∣
∣
∣
∣

∫

B(aε ,dε/2)

∂Gε

∂ν
(x, y)δ8

ε
1
λε

∂δε
∂ak

∣
∣
∣
∣≤

c

d3
ε

∫

B(aε ,dε/2)
δ9
ε

∣
∣x− aε

∣
∣=O

(
1

λ3/2
ε d3

ε

)

, (2.41)

where we have used the evenness of δε and the oddness of its derivative. Thus

∂ψk
∂ν

(y)=O
(

1

λ3/2
ε d3

ε

)

. (2.42)

Using (2.35) and (2.42), we obtain

∫

Bε
Δ

(
1
λε

∂Πδε
∂ak

)

Δwε ≤ c

λ3/2
ε d3

ε

∫

∂Bε

∣
∣Δwε

∣
∣. (2.43)

Arguing as in (2.34), claim (i) follows. To prove claim (ii), let ψ be such that

Δ2ψ = δ8−ε
ε Πvoε in Bε; Δψ = ψ = 0 on ∂Bε. (2.44)

We have

∫

Bε
δ8−ε
ε Πvoεwε =

∫

∂Bε

∂Δψ

∂ν
wε +

∫

∂Bε

∂ψ

∂ν
Δwε. (2.45)

As before, we prove that, for y ∈ ∂Bε

∂ψ

∂ν
(y)=O

(∥
∥Πvoε

∥
∥

λ1/2
ε d2

ε

)

,
∂Δψ

∂ν
(y)=O

(∥
∥Πvoε

∥
∥

λ1/2
ε d4

ε

)

. (2.46)

Therefore

∫

Bε
δ8−ε
ε Πvoεwε ≤ c

∥
∥Πvoε

∥
∥

λ1/2
ε d4

ε

(
1

δ3/2
ε

∫

∂Bε

∣
∣wε

∣
∣+

1

δ7/2
ε

∫

∂Bε

∣
∣Δwε

∣
∣
)

≤ c
∥
∥vε
∥
∥
∥
∥Πvoε

∥
∥

(
λεdε

)1/2 . (2.47)

The proof of the lemma is completed. �

Lemma 2.8. For ε small, we have
(i)
∫
Bε δ

7−ε
ε vε(1/λε)(∂δε/∂ak)=O(‖Πvoε‖/λ1/2

ε +‖vε‖/λεd1/2
ε ),

(ii)
∫
Bε δ

7−ε
ε θεvε(1/λε)(∂δε/∂ak)=O(‖Πvoε‖/λεdε +‖vε‖/(λεdε)3/2).

Proof. Claim (i) can be proved in the same way as Lemma 2.6, so we omit its proof. Claim
(ii) follows from Proposition 2.1 and claim (i). �
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Let us now compute the contribution of the following integral which involves v2
ε .

Lemma 2.9. For ε small, we have

∫

Bε
δ7−ε
ε v2

ε
1
λε

∂δε
∂ak

=O
⎛

⎝
∥
∥Πvoε

∥
∥
∥
∥vε
∥
∥+

∥
∥vε
∥
∥2

(
λεdε

)1/2

⎞

⎠ . (2.48)

Proof. Using (2.17) and the fact that the even part of v2
ε has no contribution to the inte-

grals, we obtain

∫

Bε
δ7−ε
ε v2

ε
1
λε

∂δε
∂ak

=
∫

Bε
δ7−ε
ε

1
λε

∂δε
∂ak

(
2vε−wε

)
wε +O

(∥∥Πvoε
∥
∥
∥
∥vε
∥
∥). (2.49)

Let Ψ be the solution of

Δ2Ψ= δ7−ε
ε

1
λε

∂δε
∂ak

(
2vε−wε

)
in Bε; ΔΨ=Ψ= 0 on ∂Bε. (2.50)

Thus, as in the proof of Lemma 2.6, we obtain for y ∈ ∂Bε

∂Ψ

∂ν
(y)=O

( ∥
∥vε
∥
∥

λ1/2
ε d2

ε

)

,
∂ΔΨ

∂ν
(y)=O

( ∥
∥vε
∥
∥

λ1/2
ε d4

ε

)

(2.51)

and therefore

∫

Bε
δ7−ε
ε

1
λε

∂δε
∂ak

(
2vε−wε

)
wε =O

⎛

⎝
∥
∥vε
∥
∥2

(
λεdε

)1/2

⎞

⎠ . (2.52)

Thus our lemma follows. �

Next we are going to estimate the integrals involving the odd part of vε with respect to
(x− aε)k, for 1≤ k ≤ 5.

Lemma 2.10. For ε small, we have

∫

Bε
u9−ε
ε Πvoε = 9

∫

Bε
δ8
ε

(
Πvoε

)2
+ o
(∥∥Πvoε

∥
∥2)

+O

⎛

⎝
∥
∥Πvoε

∥
∥

⎛

⎝ε3/2 +
1

(
λεdε

)3/2

⎞

⎠

⎞

⎠ . (2.53)

Proof. We have

∫

Bε
u9−ε
ε Πvoε = α9−ε

ε

∫

Bε
Pδ9−ε

ε Πvoε + (9− ε)α8−ε
ε

∫

Bε
Pδ8−ε

ε vεΠv
o
ε

+O

(∫

Bε
Pδ7−ε

ε

∣
∣vε
∣
∣2∣∣Πvoε

∣
∣+

∫

Bε

∣
∣vε
∣
∣9−ε∣∣Πvoε

∣
∣
)

= α9−ε
ε

∫

Bε
Pδ9−ε

ε Πvoε + (9− ε)α8−ε
ε

∫

Bε
Pδ8−ε

ε vεΠv
o
ε +O

(∥∥vε
∥
∥2∥∥Πvoε

∥
∥).

(2.54)
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We estimate the two integrals on the right-hand side in (2.54). First, using Proposition 2.1
and the Holder inequality, we have

∫

Bε
Pδ8−ε

ε vεΠv
o
ε =

∫

Bε
δ8−ε
ε vεΠv

o
ε +O

(∥
∥vε
∥
∥
∥
∥Πvoε

∥
∥

λεdε

)

=
∫

Bε
δ8−ε
ε

(
Πvoε

)2
+
∫

Bε
δ8−ε
ε Πvoεwε,

(2.55)

where we have used in the last equality the evenness of δε and Πveε and the oddness of
Πvoε . By Lemmas 2.3 and 2.7 we obtain

∫

Bε
Pδ8−ε

ε vεΠv
o
ε =

∫

Bε
δ8
ε

(
Πvoε

)2
+O

(∥
∥vε
∥
∥
∥
∥Πvoε

∥
∥

(λεdε)1/2

)

. (2.56)

Secondly, we write

∫

Bε
Pδ9−ε

ε Πvoε =
∫

Bε
δ9−ε
ε Πvoε − (9− ε)

∫

Bε
δ8−ε
ε θεΠv

o
ε +O

(∫

Bε
δ7−ε
ε θ2

ε

∣
∣Πvoε

∣
∣
)
. (2.57)

Thus, using the evenness of δε, the oddness of Πvoε and Holder inequality, we obtain

∫

Bε
Pδ9−ε

ε Πvoε =O
⎛

⎝
∥
∥Πvoε

∥
∥

(
λεdε

)2

⎞

⎠ . (2.58)

Using (2.54), (2.56), (2.58) and Propositions 2.2 and 2.4, we easily derive our lemma. �

Lemma 2.11. For ε small, we have

∥
∥Πvoε

∥
∥=O

⎛

⎝ε3/2 +
1

(
λεdε

)3/2

⎞

⎠ . (2.59)

Proof. We write

Πvoε = Π̃v
o

ε +αΠδε +βλε
∂Πδε
∂λ

+
5∑

r=1

γr
1
λε

∂Πδε
∂ar

(2.60)

with

〈
Π̃voε ,Πδε

〉=
〈
Π̃voε ,

∂Πδε
∂λ

�
=
〈
Π̃voε ,

∂Πδε
∂ar

�
= 0 for each r ∈ {1,2,3,4,5}. (2.61)
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Taking the scalar product inH2∩H1
0 (Bε) of (2.60) withΠδε, λε∂Πδε/∂λ, λ−1

ε ∂Πδε/∂ar , 1≤
r≤ 5, provides us with the following invertible linear system in α, β, γr (with 1≤ r≤ 5)

〈
Πδε,Πvoε

〉= α(C′ + o(1)
)

+β
〈
Πδε,λε

∂Πδε
∂λ

�
+

5∑

r=1

γr

〈
Πδε,

1
λε

∂Πδε
∂ar

�

〈
λε
∂Πδε
∂λ

,Πvoε

�
= α

〈
Πδε,λε

∂Πδε
∂λ

�
+β
(
C′′ + o(1)

)
+

5∑

r=1

γr

〈
λε
∂Πδε
∂λ

,
1
λε

∂Πδε
∂ar

�

〈
1
λε

∂Πδε
∂ak

,Πvoε

�
= α

〈
Πδε,

1
λε

∂Πδε
∂ak

�
+β
〈
λε
∂Πδε
∂λ

,
1
λε

∂Πδε
∂ak

�

+
5∑

r=1

γr

〈
1
λε

∂Πδε
∂ak

,
1
λε

∂Πδε
∂ar

�
.

(S)

Observe that

〈
Πδε,λε

∂Πδε
∂λ

�
=O

(
1
λεdε

)

;

〈
λε
∂Πδε
∂λ

,
1
λε

∂Πδε
∂ar

�
=O

⎛

⎝ 1
(
λεdε

)2

⎞

⎠ ;

〈
Πδε,

1
λε

∂Πδε
∂ar

�
=O

⎛

⎝ 1
(
λεdε

)2

⎞

⎠ ;

〈
1
λε

∂Πδε
∂ak

,
1
λε

∂Πδε
∂ar

�
= (C′′′ + o(1)

)
δkr +O

⎛

⎝ 1
(
λεdε

)2

⎞

⎠ ,

(2.62)

where δkr denotes the Kronecker symbol.
Now, because of the evenness of δε and the oddness of Πvoε with respect to (x− aε)k

we obtain

〈
Πδε,Πvoε

〉=
∫

Bε
ΔΠδε ·ΔΠvoε =

∫

Bε
δ9
εΠv

o
ε = 0. (2.63)

In the same way we have

〈
λε
∂Πδε
∂λ

,Πvoε

�
=
〈

1
λε

∂Πδε
∂ar

,Πvoε

�
= 0 for each r �= k. (2.64)

We also have

〈
1
λε

∂Πδε
∂ak

,Πvoε

�
=
∫

Bε
Δ

(
1
λε

∂Πδε
∂ak

)

·Δ(vε−Πveε −wε
)

=
∫

Bε
Δ

(
1
λε

∂Πδε
∂ak

)

·Δvε−
∫

Bε
Δ

(
1
λε

∂Πδε
∂ak

)

·Δwε,

(2.65)
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where we have used in the last equality the fact that Πveε is even with respect to (x− aε)k.
Using (2.37) and Holder inequality, we obtain

∫

Bε
Δ

(
1
λε

∂Πδε
∂ak

)

·Δvε ≤ c
∥
∥vε
∥
∥
(∫

Ω\Bε

∣
∣
∣
∣Δ

1
λε

∂δε
∂ak

∣
∣
∣
∣

2
)1/2

=O
⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)3/2

⎞

⎠ . (2.66)

Equation (2.66) and Lemma 2.7 imply that

〈
1
λε

∂Πδε
∂ak

,Πvoε

�
=O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)3/2

⎞

⎠ . (2.67)

Inverting the linear system (S), we deduce from the above estimates

α=O
⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)7/2

⎞

⎠ , β =O
⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)7/2

⎞

⎠ ,

γk =O
⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)3/2

⎞

⎠ , γr =O
⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)7/2

⎞

⎠ , r �= k.
(2.68)

This implies through (2.60)

∥
∥Πvoε − Π̃voε

∥
∥=O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)3/2

⎞

⎠ ,
∥
∥Πvoε

∥
∥2 = ∥∥Π̃voε

∥
∥2

+O

⎛

⎝
∥
∥vε
∥
∥2

(
λεdε

)3

⎞

⎠ . (2.69)

We now turn to the last step, which consists in estimating ‖Π̃voε‖. Since uε is a solution of
(Pε), we have

∫

Bε
Δ2uεΠv

o
ε =

∫

Bε
u9−ε
ε Πvoε . (2.70)

Because of the evenness of δε and the oddness of Πvoε with respect to (x− aε)k, (2.70)
becomes

∥
∥Πvoε

∥
∥2 =

∫

Bε
u9−ε
ε Πvoε . (2.71)

By (2.69), (2.71) and Lemma 2.10, we obtain

∥
∥Π̃voε

∥
∥2− 9

∫

Bε
δ8
ε

(
Πvoε

)2
+ o
(∥∥Π̃voε

∥
∥2)=O

⎛

⎝ε3 +
1

(
λεdε

)3

⎞

⎠ . (2.72)

Using now (2.72) and the fact that the quadratic form

v �−→
∫

Bε
|Δv|2− 9

∫

Bε
δ8
i v

2 (2.73)
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is positive definite (see [6]) on the subset [Span(Πδε,∂Πδε/∂λ,∂Πδε/∂ak 1 ≤ k ≤
5)]⊥H2∩H1

0 (Bε)
, we obtain

∥
∥Π̃voε

∥
∥≤ C

⎛

⎝ 1
(
λεdε

)3/2 + ε3/2

⎞

⎠ . (2.74)

Our lemma follows from (2.69) and (2.74). �

Before ending this section, let us prove the following estimate which will be needed
later.

Lemma 2.12. For ε small, we have

〈
∂2Pδε
∂λ∂ak

,vε

�
=O

⎛

⎝ 1
(
λεdε

)3/2 + ε3/2

⎞

⎠ . (2.75)

Proof. We have

∫

Ω
Δ

(
∂2Pδε
∂λ∂ak

)

Δvε =
∫

Bε
Δ2

(
∂2Pδε
∂λ∂ak

)

vε +O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)9/2

⎞

⎠

=
∫

Bε
Δ2

(
∂2Pδε
∂λ∂ak

)

Πvoε +
∫

Bε
Δ2

(
∂2Pδε
∂λ∂ak

)

wε +O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)9/2

⎞

⎠ .

(2.76)

For the first integral on the right-hand side in (2.76), we have

∫

Bε
Δ2

(
∂2Pδε
∂λ∂ak

)

Πvoε =O
(∥∥Πvoε

∥
∥)=O

⎛

⎝ 1
(
λεdε

)3/2 + ε3/2

⎞

⎠ , (2.77)

where we have used in the last equality Lemma 2.11.
Now let ψ4 be the solution of

Δ2ψ4 = Δ2

(
∂2Pδε
∂λ∂ak

)

in Bε, Δψ4 = ψ4 = 0 on ∂Bε. (2.78)

Thus, as in the proof of Lemma 2.6, we obtain for y ∈ ∂Bε

∂ψ4

∂ν
(y)=O

(
1

λ1/2
ε d2

ε

)

,
∂Δψ4

∂ν
(y)=O

(
1

λ1/2
ε d4

ε

)

(2.79)

and therefore

∫

Bε
Δ2

(
∂2Pδε
∂λ∂ak

)

wε =O
⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)1/2

⎞

⎠ . (2.80)

From (2.76), (2.77), (2.80) and Proposition 2.4, we easily deduce our lemma. �



Khalil El Mehdi 15

3. Proof of theorems

Let us start by proving the following crucial result.

Proposition 3.1. For uε = αεPδaε ,λε + vε solution of (Pε) with λεε = 1 + o(1) as ε goes to
zero, we have the following estimates

(a) c2ε+O(ε2)− c1(H(aε,aε)/λε) + o(1/λεdε)= 0,
(b) (c3/λ2

ε )(∂H(aε,aε)/∂a)+o(1/(λεdε)2)+O(ε5/2 +ε log(λε)/(λεdε)2 +1/(λεdε)5/2)=0,
where c1, c2 are the constants defined in Theorem 1.1, and where c3 > 0.

Proof. Since claim (a) was proved in [5], we only need to prove claim (b). Multiplying
(Pε) by (1/λε)(∂Pδε/∂ak) and integrating on Ω, we obtain for 1≤ k ≤ 5

0=
∫

Ω
Δ2uε

1
λε

∂Pδε
∂ak

−
∫

Ω
u9−ε
ε

1
λε

∂Pδε
∂ak

= αε
∫

Ω
δ9
ε

1
λε

∂Pδε
∂ak

−
∫

Ω

[
(
αεPδε

)9−ε
+ (9− ε)(αεPδε

)8−ε
vε

+
(9− ε)(8− ε)

2

(
αεPδε

)7−ε
v2
ε

]
1
λε

∂Pδε
∂ak

+O
(∥∥vε

∥
∥3)

.

(3.1)

We estimate each term on the right-hand side in (3.1). First, by Proposition 2.1 and the
Holder inequality, we have

∫

Ω
Pδ7−ε

ε v2
ε

1
λε

∂Pδε
∂ak

=
∫

Ω
δ7−ε
ε v2

ε
1
λε

∂δε
∂ak

+O

(∥
∥vε
∥
∥2

λεdε

)

. (3.2)

Secondly, we compute

∫

Ω
Pδ8−ε

ε vε
1
λε

∂Pδε
∂ak

=
∫

Ω
δ8−ε
ε vε

1
λε

∂Pδε
∂ak

+ (8− ε)
∫

Ω
δ7−ε
ε θεvε

1
λε

∂Pδε
∂ak

+O
(∫

Ω
δ7−ε
ε θ2

ε

∣
∣vε
∣
∣
)

=
∫

Ω
δ8−ε
ε vε

1
λε

∂δε
∂ak

+O
(∫

Ω
δ8−ε
ε

∣
∣vε
∣
∣
∣
∣
∣
∣

1
λε

∂θε
∂ak

∣
∣
∣
∣

)

+ (8− ε)
∫

Ω
δ7−ε
ε θεvε

1
λε

∂δε
∂ak

+O
(∫

Ω
δ7−ε
ε θε

∣
∣vε
∣
∣
∣
∣
∣
∣

1
λε

∂θε
∂ak

∣
∣
∣
∣

)
+O

(∫

Ω
δ7−ε
ε θ2

ε

∣
∣vε
∣
∣
)
.

(3.3)

By Proposition 2.1 and the Holder inequality, we obtain

∫

Ω
δ7−ε
ε θ2

ε

∣
∣vε
∣
∣=O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)2

⎞

⎠ ,
∫

Ω
δ7−ε
ε θε

∣
∣vε
∣
∣
∣
∣
∣
∣

1
λε

∂θε
∂ak

∣
∣
∣
∣=O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)3

⎞

⎠ ,

∫

Ω
δ8−ε
ε

∣
∣vε
∣
∣
∣
∣
∣
∣

1
λε

∂θε
∂ak

∣
∣
∣
∣=O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)2

⎞

⎠ .

(3.4)
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We also have by Proposition 2.2

∫

Ω
δ8−ε
ε vε

1
λε

∂δε
∂ak

=
∫

Ω
δ8
ε

(

δ−εε − c−ε0

λε/2ε

)

vε
1
λε

∂δε
∂ak

=
∫

Bε
δ8
ε

(

δ−εε − c−ε0

λε/2ε

)

vε
1
λε

∂δε
∂ak

+O

⎛

⎝
∥
∥vε
∥
∥

(
λεdε

)9/2

⎞

⎠ .

(3.5)

Using (2.17), Lemma 2.3 and the Holder inequality, we derive that

∫

Ω
δ8−ε
ε vε

1
λε

∂δε
∂ak

=
∫

Bε
δ8
ε

(

δ−εε − c−ε0

λε/2ε

)
1
λε

∂δε
∂ak

wε +O

⎛

⎝ε
∥
∥Πvoε

∥
∥+

∥
∥vε
∥
∥

(
λεdε

)9/2

⎞

⎠

=O
⎛

⎝ ε
∥
∥vε
∥
∥

(
λεdε

)1/2 + ε
∥
∥Πvoε

∥
∥+

∥
∥vε
∥
∥

(
λεdε

)9/2

⎞

⎠ ,

(3.6)

where we have used Lemma 2.6 in the last equality.
Using (3.2)–(3.6), Lemmas 2.5, 2.8, 2.9, Proposition 2.2 and the fact that λεε = 1 +

O(ε logλε), we easily derive our result. �

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Let (uε) be a solution of (Pε) which satisfies (H). Then, using
Proposition 2.2, uε = αεPδaε ,λε + vε with αε → 1, λεε → 1, λεd(aε,∂Ω)→∞, vε satisfies (V0)
and ‖vε‖→ 0. Now, using claim (a) of Proposition 3.1, we derive that

ε= c1

c2

H
(
aε,aε

)

λε
+ o

(
1
λεdε

)

=O
(

1
λεdε

)

. (3.7)

Therefore, it follows from claim (b) of Proposition 3.1 that

∂H
(
aε,aε

)

∂a
= o

(
1
d2
ε

)

. (3.8)

Using (3.8) and the fact that for a near the boundary (∂H/∂a)(aε,aε)∼ cd(aε,∂Ω)−2, we
derive that aε is away from the boundary and it converges to a critical point x0 of ϕ.

Finally, using (3.7), we obtain

ελε −→ c1

c2
ϕ
(
x0
)

as ε −→ 0. (3.9)

By Proposition 2.2, we have

∥
∥uε

∥
∥2
L∞ ∼ c2

0λε as ε −→ 0. (3.10)

This concludes the proof of Theorem 1.1. �

The sequel of this section is devoted to the proof of Theorem 1.2.
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Proof of Theorem 1.2. Let x0 be a nondegenerate critical point of ϕ. It is easy to see that
d(a,∂Ω) > d0 > 0 for a near x0. We will take a function u = αPδ(a,λ) + v where (α− α0)
is very small, λ is large enough, ‖v‖ is very small, a is close to x0 and α0 = S−5/8 and we
will prove that we can choose the variables (α,λ,a,v) so that u is a critical point of Jε with
‖u‖ = 1. Here Jε denotes the functional corresponding to problem (Pε) defined by

Jε(u)=
(∫

Ω
|Δu|2

)(∫

Ω
|u|10−ε

)−2/(10−ε)
. (3.11)

Let

Mε =
{

(α,λ,a,v)∈R∗+ ×R∗+ ×Ω×�(Ω)/
∣
∣α−α0

∣
∣ < ν0,

da > d0, λ > ν−1
0 , ε logλ < ν0, ‖v‖ < ν0 and v ∈ E(a,λ)

}
,

(3.12)

where ν0 and d0 are two suitable positive constants and where da = d(a,∂Ω).
Let us define the functional

Kε :Mε −→R, Kε(α,a,λ,v)= Jε
(
αPδ(a,λ) + v

)
. (3.13)

It is known that (α,λ,a,v) is a critical point of Kε if and only if u= αPδ(a,λ) + v is a critical
point of Jε on �(Ω). So this fact allows us to look for critical points of Jε by successive
optimizations with respect to the different parameters on Mε.

First, arguing as in [25, Proposition 4] we see that the following problem

min
{
Jε
(
αPδ(a,λ) + v

)
, v satisfying

(
V0
)

and ‖v‖ < ν0
}

(3.14)

is achieved by a unique function v which satisfies the estimate of Proposition 2.4. This
implies that there exist A, B and Ci’s such that

∂Kε
∂v

(α,λ,a,v)=∇Jε
(
αPδ(a,λ) + v

)= APδ(a,λ) +B
∂

∂λ
Pδ(a,λ) +

5∑

i=1

Ci
∂

∂ai
Pδ(a,λ), (3.15)

where ai is the ith component of a.
According to [5], we have that

A=O
(
ε logλ+ |β|+

1
λ

)
, B =O(λε+ 1

)
, Cj =O

(
ε2

λ
+

1
λ3

)
. (3.16)

To find critical points of Kε, we have to solve the following system

∂Kε
∂α

= 0

∂Kε
∂λ

= B
〈
∂2Pδ

∂λ2
, v̄
�

+
5∑

i=1

Ci

〈
∂2Pδ

∂λ∂ai
, v̄
�

∂Kε
∂aj

= B
〈
∂2Pδ

∂λ∂aj
, v̄
�

+
5∑

i=1

Ci

〈
∂2Pδ

∂ai∂aj
, v̄
�

, for each j = 1, . . . ,5.

(E1)
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Observe that forψ = Pδ(a,λ), ∂Pδ(a,λ)/∂λ, ∂Pδ(a,λ)/∂ai with i= 1, . . . ,5 and for u= αPδ(a,λ) +
v, we have

〈∇Jε(u),ψ
〉= 2Jε(u)

(
α
〈
Pδ(a,λ),ψ

〉− Jε(u)5−ε/2
∫

Ω
|u|8−εuψ

)
. (3.17)

We also have (see [5])

Jε
(
αPδ(a,λ) + v

)= S+O
(
ε logλ+

1
λ

)
, (3.18)

∂Kε
∂α

= 〈∇Jε(αPδ + v),Pδ
〉= 2Jε(u)

(
αS5/4(1−α8S5)+O

(
ε logλ+

1
λ

))
, (3.19)

λ
∂Kε
∂λ

=
〈
∇Jε(αPδ + v),λ

∂Pδ

∂λ

�
= Jε(u)

(
αc1

H(a,a)
λ

(
1− 2α8S5)+ c2S

5α9ε

+O
(
ε2 logλ+

ε logλ
λ

+
1
λ3

))
.

(3.20)

Following the proof of claim (b) of Proposition 3.1, we obtain, for each j = 1, . . . ,5,

1
λ

∂Kε
∂aj

=
〈
∇Jε(αPδ + v),

1
λ

∂Pδ

∂aj

�
=− cα

2λ2

∂H(a,a)
∂a

(
1− 2α8S5)+O

(

ε5/2 +
ε logλ
λ2

+
1
λ5/2

)

.

(3.21)

On the other hand, one can easily verify that

∥
∥
∥
∥
∥
∂2Pδ

∂λ2

∥
∥
∥
∥
∥=O

(
1
λ2

)
,

∥
∥
∥
∥
∥
∂2Pδ

∂ai∂aj

∥
∥
∥
∥
∥=O

(
λ2). (3.22)

Now, we take the following change of variables:

α= α0 +β, a= x0 + ξ,
1
λ1/2

=
√
c2

c1

⎛

⎝ 1
√
H
(
x0,x0

) + ρ

⎞

⎠√ε. (3.23)

Then, using estimates (3.18)–(3.22), Lemma 2.12, Proposition 2.4 and the fact that x0 is
a nondegenerate critical point of ϕ, the system (E1) becomes

β =O(ε| logε|+ |β|2)

ρ=O(ε| logε|+ |β|2 + |ξ|2 + ρ2)

ξ =O(|β|2 + |ξ|2 + ε1/2).

(E2)

Thus Brower’s fixed point theorem shows that the system (E2) has a solution (βε,ρε,ξε)
for ε small enough such that

βε =O
(
ε| logε|), ρε =O

(
ε| logε|), ξε =O

(
ε1/2). (3.24)
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By construction, the corresponding uε is a critical point of Jε that iswε=Jε(uε)(5−ε/2)/(8−ε)uε
satisfies

Δ2wε =
∣
∣wε

∣
∣8−ε

wε in Ω, wε = Δwε = 0 on ∂Ω (3.25)

with |w−ε |L10(Ω) very small, where w−ε =max(0,−wε).
As in [7, Proposition 4.1], we prove that w−ε = 0. Thus, since wε is a non-negative

function which satisfies (3.25), the strong maximum principle ensures that wε > 0 on Ω
and then wε is a solution of (Pε), which blows up at x0 as ε goes to zero. This ends the
proof of Theorem 1.2. �
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