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Abstract. This paper is devoted to the development of a local degree for
multi-valued vector fields of the form f − F . Here, f is a single-valued,
proper, nonlinear, Fredholm, C1-mapping of index zero and F is a multi-
valued upper semicontinuous, admissible, compact mapping with compact
images. The mappings f and F are acting from a subset of a Banach space
E into another Banach space E1. This local degree is used to investigate the
existence of solutions of a certain class of operator inclusions.

0. Introduction

An important part of the theory of multi-valued mappings is devoted to
inclusions of the type f(x) ∈ F (x), where f is a single-valued mapping and
F is a multi-valued mapping. Such inclusion types can be found in differ-
ent branches of mathematics, e.g., optimal control problems, mathematical
economics, game theory.

For the solution of such problems we often employ topological invariant
methods. In particular, we use the theory of topological degree, the rotation
of a vector field, etc.

In this paper we study the following case: f is a nonlinear Fredholm
mapping and F is an admissible, compact, multi-valued mapping. For this
purpose we introduce the concept of the local topological degree for mappings
of the form f −F. We thus generalize the results given by the authors in [2].

For the construction of the local degree we study the degree of an ad-
missible ∗-pair (p; q). This degree is defined for mappings which are acting
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from a finite-dimensional manifold to a finite-dimensional vector space. This
process generalizes the construction of the coincidence index which has been
introduced by Kucharski [13].

A topological degree for mappings f − F in the case when F is a com-
pact multi-valued mappings with convex images has been constructed in the
article of Borisovich [3]. When the multi-valued mapping F is condensing
relatively to the mapping f, a topological degree has been constructed in
the papers [4] and [5] .

The local degree constructed in this paper is employed to investigate the
existence of solutions of a class of operator inclusions.

1. A degree for admissible ∗-pairs in the finite-dimensional case
Let (X,A) and (Y,B) be two pairs of Hausdorff topological spaces, and

let p : (Y,B)→ (X,A) be a continuous single-valued mapping.

Definition 1.1. The mapping p is called a“Vietoris” mapping if
1. p is proper and surjective;
2. p−1(x) is acyclic for every x ∈ X.
The mapping p induces the homomorphisms p∗ of the Čech homology

groups with compact support and coefficients in Q. For more information
about the Čech homology groups, the reader is referred to [17].

Theorem 1.2. [11] If p : (Y,B) −→ (X,A) is a Vietoris mapping, then the
homomorphism p∗ : H(Y,B) −→ H(X,A) is an isomorphism.

Definition 1.3. A pair of mappings (p; q) which satisfies:
1. p : (Y,B) −→ (X,A) is a Vietoris mapping,
2. q : (Y,B) −→ (Z,C) is a continuous mapping

is called ∗-pair.

Let Mn be a n-dimensional manifold, Rn a n-dimensional topological
vector space and X a topological space. Let p and q be two single-valued
mappings of the form :

Mn p←− X q−→ Rn.

The pair (p; q) is called an “admissible ∗-pair” if the subset K = p ◦ q−1(θ)
of Mn is compact.

We shall give a construction of a local degree for this class of pairs of
single-valued mappings.

Consider an admissible ∗-pair (p; q). Then we have

(Mn;Mn\K)
p←− (X;X\q−1(θ))

q−→ (Rn;Rn\θ),
and we can thus deduce the following diagram:

Hn(Mn;Mn\K)
p∗←− Hn(X;X\q−1(θ))

q∗−→ Hn(Rn;Rn \θ).
Using Theorem 1.2, we confirm that p∗ is an isomorphism and we can thus
define the homomorphism

(p; q)∗ = q∗ ◦ p−1
∗ : Hn(Mn;Mn\K) −→ Hn(Rn;Rn\θ).
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Suppose now thatMn is oriented with a fixed orientation O ∈ Γ(Mn;Q). Let
OK be the fundamental class of the compact set K and let Oθ be the funda-
mental class of the zero θ ∈ Rn. The homomorphism (p; q)∗ transforms OK

into Oθ multiplied by an integer γθ( p; q). Thus,

(p; q)∗(OK) = q∗ ◦ p−1
∗ (OK) = γθ(p; q) · (Oθ).

Definition 1.4. The integer γθ(p; q), defined above, is called the “local de-
gree” of the admissible ∗-pair (p; q).

In some particular cases we will denote this degree by γθ [(p; q),Mn] .
We now consider some properties of this degree.
Let (p; q) be an admissible ∗-pair and K1 a compact subset of Mn such

that
K = p ◦ q−1(θ) ⊂ K1.

We consider the mappings

(Mn;Mn\K1)
∼
p←− (X;X\p−1(K1))

∼
q−→ (Rn;Rn\θ),

where
∼
p and

∼
q are the restrictions of p and q, respectively.

Proposition 1.5. The homomorphism (
∼
p;

∼
q)∗ transforms the fundamental

class OK1 into the fundamental class Oθ multiplied by γθ(p; q).

The proof of this fact is a consequence of the commutativity of the corre-
sponding diagram.

Definition 1.6 (Homotopy). Two admissible ∗-pairs (p0; q0)and (p1; q1) such
that

Mn pi←− Xi
qi−→ Rn, i = 0, 1,

are called “homotopic” if and only if the following conditions are satisfied:
1. there exists an admissible ∗-pair (p; q) such that

Mn × [0, 1]
p←− X q−→ Rn;

2. there exist two continuous mappings such that

hi : Xi −→ X; i = 0, 1,

and the following diagram is commutative:

Mn pi✛ Xi

❄ ❄

χi hi

❆
❆
❆
❆
❆

qi

Mn × [0, 1] p✛ X ✲q Rn,

where χi(x) = (x, i), i = 0, 1.
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Proposition 1.7 (Homotopy Invariance). Let (pα; qα), α = 0, 1, be two ad-
missible ∗-pairs which are homotopic. Let (p; q) be the homotopy connecting
them such that

Mn × [0, 1]
p←− X q−→ Rn.

If K = ∪λ∈[0,1]Kλ is compact and Kλ = pλ ◦ q−1
λ (θ), where pλ and qλ are the

restrictions of p and q on the set p−1(Mn×λ) respectively, then γθ(p0; q0) =
γθ(p1; q1).

The proof of this proposition is an analogue of the same theorem in [13].

Proposition 1.8 (Product). Let (p1; q1) and (p2; q2) be two admissible ∗-
pairs of the forms

Mn
1

p1←− X1
q1−→ Rn and Mm

2
p2←− X2

q2−→ Rm,

respectively. If

Mn
1 ×Mm

2
p1×p2←− X1 ×X2

q1×q2−→ Rn ×Rm,

then (p1 × p2; q1 × q2) is also an admissible ∗-pair and

γθ(p1 × p2; q1 × q2) = γθ(p1; q1) · γθ(p2; q2).
The proof of this proposition is a consequence of the formula of Kunetta

and the corresponding commutative diagram.
LetMn be an oriented manifold of class C1, Ln−1 an oriented submanifold

Mn of class C1 and (p; q) an admissible ∗-pair with

Mn p←− X q−→ Rn,

where K = p ◦ q−1(θ) ⊂ Ln−1 and q(p−1(Ln−1)) ⊂ Rn−1 ⊂ Rn.

Consider (
∼
p;

∼
q), the restriction of (p; q) on Ln−1, i.e.,

Ln−1
∼
p←− ∼
X= p−1(Ln−1)

∼
q−→ Rn−1,

where
∼
p and

∼
q are the restrictions of p and q, respectively.

Proposition 1.9 (Restriction). The ∗-pair (
∼
p;

∼
q) is an admissible ∗-pair. So,

with the correct choice of the orientation, γθ(p; q) = γθ(
∼
p;

∼
q).

For this purpose we shall prove the following.

Lemma 1.10. Let Mnbe an oriented manifold of class C1, and Ln−1 an
oriented C1-submanifold in Mn. Then for every compact K ⊂ Ln−1 ⊂ Mn

there exists an open neighborhood W ⊂ Mn such that W is homeomorphic
to the direct product V × (−ε, ε) and the homeomorphism between V and
V × {0} is the identity mapping, where V = W∩ Ln−1.

Proof. This is a consequence of the fact that there exists a neighborhood U
of the null selector of the normal bundle on Ln−1 and a homeomorphism h
of U in some neighborhood of Ln−1 in Mn such that h(x, 0) = x for every
x ∈ Ln−1 (see [14]). Because every line bundle on an oriented manifold is a
product bundle [12], we can easily deduce the lemma.



A LOCAL DEGREE FOR MULTI-VALUED VECTOR FIELDS 385

Proof of Proposition 1.9. Let W be a neighborhood of the compact set
K = p ◦ q−1(θ) which satisfies the conditions of Lemma 1.10. The inclusion
mapping (W ;W\K) i−→ (Mn;Mn\K) induces an isomorphism of homology
groups. Then OK(Mn) (the fundamental class in Mn near K) is the image
of OK(W ) (the fundamental class in W near K) with a suitable choice of
orientation.

So, using the the excision property, we have γθ [(p; q);Mn] = γθ [(p; q);W ]
and γθ

[
(
∼
p;

∼
q);Ln−1

]
= γθ

[
(
∼
p;

∼
q);V

]
.

Because there exists a homeomorphism h : W −→ V × (−ε, ε) we can
consider the orientation O(V × (−ε, ε)) in V × (−ε, ε) which is induced by
the homeomorphism h.

Consider the admissible ∗-pair (p1; q1) :

V × (−ε, ε) p1=h−1
◦ p←− X1 = p−1(W )

q1=q|X1−→ Rn.

Then γθ [(p; q);W ] = γθ(p1, q1). Choose an orientation in Rn−1 and R1 such
that the product of the orientations coincides with the orientation in Rn. Let
us consider the restriction of the orientation of R1 on (−ε, ε) and define an
orientation on V such that the product of these orientations coincides with
the orientation on O(V × (−ε, ε)).

Let us calculate γθ(p1; q1). Consider the following admissible ∗-pairs:

V × {0} h≈ V
∼
p←− ∼
X

∼
q−→ Rn−1

and

V × (−ε, ε)
∼
p×id←− ∼

X × (−ε, ε)
∼
q×id−→ Rn−1 ×R1 = Rn.

From the product property we have γθ(
∼
p ×id; ∼

q ×id) = γθ(
∼
p,

∼
q)·γθ(id, id).

But, with our choice of the orientation, we have γθ(id, id) = 1. Then we
deduce γθ(

∼
p ×id; ∼

q ×id) = γθ(
∼
p;

∼
q).

Consider the following diagram:

(V × (−ε, ε);V × (−ε, ε)\K × 0)✛
p1

(X1;X1\p1(K × 0)) ✲
q1

(Rn;Rn\θ)

❅
❅

❅
❅

❅� ✻

	
	

	
	

	✒

p̃× id f q̃ × id

(X̃ × (−ε, ε); X̃ × (−ε, ε)\p̃−1(K)× (−ε, ε)),

where f(y, t) = y for every (y, t) ∈ ∼
X × (−ε, ε) .

So we obtain a commutative diagram with the group’s homologies in-
duced by the above diagram. This is a consequence of the fact that

∼
p ×id is

homotopic to p1 ◦ f and
∼
q ×id is homotopic to q1 ◦ f.
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Using the commutativity of the corresponding diagram we obtain:

γθ(p; q) = γθ(p1; q1) = γθ(
∼
p ×id; ∼

q ×id) = γθ(
∼
p;

∼
q).

Proposition 1.11. Let (p; q) be an admissible ∗-pair. If γθ(p; q) �= 0, then
there exist an element x0 ∈Mn such that θ ∈ q ◦ p−1(x0).

This is a consequence of the construction of the local degree.

Proposition 1.12. Let (p; q) be an admissible ∗-pair, Mn p←− X
q−→ Rn,

and suppose that there exists a connected neighborhood W of θ in Rn such
that q−1(y) is compact. Then γθ(p; q) = γy(p; q) for every y ∈W.
For the proof see [10].

We finish this section with the following proposition.

Proposition 1.13. Let (p; q) be an admissible ∗-pair such that

Mn p←− X q−→ Rn

and let U be an open subset of Mn which contains the set K = p◦q−1(θ). Then

γθ [(p; q);Mn] = γθ [(p; q);U ] .

It is easy to see that in the case p = id : Mn −→ Mn the local degree
γθ(p; q) coincides with the degree of Dold [10].

2. Degree for a multi-valued vector field in
a finite-dimensional manifold

Let Mnbe an oriented manifold with a fixed orientation O ∈ Γ(Mn;Q),
and let Rn be a n-dimensional topological vector space.

Let Φ be an upper semicontinuous multi-valued mapping with nonempty
compact images such that Φ : Mn −→ K(Rn), where K(Rn) is the set of all
nonempty compact subsets of Rn. The properties of multi-valued mappings
can be found in [8], [1].

Definition 2.1. The multi-valued mapping Φ is called an “admissible multi-
valued vector field” if there exists an admissible ∗-pair (p; q) such that

1. Mn p←− X q−→ Rn;
2. q ◦ p−1(x) ⊂ Φ(x) for every x ∈Mn;
3. The set K = {x ∈Mn | θ ∈ Φ(x)} of Mn is compact.

In this case the pair of single-valued mappings (p, q) is called a “selected
pair” of Φ and we use the notation (p, q) ⊂ Φ.

Definition 2.2. Let Φ : Mn −→ K(Rn) be an admissible multi-valued vec-
tor field. Then the set of integers

Degθ(Φ,Mn) = {γθ(p, q) | (p, q) ⊂ Φ}
is called the “degree” of Φ.

Let us now give some properties of this degree.
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Proposition 2.3. If Φ is an admissible multi-valued vector field with acyclic
images then Degθ(Φ,Mn) is a singleton.

The proof of this proposition can be deduced from the theorem of Vietoris
and the commutativity of the corresponding diagram.

Proposition 2.4. If Degθ(Φ,Mn) �= {0}, then there exists an element x0 ∈
Mn such that θ ∈ Φ(x0).

The proof of this proposition is a direct consequence of the definition of
Degθ(Φ,Mn).

Proposition 2.5. Let Ψ : Mn × [0, 1] −→ K(Rn) be a an admissible upper
semicontinuous multi-valued mapping such that

∇ = {x ∈Mn | θ ∈ Ψ(x, t); t ∈ [0, 1]}
is a compact subset of Mn. Then Φ0 = Ψ(·, 0) and Φ1 = Ψ(·, 1) are admissible
multi-valued vector fields and

Degθ(Φ0,M
n) ∩Degθ(Φ1,M

n) �= ∅.
This is a direct consequence of the property of homotopy invariance 1.7.

Proposition 2.6. Let Mn be an oriented manifold of class C1 and Ln−1

an oriented submanifold in Mn. Let Φ : Mn −→ K(Rn) be an admissible
multi-valued vector field such that

1. K = {x ∈Mn | θ ∈ Φ(x)} ⊂ Ln−1;
2.

∼
Φ= Φ |Ln−1 : Ln−1 −→ K(Rn−1).

Then Degθ(Φ,Mn) ⊂ Degθ(
∼
Φ, Ln−1).

This proposition is a consequence of the property 1.9.

3. A degree for a multi-valued vector field perturbed by a
Fredholm mapping

Let E and E1 be two Banach spaces, and let U be an open bounded domain
in E. Let f :U−→ E1 be a single-valued, proper, continuous mapping such
that the restriction f |U is a nonlinear Fredholm mapping with index zero of
class C1. We note that f ∈ Φ0C

1. The definition and properties of nonlinear
Fredholm mappings can be found in[9]

Let F :U−→ K(E1) be an upper semicontinuous compact multi-valued
mapping.

Definition 3.1. The mapping F defined above is called an “admissible”
multi-valued mapping if there exist a topological space X and two continuous
single-valued mappings X

p−→U and X
q−→ E1which satisfy the following

conditions:
1. p surjective;
2. q ◦ p−1(x) ⊂ F (x) for every x ∈U ;
3. p−1(x) is acyclic for every x ∈U .
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We shall consider the following multi-valued mapping:

Φ = f − F :U−→ K(E1).

The multi-valued mapping Φ is called a “multi-valued vector field generated”
by F . We suppose that f(x) /∈ F (x) for every x ∈ ∂U.

Consider the set K ⊂ U defined by

K = {x ∈ U | θ ∈ (f − F )(x)}.
We shall build and study a degree for this class of multi–valued vector
fields. we start with the following lemma.

Lemma 3.2. Let S be a closed subset in U such that S ∩K = ∅.Then there
exists ε > 0 such that, ‖ f(x)− y ‖≥ εo for every x ∈ S and y ∈ F (x).

This is a consequence of the fact that f is proper and F compact.
Suppose now, thatK∩∂U = ∅. Then by lemma 3.2 there exists εo > 0 such

that f(x) �∈ Uε0(F (x)) for every x ∈ ∂U. Let D =F (U) be a compact subset
of E1, choose in D a finite ε0

2 net with vertices y1,y2...yk, and consider the
projector of Schauder p : D −→conv {y1, y2...yk} such that ‖ y−p(y) ‖< ε0

2
for every y ∈ D Let Ep = L(y1, y2...yk) be the linear vector space hull of the
ε0
2 net in D.

We can consider now the multi-valued mapping Fp = p · F :U−→ K(Ep).
In this case we have Fp(x) ⊂ U ε0

2
F (x), so θ �∈ f(x) − F (x) for all x ∈ ∂U.

Moreover, Kp ∩ ∂U = ∅ where Kp = {x ∈ U | θ ∈ (f − Fp)(x)}.
Using the theorem of Sapronov [16] concerning the decomposition of space

we see that there exists a direct decomposition of E1 =
∼
Y p ⊕Yp (where

∼
Y p

is finite dimensional subspace) and a neighborhood U(Kp) of Kp such that
π ◦ f : U(Kp) −→ Yp is a submersion in the elements of Kp. The mapping

π is the natural projector which activates in parallel to
∼
Y p .

Let us consider also the finite dimensional subspace
∼
Rp= Ep+

∼
Y p, πp :

E1 −→ Rp, the natural projector which activates in parallel to
∼
Rp on the

complementary subspace Rp of the space E1. Then πp ◦ f : U(Kp) −→ Rp is

also a submersion. Let be Mn = f−1(
∼
Rp) ∩ U(Kp). This is a n-dimensional

oriented manifold of class C1 and n = dim
∼
Rp, which is a consequence of the

fact that f ∈ Φ0C
1 and

Mn = (πp ◦ f)−1(θ) = f−1(
∼
Rp) ∩ U(Kp).

Similarly, we can built an oriented manifold Mn of class C1 and a finite-
dimensional approximation Φp = f − Fp of the multi–valued vector field Φ

such that Φp : Mn −→ K(
∼
Rp) and Kp ⊂Mn.

Lemma 3.3. The multi-valued mapping Φp is an admissible multi-valued
vector field.

The proof is a natural consequence of the construction of Φp .



A LOCAL DEGREE FOR MULTI-VALUED VECTOR FIELDS 389

Definition 3.4. The set of integers

Degθ(f − F,U) = {|γθ
[
(
∼
l ,

∼
ϕ),Mn

]
| | ϕ = f ◦ l − p ◦ q, (l, q) ⊂ F},

is called the “local degree” of the multi-valued field Φ = f − F . Here, Zp =

l−1(Mn) and
∼
l= l |Zp ,

∼
ϕ= ϕ |Zp .

We should note that, in the case when F is a multi-valued mapping with
acyclic images, Degθ(f − F,U) is a singleton:

Degθ(f − F,U) = {| γθ(
∼
t , f◦ ∼

t −p◦ ∼
r) |},

where
∼
t is the projector of the graph ΓMn(F ) on Mn,

∼
r is the projector of

ΓMn(F ) on E1 and p is the projector of Schauder. We shall prove that the
local degree Degθ(f − F,U) of Definition 3.4 is well-defined.

Lemma 3.5. The local degree Degθ(f − F,U) is independent of the choice
of the subspace

∼
Y p .

Proof. Let
∼
Y p1 and

∼
Y p2 be two finite-dimensional subspaces in E1 with

E1 =
∼
Y pi ⊕Ypi , i = 1, 2, and let πi ◦ f : U(Kp) −→ Ypi be the submer-

sions. Suppose first that
∼
Y p1⊂

∼
Y p2 and consider the sequence of subsets con-

necting them:
∼
Y p1=

∼
Y 0⊂

∼
Y 1⊂ ..... ⊂

∼
Y s=

∼
Yp2 ,

with dim
∼
Y j −dim

∼
Y j−1= 1. Consider Rj = Ep+

∼
Yj and Tj = f−1(Rj) ∩

U(Kp). Evidently Tj−1 is a submanifold of class C1 oriented in Tj , and

Kp ⊂ T0 = M p1 . Let (l, q) ⊂ F be a selected ∗-pair of F : U
l←−M q−→ E1.

Consider the sequence of ∗-pairs (lj ;ϕj) :

Tj
lj←−Mj

ϕj−→ Rj , j = 0, 1, . . . , s,

where Mj = l−1(Tj) and lj , ϕj are respectively the restriction of l and ϕ =
f◦l − p◦q on Mj . In this case ( lj , ϕj) ⊂ Φj , where Φj is the restriction of
f − p ◦ F on Mj . Now, using the property of the restriction we have

| γθ [(l0, ϕ0), T0] |=| γθ [(l1, ϕ1), T1] |= ... =| γθ [(ls, ϕs), Ts] | .
In the case when

∼
Y p1 �⊂

∼
Y p2 , we can consider

∼
Y p1 +

∼
Y p2=

∼
Y p . This space

satisfies the condition of the theorem of Sapronov [16], and
∼
Y p1⊂

∼
Y p,

∼
Y p2⊂

∼
Y p

, so we can use the above part of this proof.

Lemma 3.6. The local degree Degθ(f − F,U) is independent of the choice
of the projector of Schauder.

Proof. Let Ep1 and Ep2 be two finite-dimensional subspaces. Consider p1 :
D −→ Ep1 and p2 : D −→ Ep2-the Schauder projectors with ‖x−pi(x)‖ < ε0

2
for every x ∈ D.

We can define two multi-valued mappings Fp1 = p1 ◦ F and Fp2 = p2 ◦ F.
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Let Ep0 = Ep1+ Ep2 . Then Fp1 :U−→ Ep0 and Fp2. :U−→ Ep0 . Let
∼
Y p be

a finite-dimensional subspace such that E1 =
∼
Y p ⊕Yp and

π ◦ f : U(Kp1 ∪Kp2) −→ Yp

the associated submersion. Then we can consider Rp1 = Ep1+
∼
Y p, Rp2 =

Ep2+
∼
Y p and Rp0 = Ep0+

∼
Y p . Obviously, Rp1 and Rp2 are contained in

Rp0 .
The spaces Mni = f−1(Rpi)∩U(K1 ∪K2), i = 0, 1, 2, are manifolds such

that Mn1 and Mn2 are two oriented submanifolds of Mn0 .
Let Φp1 = f − p1 ◦ F and Φp2 = f − p2 ◦ F be admissible multi–valued

vector fields on the manifold Mn0 . Let (l, q) ⊂ F be an admissible ∗-pair:

U
l←− Z q−→ E1.

Let Z0 = l−1(Mn0). Then we can consider the ∗-pairs (l;ϕ1), (l;ϕ2) such
that: ϕi = f ◦ l − pi ◦ q, i = 1, 2, defined by

(Mn0 ,Mn0\(Kp1 ∪Kp2))
l←− (Z0, Z0\l−1(Kp1 ∪Kp2))

ϕi−→ (Rp0 , Rp0\θ)
for i = 1, 2. Since

‖x− λp1(x)− (1− λ)p2(x)‖ < ε0
2
, x ∈ D, λ ∈ [0, 1] ,

we see that the mappings

ϕ1, ϕ2 : (Z0, Z0\l−1(Kp1 ∪Kp2)) −→ (Rp0 , Rp0\θ)
are homotopic. So, γθ [(l, ϕ1),Mn0 ] = γθ [(l, ϕ2),Mn0 ] .

We must prove now that

| γθ [(l, ϕ1),Mn0 ] |=| γθ [(l, ϕ1),Mn1 ] |
and

| γθ [(l, ϕ2),Mn0 ] |=| γθ [(l, ϕ2),Mn2 ] | .
Let us consider the sequence of subspaces connecting the subspaces Rp1

and Rp0 :
Rp1 = L0 ⊂ L1 ⊂ ... ⊂ Ls = Rp0,

with dimLj − dimLj−1 = 1, j = 1, 2, . . . , s.
So we have the sequence of oriented submanifolds of class C1 :

T0 ⊂ T1 ⊂ ... ⊂ Ts−1 ⊂ Ts,
where Tj = f−1(Lj) ∩ U(K1 ∪K2); T0 = Mn1 , Ts = Mn0 .

Let Zj = l−1(Tj), j = 1, 2, . . . , s. Then we have the admissible ∗-pairs
(lj , ψj), j = 1, 2, . . . , s, defined by:

Tj
lj←− Zj

Ψj−→ Lj ,

where lj is the restriction of l on Zj and ψj the restriction of ϕ1 on Lj .

On the other hand li ◦ ψ−1
i (θ) = lj ◦ ψ−1

j (θ) = Kp1 for every i, j. Then
using the proposition of the restriction we obtain

| γθ(l0, ψ0) |=| γθ(l1, ψ1) |= · · · | γθ(ls, ψs) | .
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The absolute value is necessary from the orientations in Tj which can be
incompatible.

We shall now give some properties of this degree.

Proposition 3.7. If Degθ(f − F,U) �= {0} , then there exists x0 ∈ U such
that θ ∈ f(x0)− F (x0).

Proof. Suppose that θ �∈ f(x) − F (x) for every x ∈U . Then using Lemma
3.2 we see that exists εo > 0 with ‖x− y‖ ≥ εo if x ∈U and y ∈ F (x).

If p is the projector of Schauder such that ‖x−p(x)‖ < ε0
2 for x ∈ D, then

Φp = f − p ◦ F has no particular point. Thus, for every admissible ∗-pair
(l, q) ⊂ F we have γθ(l, f ◦ l − p ◦ q) = 0. So, Degθ(f − F,U) = {0}.
Let εo = min

z ∈ F (x)
x∈∂U

‖ f(x) − z ‖ . From the fact that f is proper and F is

compact we can affirm that εo > 0.

Proposition 3.8. For every y with ‖y‖ < εo
2 we have

Degθ(f − F,U) = Degy(f − F,U).

Proof. Let p be the projector of Schauder associated with εo
2 .We can suppose

that the subspace Ep contains the point y. Let (l, q) ⊂ F . Then ϕ = f ◦ l −
p ◦ q : Z −→ E1. From the definition of the local degree we have the ∗-pair

Mn
∼
l←− Zp

∼
ϕ−→∼
Rp= Ep+

∼
Y p .

From the fact that the mapping f is proper we can deduce that
∼
l ◦

(∼
ϕ

)−1
(y)

is compact. So γθ(
∼
l ,

∼
ϕ) = γy(

∼
l ,

∼
ϕ). This fact is a consequence of Proposition

1.12. So, Degθ(f − F,U)= Degy(f − F,U).

Definition 3.9. Let Φ(t, x) = f(x)−F (t, x) :U × [0, 1] −→ K(E1). We say
that Φ is a “homotopy” if the following two conditions hold.

1. F is a compact, upper semicontinuous and admissible multi-valued map-
ping;

2. θ �∈ Φ(t, x) for every t ∈ [0, 1] and x ∈ ∂U.
Proposition 3.10. Let Φ be a homotopy. Then

Degθ(Φ(0, ·), U) ∩Degθ(Φ(1, ·), U) �= ∅.
Proof. Let D = {y ∈ E1 | ∃ (t, x) ∈ [0, 1]× U ; y ∈ F (t, x)} and let εo > 0 be
such that ‖x− y‖ ≥ εo for y ∈ F (t, x), (t, x) ∈ [0, 1]× ∂U. Let p : D −→ E1
be the projector of Schauder such that ‖x− p(x)‖ < ε0

2 for x ∈ D.
As in the definition of the local degree, consider the finite-dimensional

space
∼
Rp⊃ p(D) and Mn = f−1(

∼
Rp) ∩ U(Kp), where Kp = {x ∈ U | θ ∈

f(x)− p ◦F (t, x), t ∈ [0, 1]}. We can define on Mn the homotopy Φp(t, x) =
f(x) − p ◦ F (t, x). Now the proof is a consequence of the proposition of
homotopy invariance.
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The nonlinear Fredholm mappings f are also admissible multi-valued vec-
tor fields. For this class we can define a local degree Degθ(f, U). On the
other hand, a degree, γθ(f, U), for nonlinear Fredholm mappings has been
defined in [6]. We can prove that

Degθ(f, U) =
{
| γθ(f, U) |

}
.

As in the case of the usual degree, the local degree Degθ(Φ, U) can be used to
solve the existence problem for the inclusion θ ∈ Φ(x). For example let us give
the following proposition. Let U be an open bounded subset of E, f :U−→
E1, F :U−→ K(E1).

Proposition 3.11. Let f ∈ Φ0C
1 be proper, let F be a compact upper semi-

continuous admissible multi-valued mapping. Suppose that
1. ‖f(x)‖ ≥ ‖y‖ for every y ∈ F (x), x ∈ ∂U ;
2. ‖f(x)‖ �= 0 for every x ∈ ∂U ;
3. Degθ(f, U) �= 0.

Then there exists an element x0 ∈ U such that θ ∈ f(x0)− F (x0).

Proof. In the case when θ ∈ f(x) − F (x) for some x ∈ ∂U the proposition
is proved. Suppose that θ �∈ f(x) − F (x) for every x ∈ ∂U . Then we can
consider the homotopy Φ(λ, x) = f(x) − λF (x). It is easy to see that θ /∈
Φ(λ, x) on (λ, x) ∈ [0, 1]× ∂U. From 3.10, Degθ(Φ(0, ·), U)∩Degθ(Φ(1, ·), U
) �= ∅. Since Φ(0, ·) = f(·) and Degθ(f, U) �= 0, we can deduce that Degθ(f−
F,U) �= {0} . Then there exists an element x0 ∈ U such that θ ∈ f(x0) −
F (x0).

4. Some applications of the local degree

In this section we shall consider the existence solutions of a class of oper-
ator inclusions. For this purpose we consider the following hypotheses.

Let W be a bounded open subset of Rn and let f : [0, h]× W−→ Rn

and g : [0, h] × Rn −→ Rn be two single-valued continuous mappings. Let
F : [0, h]×W−→ KV (Rn) be a multi-valued upper semicontinuous mapping
which satisfies the Caratheodory conditions:

1. For every x ∈ E the multi-valued mapping F (·, x) : [0, h] −→ KV (Rn)
is measurable.

2. For almost all t ∈ [0, h] the multi-valued F (t, ·) :W−→ KV (Rn) is
upper semicontinuous .

3. There exist two summable single-valued mappings α, β : [0, h] −→ R
such that

‖F (t, x)‖ = supy∈F (t,x)‖y‖ ≤ α(t) + β(t)‖x‖.
Let us consider the following system:

(1)
y

′
(t) ∈ F (t, x(t)),

y(0) = 0,

f(t, x(t)) = εg(t, y(t)),
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where ε > 0 is a given number.
The solution of the system (1) on the interval [0, h] is defined by a pair of

continuous single mappings (x(·), y(·)), where x, y : [0, h] −→ Rn are such
that

1. y(·) is an absolutely continuous mapping, y′(t) ∈ F (t, x(t)) for almost
all t ∈ [0, h] and y(0) = 0;

2. f(t, x(t)) = εg(t, y(t)) for every t ∈ [0, h] .
We shall study the existence of the solution of the system (1).
It is simple to see that the problem (1), with the right choice of mappings

f and g, is a generalization of the Cauchy problem and a large class of
boundary value problems for the differential inclusions.

Let U =
{
u ∈ C[0,h] | u(t) ∈W, for every t ∈ [0, h]

}
. This set is a bounded

open subset of C[0,h]. We can define the nonlinear operator f : U−→ C[0,h]
which is called the operator of superposition. This operator is defined by
f(u)(t) = f(t, u(t)) for every u ∈ U and t ∈ [0, h] . In the same way, from the
mapping g we can define g : C[0,h] −→ C[0,h].

Let us now consider the multi-valued mapping :

K(u)(t) =




t∫
0

y(τ) dτ | y(τ) ∈ F (τ, u(τ)) almost everywhere τ ∈ [0, h]


 ,

where u ∈U and t ∈ [0, h] .

Proposition 4.1. The operator K is upper semicontinuous and has non-
empty compact convex images, i.e.,

K :U−→ KV (C[0,h]).

For the proof of the proposition see [8], [1].
We can consider now the following operator inclusion:

θ ∈ f(u)− ε (g ◦K) (u)(2)

The solution of the inclusion (2) is a continuous mapping u0 : [0, h] −→ Rn

such that
θ ∈ f(u0)(t)− ε (g ◦K) (u0)(t)

for every t ∈ [0, h] .

Proposition 4.2. The problems (1) and (2) are equivalent.

Proof. Let (x0(·), y0(·)) be a solution of System (1). Then f(t, x0(t)) =

ε g(t,
t∫
0
y′
0(τ) dτ), where y′

0(τ) ∈ F (τ, x0(τ)) for almost everywhere τ ∈
[0, h] . So, we can deduce that f(x0)(t) ∈ ε (g ◦K) (x0)(t), and this means
that x0 is a solution of the problem (2).

Consider now u0 a solution of the problem (2). Then f(u0)(t) ∈
ε (g ◦K) (u0)(t). This signifies that there exists a mapping z such that z(τ) ∈
F (τ, u0(τ)) for almost everywhere τ ∈ [0, h] and f(t, u0(t)) ∈ ε g(t,

t∫
0
z(τ)
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dτ). Then if y0(t) =
t∫
0
z(τ) dτ the pair (x0(·), y0(·)) is a solution of the

problem (1).

Let us now consider the solvability of the problem (2). For this purpose
we shall make the following hypotheses.

1. The mapping f : [0, h]×W −→ Rn is continuous. Moreover, for (t, v) ∈
[0, h] × W, f has continuous partial derivatives with respect to the
vector variable v.

2. The Jacobian matrix f ′
v(t, v) satisfies det [f ′

v(t, v)] �= 0 for every t ∈
[0, h] and v ∈W.
From this condition we can deduce that the single-valued mapping
ft = f(t, ·):W −→ Rn is a local homeomorphism for every t ∈ [0, h].

3. The single-valued mapping ft = f(t, ·):W −→ Rn is a homeomorphism
for every t ∈ [0, h] on it range of values.
In [15] we can find some properties for functions ft which satisfy the
above assumption.

Proposition 4.3. The operator of superposition f : U−→ C[0,h] is Fréchet-
differentiable and is a nonlinear Fredholm operator of index zero.

The proof of this proposition is a consequence of the fact that the Fréchet-
derivative f ′ (u) of the operator of superposition f is an isomorphism for
every u ∈ U.
Proposition 4.4. The operator of superposition f is a homeomorphism on
it’s range of values.

Proof. To show that f is an injective mapping, suppose that there exits
a function y ∈ f(U) such that f(x) = y, f(x1) = y and, for some t0 ∈
[0, h] , we have x(t0) �= x1(t0). Then, using Condition 3, we can deduce that
f(t0, x(t0)) �= f(t0, x1(t0)). But y(t0) = f(t0, x(t0)) = f(t0, x1(t0)), from
which we obtain the desired contradiction.

The mapping f −1 is continued because f is a local homeomorphism.

Proposition 4.5. The operator of superposition f is proper.

The proof is a consequence of the proposition 4.4.

Proposition 4.6. The mapping G = g ◦K :
−−
U −→ K(C[0,h]) is an admis-

sible, compact, upper semicontinuous and multi-valued mapping.

Proof. Let ΓK be the graph of the multi-valued mapping K, and let (t, r)
be the pair composed of the natural projectors t : ΓK −→U and r : ΓK −→
C[0,h]. Then the pair of single-valued mappings (t, g ◦ r) is a selected ∗- pair
of the multi-valued mapping G. On the other hand, t−1(x) is acyclic because
this set is convex.

Theorem 4.7. Let the above conditions on the mappings f , g, F be satis-
fied. Assume further that the following conditions hold.
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1. θ ∈ f(t,W ) for every t ∈ [0, h] ;
2. θ /∈ f(t, y) for every t ∈ [0, h], y ∈ ∂W.

Then there exists εo > 0 such that for every ε ∈ [0, εo] the system (1) has a
solution.

Proof. Let us prove that the operator inclusion (2) has a solution in U. From
the fact that the single-valued mapping f is continuous on the compact
subset [0, h]×∂W and is not null in [0, h]×∂W, there exists δ > 0 such that
Uδ(θ)∩f([0, h]×∂W ) = ∅. Then for every u ∈ ∂U we have ‖f(u)‖ ≥ δ. Since
the multi-valued mapping G is upper semicontinuous and compact there
exists N > 0 such that ‖z‖ ≤ N for every z ∈ G( U).

Consider 0 < εo <
δ
N Then θ /∈ f(x) − ε G(x) for every x ∈ ∂U and

ε ∈ [0, εo] . Consider now the homotopy Φ(λ, x) = f(x)− ε λG(x). It is easy
to see that θ /∈ Φ(λ, x) for every λ ∈ [0, 1] and x ∈ ∂U, and, consequently,
Degθ(Φ(0, ·), U) ∩Degθ(Φ(1, ·), U) �= ∅. Considering that Φ(0, ·) = f(·) and
the fact that f is a homeomorphism and θ ∈ f(U), we can deduce that
Degθ(f , U) = {1} (see [6]). So, 1 ∈ Degθ(f − ε G, U). Then from the propo-
sition we can deduce that there exists a solution for the operator inclusion
(2).

Now we consider the problems (1) and (2) when ε = 1.
Let r = min

(t,x)∈[0,h]×∂W
‖ f(t, x) ‖ and N = max y ∈ F (t, x)

(t,x)∈[0,h]×∂W

‖ y ‖ .

Theorem 4.8. If the conditions Theorem 4.7 are satisfied and N < r, then
the operator inclusion

θ ∈ f(u)− (g ◦K) (u)
has a solution.

The proof of this theorem is similar to the preceding one.
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