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1. Introduction

Recently, the existence and multiplicity of periodic solutions for second-order neutral
delay equations have received a good deal of attention (see, e.g., [3, 4, 7]). In [4], Wang
and Yan studied the second-order neutral delay equation

[
x(t) + cx(t− τ)

]′′
+ g
(
t,x(t− σ)

)= p(t), (1.1)

where τ, σ , and c are real constants with τ ≥ 0, σ ≥ 0, |c| < 1, g(t,x) is a T-periodic
function for t > 0 and, for an arbitrary bounded domain D ⊂ R, g(t,x) is a Lipschitz-

function on [0,T]×D. Moreover, p ∈ C(R,R), p(t +T) = p(t) and
∫ T

0 p(t)dt = 0. They
obtained sufficient conditions which guarantee the existence of at least one T-periodic
solution for the above system.

However, for the existence of periodic solutions of functional differential equations,
previous authors have used, mainly, fixed point theory, coincidence degree theory, Fourier
analysis, and so forth. They have rarely used critical point theory. In [5, 6], the authors ob-
tained multiple periodic solutions for a class of retarded differential equations by means
of critical point theory and Zp-group index theory. These results were obtained by reduc-
ing retarded differential equations to related ordinary differential equations.

The purpose of this paper is to establish a variational framework with delayed vari-
ables for a class of neutral differential equations. Unlike the papers [5, 6], our approach
enables us to obtain by critical point theory and Z2-group index theory the existence of
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2 Periodic solutions of neutral delay equations

nontrivial periodic solutions to such equations without reducing them to ordinary differ-
ential equations. To this end, we give below some preliminary material about Z2-group
index theory and critical points.

In what follows, E is a real Banach space with norm ‖ · ‖.

Definition 1.1. A “critical point” of f ∈ C1(E,R) is a point x ∈ E for which f ′(x)= 0. A
“critical value” of f is a number c such that f (x) = c for some critical point x. The set
K = {x ∈ E | f ′(x)= 0} is the “critical set” of f . We denote by Kc the set {x ∈ E | f ′(x)=
0, f (x)= c}. The “critical level” set fc of f is defined by fc = {x ∈ E | f (x)≤ c}.
Definition 1.2. Let f ∈ C1(E,R). We say that f satisfies the “Palais-Smale” condition if
every sequence {xn} ⊂ E such that { f (xn)} is bounded and f ′(xn)→ θ as n→∞ has a
convergent subsequence.

We say that a closed symmetric set A⊂ E satisfies property � if, for some n∈ Z+, there
exists an odd continuous function ϕ : A→ Rn \ {θ}. Let NA ⊂ Z be defined as follows:
n∈NA if and only if A satisfies property � with this n.

Definition 1.3. Let E be real Banach space, and
∑= {A |A⊂ E \ {θ} a closed, symmetric

set}. Define γ :
∑→ Z+

⋃{+∞} as follows:

γ(A)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minNA if NA 
= ∅,

0 if A=∅,

+∞ if A 
= ∅, but NA =∅.

(1.2)

We say that “γ is the genus of
∑

.” We let i1( f )= lima→−0 γ( fa) and i2( f )= lima→−∞ γ( fa).

Lemma 1.4 (Chang [1]). Let f ∈ C1(E,R) be an even functional which satisfies the Palais-
Smale condition and f (θ)= 0. Then

(F1) if there exists an m-dimensional subspace X of E and ρ > 0 such that

sup
x∈X⋂Sρ

f (x) < 0, (1.3)

then we have i1( f )≥m;
(F2) if there exists a j-dimensional subspace X̃ of E such that

inf
x∈X̃⊥

f (x) >−∞, (1.4)

we have i2( f )≤ j.
If m≥ j and (F1), (F2) hold, then f has at least 2(m− j) distinct critical points.

In this paper, we use Lemma 1.4 to show the existence of multiple periodic solutions
of the following second-order neutral delay equations:

x′′(t− τ) + λ(t) f
(
t,x(t),x(t− τ),x(t− 2τ)

)= x(t− τ), λ(t) > 0, τ > 0. (1.5)

Our basic assumptions are the following:
(A1) f (t,x1,x2,x3)∈ C(R4,R), and ∂ f (t,x1,x2,x3)/∂t 
= 0;
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(A2) there exists a continuously differentiable function F ∈ C1(R3,R) with such that

F′u2

(
t,u1,u2

)
+F′u2

(
t,u2,u3

)= f
(
t,u1,u2,u3

)
; (1.6)

(A3) F(t+ τ,u1,u2)= F(t,u1,u2) for all u1,u2 ∈ R, and λ(t) is τ-periodic in t.
(A4) F satisfies: F(t,−u1,−u2)= F(t,u1,u2), and

f
(
t,−u1,−u2,−u3

)=− f
(
t,u1,u2,u3

)
. (1.7)

By assumption (A2), we have

F′u1

(
t,x(t− τ),x(t− 2τ)

)
+F′u2

(
t,x(t),x(t− τ)

)= f (t,x(t),x(t− τ),x
(
t− 2τ)

)
. (1.8)

Thus, under assumptions (A1)–(A4), we only need to study the following equation:

x′′(t− τ)− x(t− τ) + λ(t)
[
Fu1

(
t,x(t− τ),x(t− 2τ)

)
+Fu2

(
t,x(t),x(t− τ)

)]= 0. (1.9)

2. Variational structure

Fix γ > 0, τ > 0, and consider

H1
2γτ =

{
x ∈ L2[0,2γτ] | x(t) is a continuously differentiable 2γτ-periodic function in t

}
.

(2.1)

It is obvious that H1
2γτ is a Sobolev space with inner product and norm defined by

〈x, y〉H1
2γτ
=
∫ 2γτ

0

[
x(t)y(t) + x′(t)y′(t)

]
dt,

‖x‖H1
2γτ
=
∣
∣
∣
∣

∫ 2γτ

0

[∣
∣x(t)

∣
∣2

+
∣
∣x′(t)

∣
∣2
]
dt
∣
∣
∣
∣

1/2

, ∀x, y ∈H1
2γτ .

(2.2)

Moreover, x ∈H1
2γτ can be expressed as follows;

x(t)= a0 +
∞∑

k=1

(

ak cos
kπ

γτ
t+ bk sin

kπ

γτ
t

)

. (2.3)

Let us consider the functional I(x) defined on H1
2γτ as follows:

I(x)=
∫ 2γτ

0

[
1
2

(∣
∣x′(t)

∣
∣2

+
∣
∣x(t)

∣
∣2
)
− λ(t)F

(
t,x(t),x(t− τ)

)
]
dt. (2.4)
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For all x, y ∈H1
2γτ and ε > 0, we know that

I(x+ εy)= I(x) + ε
∫ 2γτ

0

[
x(t)y(t) + x′(t)y′(t)

− λ(t)
(
F′u1

(
t,x(t) + εθ(t)y(t),x(t− τ)

)
y(t)

+F′u2

(
t,x(t),x(t− τ) + εθ(t)y(t− τ)

)
y(t− τ)

)]
dt

+
ε2

2

∫ 2γτ

0

[
y2(t) +

∣
∣y′(t)

∣
∣2
]
dt ∀x, y ∈H1

2γτ , 0 < θ(t) < 1.

(2.5)

It is easy to see that

〈
I′(x), y

〉=
∫ 2γτ

0

[
x′(t)y′(t) + x(t)y(t)− λ(t)F′u1

(
t,x(t),x(t− τ)

)
y(t)

− λ(t)F′u2

(
t,x(t),x(t− τ)

)
y(t− τ)

]
dt.

(2.6)

By the periodicity of F(t,u1,u2), λ(t), x(t), x(t− τ), and y(t), we get

∫ 2γτ

0
λ(t)F′u2

(
t,x(t),x(t− τ)

)
y(t− τ)dt =

∫ (2γ−1)τ

−τ
λ(t+ τ)F′u2

(
t+ τ,x(t+ τ),x(t)

)
y(t)dt

=
∫ 2γτ

0
λ(t)F′u2

(
t,x(t+ τ),x(t)

)
y(t)dt.

(2.7)
Hence,

〈
I′(x), y

〉=
∫ 2γτ

0

[− x′′(t) + x(t)− λ(t)
(
F′u1

(
t,x(t),x(t− τ)

)

+F′u2

(
t,x(t+ τ),x(t)

))]
y(t)dt.

(2.8)

Therefore, the Euler equation corresponding to the functional I(x) is

x′′(t)− x(t) + λ(t)
[
F′u1

(
t,x(t),x(t− τ)

)
+F′u2

(
t,x(t+ τ),x(t)

)]= 0. (2.9)

It is easy to see that (2.9) is equivalent to (1.9). Thus, system (1.9) is the Euler equation of
the functional I(x). It follows that it is possible to obtain 2γτ-periodic solutions of system
(1.5) by seeking critical points of the functional I(x).

3. Main results

Theorem 3.1. Let assumptions (A1)–(A4) be satisfied and assume, further, that the function
F(t,u1,u2) satisfies the following:

(C1) F(t,0,0)= 0,∀t ∈ [0,τ];
(C2)

lim
|u|→0

F
(
t,u1,u2

)

|u|2 = 1, (3.1)

where |u| =
√
u2

1 +u2
2;
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(C3) there exists α > 0 such that F(t,u1,u2) < 0 whenever u2
1 +u2

2 > α, t ∈ [0,τ].
Let m=mint∈[0,τ] λ(t) > 0. Then, for

m>
n2
(
π2 + γ2τ2

)

4γτ2
, (3.2)

problem (1.5) has at least 2n nontrivial 2γτ-periodic solutions.

It is not difficult to see that x(t) is a solution of system (1.5), then −x(t) is also a
solution of system (1.5) by assumption (A4), that is, the solutions of system (1.5) is a set
that symmetric with respect to the origin in H1

2γτ . On the other hand , if we let η(t,x)=
F(t,x(t),x(t− τ)), it is easy to see that η(t,x) is an even function in x, so I(x) an even
function in x and we can show that Theorem 3.1 holds by Lemma 1.4.

In order to exploit Lemma 1.4 to find the critical points of function I(x) in (2.4), one
need to verify all the assumptions. First of all, we point out that the functional I(·) defined
on H1

2γτ satisfies the Palais-Smale condition, that is, we have the following lemma.

Lemma 3.2. Under assumptions (A1)–(A3) and the conditions (C1)–(C3), I(u) satisfies the
P.S. condition.

Proof. Let {un} ⊂H1
2γτ and the constants c1,c2 satisfy

c1 ≤ I
(
un
)≤ c2, (3.3)

I′
(
un
)−→ 0 (n−→∞). (3.4)

The above equality is equivalent to

c1 ≤
∫ 2γτ

0

[
1
2

(∣
∣u′n(t)

∣
∣2

+
∣
∣un(t)

∣
∣2
)
− λ(t)F

(
t,un(t),un(t− τ)

)
]
dt ≤ c2, (3.5)

sup
∣
∣
∣
∣

∫ 2γτ

0

[
u′n(t)v′(t) +un(t)v(t)

]
dt−
∫ 2γτ

0
λ(t)F′u1

(
t,un(t),un(t− τ)

)
v(t)dt

−
∫ 2γτ

0
λ(t)F′u2

(
t,un(t+ τ),un(t)

)
v(t)dt

∣
∣
∣
∣−→ 0 (n−→∞),

(3.6)

where v(t)∈H1
2γτ ,‖v‖ = 1. Inequality (3.6) is equivalent to

sup
∣
∣
∣
∣

∫ 2γτ

0

[
u′n(t)v′(t) +un(t)v(t)

]
dt−
∫ 2γτ

0
λ(t)F′u1

(
t,un(t),un(t− τ)

)
v(t)dt

−
∫ 2γτ

0
λ(t)F′u2

(
t,un(t),un(t− τ)

)
v(t− τ)dt

∣
∣
∣
∣−→ 0 (n−→∞)

(3.7)

with v(t)∈H1
2γτ , ‖v‖ = 1.

Letting zn = I′(un) and εn = ‖zn‖, we have εn→ 0 as n→∞.
Replacing v by un in (3.7), we have

∥
∥un
∥
∥2
H1

2γτ
=
∫ 2γτ

0

[
λ(t)F′u1

(
t,un(t),un(t− τ)

)
un(t)

+ λ(t)F′u2

(
t,un(t),un(t− τ)

)
un(t− τ)

]
dt+
〈
zn,un

〉
.

(3.8)
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By condition (C3), we know that F(t,un(t),un(t− τ)) has an upper bound. Thus, by

maxF
(
t,un(t),un(t− τ)

)= max
(t,u1,u2)∈[0,τ]×[−α,α]×[−α,α]

F(t,u1,u2)= R > 0, (3.9)

we get that
∫ 2γτ

0 F(t,un(t),un(t − τ))dt ≤ 2γτR. Let M = 2γτR, Q = maxt∈[0,τ] λ(t) > 0,
then

I
(
un
)=
∫ 2γτ

0

[
1
2

(∣
∣u′n(t)

∣
∣2

+
∣
∣un(t)

∣
∣2
)
− λ(t)F

(
t,un(t),un(t− τ)

)
]
dt

≥ 1
2

∥
∥un
∥
∥2
H1

2γτ
−QM.

(3.10)

By (3.5) and (3.10), it is easy to see

∥
∥un
∥
∥
H1

2γτ
≤
√

2QM + 2c2, (3.11)

that is, ‖un‖H1
2γτ

is bounded.

SinceH1
2γτ is the Hilbert space of all continuously differentiable 2γτ-periodic functions

and for a continuously 2γτ-periodic functions convergence sequences {xn} converges to
a 2γτ-periodic function, it is not difficult to proof that conjugate space of H1

2γτ is

H1∗
2γτ =

{
x(t)∈ L2[0,2γτ] | x(t) is continuously

differentiable 2γτ-periodic function in t
}
.

(3.12)

Since H1
2γτ is a reflexive Banach space, that there exists a subsequence of {un} which is

weakly convergent in H1
2γτ . We denote, again, by {un} and suppose that un⇀ u0 in H1

2γτ

as n→∞.
By (3.8) and the boundedness of ‖un‖, we get

∥
∥un
∥
∥2
H1

2γτ
−
∫ 2γτ

0
λ(t)F′u1

(
t,un(t),un(t− τ)

)
un(t)dt

−
∫ 2γτ

0
λ(t)F′u2

(
t,un(t),un(t− τ)

)
un(t− τ)dt −→ 0 (n−→∞).

(3.13)

On the other hand, the weak convergence of {un} of H1
2γτ implies the uniform conver-

gence of {un} in C([0,1],R)(see [2]). Hence,

∥
∥un
∥
∥2
H1

2γτ
−→
∫ 2γτ

0
λ(t)F′u1

(
t,un(t),un(t− τ)

)
un(t)dt

+
∫ 2γτ

0
λ(t)F′u2

(
t,un(t),un(t− τ)

)
un(t− τ)dt (n−→∞).

(3.14)

This means that ‖un‖ is convergent in H1
2γτ , that is, the function I satisfy P.S. condition.

�
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Lemma 3.3. Under assumptions (A1)–(A4) and conditions (C1)–(C3), there exists an n-
dimensional subspace En of H1

2γτ and ρ > 0 such that

sup
x∈En

⋂
Sρ

I(x) < 0, (3.15)

that is, we have i1( f )≥ n.

Proof. Let βk(t)= (γτ/kπ)cos, (kπ/γτ)t, k = 1,2,3, . . . ,n, . . . , then

∫ 2γτ

0

∣
∣βk(t)

∣
∣2
dt = γ2τ2

k2π2
γτ,

∫ 2γτ

0

∣
∣β′k(t)

∣
∣2
dt = γτ. (3.16)

We define the n-dimensional linear space En as follows:

En = span
{
β1(t),β2(t), . . . ,βn(t)

}
. (3.17)

Obviously, En is symmetric. Suppose that ρ > 0. Then

En
⋂

Sρ =
⎧
⎨

⎩

n∑

k=0

bkβk

∣
∣
∣
∣
∣

n∑

k=0

b2
kγτ

(

1 +
γ2τ2

k2π2

)

= ρ2

⎫
⎬

⎭ . (3.18)

On the other hand, we may choose ε > 0 such that 0 < ε < (mn2π2/γ2τ2)(2γ2τ2/n2− (π2 +
γ2τ2)/m). Then, by condition (F2), we know that there exists δ > 0 such that

λ(t)F
(
t,x(t),x(t− τ)

)≥ (λ(t)− ε
)[∣∣x(t)

∣
∣2

+
∣
∣x(t− τ)

∣
∣2
]

≥ (m− ε)
[∣
∣x(t)

∣
∣2

+
∣
∣x(t− τ)

∣
∣2
]

∀t ∈ [0,2γτ],
(3.19)

whenever (‖xn(t)‖2
C + ‖x(t− τ‖2

C) ≤ δ, where ‖xn(t)‖2
C =max0≤t≤2γτ |x(t)|. Thus, when

we choose ρ= δ, we get, by the periodicity of x(t), x(t− τ),

I(x)=
∫ 2γτ

0

[
1
2

(∣
∣x′(t)

∣
∣2

+
∣
∣x(t)

∣
∣2
)
− λ(t)F

(
t,x(t),x(t− τ)

)
]
dt

≤ 1
2

n∑

k=0

γτb2
k

(

1 +
γ2τ2

k2π2

)

− (m− ε)
∫ 2γτ

0

[∣∣x(t)
∣
∣2

+
∣
∣x(t− τ)

∣
∣2]

dt

≤ 1
2

n∑

k=0

γτb2
k

(

1 +
γ2τ2

k2π2

)

− 2(m− ε)
∫ 2γτ

0

∣
∣x(t)

∣
∣2
dt

≤ 1
2

n∑

k=0

γτb2
k

(

1 +
γ2τ2

k2π2

)

− 2(m− ε)
n∑

k=0

γτb2
k

γ2τ2

k2π2

≤ 1
2

n∑

k=0

γτb2
k

(

1 +
γ2τ2

π2

)

− 2(m− ε)
n∑

k=0

γτb2
k

γ2τ2

n2π2

≤ mγτ

2π2

(
π2 + γ2τ2

m
− 4γ2τ2

n2
+ ε

γ2τ2

mn2π2

)

< 0 ∀x ∈ En
⋂

Sρ,

(3.20)

that is, Lemma 3.3 holds true. �



8 Periodic solutions of neutral delay equations

Remark 3.4. The above equality makes use of

m>
n2
(
π2 + γ2τ2

)

4γτ2
, 0 < ε <

mn2π2

γ2τ2

(
2γ2τ2

n2
− π2 + γ2τ2

m

)

. (3.21)

From (3.10) we know that I(x) has a lower bound, that is, i2(I)= 0. On the other hand,
by condition (C1), we get I(θ)= 0. So, by Lemmas 3.2 and 3.3, we obtain Theorem 3.1.

Example 3.5. Let

F
(
t,u1,u2

)= u2
1 +u2

2−
[

1 + sin2 πt

τ

]
(
u2

1 +u2
2

)2
. (3.22)

Then

Fu1

(
t,x(t− τ),x(t− 2τ)

)
+Fu2

(
t,x(t),x(t− τ)

)

= 4x(t− τ)−
[

1 + sin2 πt

τ

]
(
4
(
x2(t− τ) + x2(t− 2τ)

)
x(t− τ)

+ 4
(
x2(t) + x2(t− τ)

)
x(t− τ)

)

= 4x(t− τ)− 4
[

1 + sin2 πt

τ

]
(
x2(t) + 2x2(t− τ) + x2(t− 2τ)

)
x(t− τ).

(3.23)

Let

f1
(
t,x(t),x(t− τ),x(t− 2τ)

)

= 4x(t− τ)− 4
[

1 + sin2 πt

τ

]
(
x2(t) + 2x2(t− τ) + x2(t− 2τ)

)
x(t− τ).

(3.24)

It is easy to see that f1(t,−u1,−u2,−u3)=− f1(t,u1,u2,u3) and

lim
|u|→0

F(t,u1,u2)
|u|2 = lim

|u|→0

u2
1 +u2

2−
[
1 + sin2(πt/τ)

](
u2

1 +u2
2

)2

u2
1 +u2

2
= 1. (3.25)

Since

F
(
t,u1,u2

)
< 0, ∀t ∈ [0,τ], (3.26)

whenever u2
1 + u2

2 > 1, all the conditions of Theorem 3.1 hold true. By Theorem 3.1, we
get that the problem

x′′(t− τ) + λ(t) f1(t,x(t),x(t− τ),x(t− 2τ))= x(t− τ), (3.27)

with λ(t) continuous and positive, has at least 2n nontrivial 2γτ-periodic solutions when
m> n2(π2 + γ2τ2)/4γτ2. Where m=mint∈[0,τ] λ(t).
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