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Abstract. In this note we give a result for the operator p-Laplacian com-
plementing a theorem by Brézis and Kamin concerning a necessary and suffi-
cient condition for the equation −∆u = h(x)uq in IRN , where 0 < q < 1, to
have a bounded positive solution. While Brézis and Kamin use the method of
sub and super solutions, we employ variational arguments for the existence
of solutions.

1. Introduction

We are concerned with existence of solutions for the quasilinear elliptic
problem

(∗)




−∆pu = h(x)uq in IRN ,

u ≥ 0, u �≡ 0,
∫ |∇u|p < ∞,

where ∆pu = div(|∇u|p−2∇u), 1 < p < N , 0 ≤ q < p∗ − 1, p∗ = Np
N−p , and

h : IRN → IR is a measurable function with h �≡ 0.
In [3] Brézis and Kamin studied (∗) in the case p = 2 and obtained necessary
and sufficient conditions for it to have bounded solutions. More precisely it
was shown in [3], for p = 2 and by using a priori estimates and the method
of sub and super solutions, that (∗) has a bounded solution iff both

(H1) h ∈ L∞
loc and h ≥ 0 a.e. in Ω

and the linear problem
−∆u = h(x) in IRN

have a bounded solution.
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The study of problem (∗) in this case (p = 2) is related to the study of the
asymptotic behaviour of solutions U(x, t) (as t → ∞) of

h(x)Ut + ∆U
1
q = 0 in IRN × (0,∞).

Actually,

U(x, t) ≡ Av(x)
1

(t + B)
q

1−q

,

where B > 0 is any constant and A > 0 is an appropriate number, solves the
evolution equation above if v(x) ≥ 0 is a solution of the equation −∆v

1
q =

h(x)v in IRN , i.e., u ≡ v
1
q solves (∗). Eidus [7] treats a situation in which

h(x) → 0 at ∞.
We point out that (∗) does not always have a solution, see again [3] and also
Gidas and Spruck [8] for an important non-existence result.
There is by now an extensive literature on this kind of problem. We refer the
reader also to Brézis and Nirenberg [4], Noussair and Swanson [9], Tshinanga
[13], Alves-Goncalves and Maia [1], Rabinowitz [11], Costa and Miyagaki [5]
and their references.
Our aim in this work is to use variational methods to prove the following
result.

Theorem 1. Assume that

(H2) h ∈ L∞
loc and h(x) ≤ 0 a.e. in Ωc

for some bounded domain Ω ⊂ IRN and

(H3) inf
ω

h > 0

for some domain ω ⊂ Ω. Then (∗) has a solution u ∈ D1,p provided that
either

(i) 0 ≤ q < p − 1

or

(ii) p − 1 < q < p∗ − 1.

Moreover, u ∈ W 1,p
loc when 1 < p < N and u ∈ W p,s

loc for s > N when p = 2.

Our approach to prove Theorem 1 will involve the consideration of the family
of problems in the ball of radius R > 0 centered at the origin IRN , BR ≡
BR(0), namely

(∗)R




−∆pu = h(x)uq in BR,
u ∈ WR ≡ W 1,p

o (BR),
u ≥ 0 in BR, u �≡ 0,

and the finding of critical points of the associated energy functional IR :
WR → IR given by

IR(u) =
1
p

∫
BR

|∇u|p − 1
q + 1

∫
BR

huq+1
+ .
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Actually, under appropriate assumptions such as the ones we have stated
above, IR ∈ C1(WR, IR) and its derivative I ′

R(u) is given by〈
I ′
R(u), φ

〉
=

∫
BR

|∇u|p−2∇u∇φ −
∫

BR

huq
+φ, φ ∈ WR.

A distributional solution of (∗)will be found by estimating and passing to
the limit as R → ∞.
One reason for working out this reduction procedure is that the Euler-
Lagrange functional of (∗) is not defined over either W 1,p(IRN ) or D1,p(IRN )
since the integral ∫

huq+1
+

may not be defined.

2. Preliminaries

Let Wn ≡ W 1,p
o (Bn). Under the conditions of Section 1 we have In ∈

C1(Wn, IR). We state below some technical lemmas and remarks which will
be useful in the next section.

Lemma 1. Assume (H2), (H3) and 0 ≤ q < p − 1. Then

(i) In(u) → ∞ as ‖u‖Wn → ∞.

(ii) In(tφ) < 0, 0 < t < tn for some tn > 0 and φ ∈ C∞
0 .

We remark that by Lemma 1 there is some un ∈ Wn such that

In(un) = inf
Wn

In < 0

and 〈
I

′
n(un), φ

〉
= 0, φ ∈ Wn

so that in particular un is a weak solution of (∗)n for each n > 1.

Lemma 2. There are constants ĉ < 0, and M > 0 independent of n such
that

(i) In(un) ≤ ĉ, n > 1

(ii) ‖un‖D1,p ≤ M, n > 1.

Lemma 3. Assume p − 1 < q < p∗ − 1 and (H2), (H3). Then there are
constants ρ, r > 0 independent of n and e ∈ C∞

o (Ω), ‖e‖Wn > ρ such that

(i) In(u) ≥ r for ‖u‖Wn = ρ

(ii) In(e) ≤ 0, n > 1.

Moreover, In satisfies the (PS) condition.

Remark 1. By the Ambrosetti-Rabinowitz Mountain Pass theorem we find
a critical point un ∈ Wn of In such that

In(un) = cn ≥ r > 0
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where
cn = inf

γ∈Γ
max
0≤t≤1

In(γ(t))

and
Γ = {γ ∈ C([0, 1],Wn) | γ(0) = 0, γ(1) = e}

and using the fact that Wn ⊂ Wn+1 we actually have

c1 ≥ c2 ≥ ... cn ≥ ... ≥ r > 0

so that in particular

In(un) = cn → c for some c ≥ r > 0.

Lemma 4. The sequence un ∈ Wn ⊂ D1,p given above by the Mountain Pass
theorem is bounded in D1,p.

Lemma 5. Under either conditions (i) or (ii) of Theorem 1 we have

(i) un ⇀ u in D1,p,

(ii) un → u a.e. in IRN ,

(iii) ∇un → ∇u a.e. in IRN

for some u ∈ D1,p.

3. Proofs

We now give the proofs of Theorem 1 and Lemmas 1-5.

Proof of Lemma 1.
(i). Since h ∈ L∞

loc, we have h ∈ Lθ(Bn). Thus, by Hölder’s inequality and
Sobolev’s embedding theorem,∫

Bn

huq+1
+ ≤ C|h|θ,Bn‖u‖q+1

Wn
,

where θ ≡ p∗
p∗−(q+1) .

Hence

In(u) ≥ 1
p
‖u‖p

Wn
− C|h|θ,Bn

q + 1
‖u‖q+1

Wn
,

which shows that In is coercive along Wn.
(ii). Letting φ ∈ C∞

o with φ ≥ 0, φ �≡ 0 and supt(φ) ⊂ ω, we get

In(tφ) < 0 for 0 < t < tn

for some tn > 0.

Proof of Lemma 2. We have

In(un) = 1
p

∫
Bn

|∇un|p − 1
q+1

∫
Bn

huq+1
n+

≥ 1
p

∫
Bn

|∇un|p − 1
q+1

∫
Ω huq+1

n+

≥ 1
p‖un‖p

Wn
− |h|θ,Ω

q+1 |un|q+1p∗,Ω

≥ 1
p‖un‖p

Wn
− C

|h|θ,Ω
q+1 ‖un‖q+1

Wn
.
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Now, it is easy to see that

In(un) ≤ In(t∗φ) = t∗p
∫

ω
|∇φ|p − (t∗)q+1

q + 1

∫
ω
hφq+1 ≡ ĉ < 0

for some t∗ > 0. Thus, we get

‖un‖p
Wn

= ‖un‖p
D1,p ≤ M

for some M > 0.

Proof of Lemma 3. We remark first that

In(u) ≥ 1
p

∫
Bn

|∇u|p − 1
q+1

∫
Ω huq+1

+

≥ 1
p‖u‖p

Wn
− |h|θ,Ω

q+1 |u|q+1p∗,Ω

≥ 1
p‖u‖p

Wn
− S− q+1

2
|h|θ,Ω
q+1 ‖u‖q+1

Wn
,

where S is the best constant for the embedding D1,p → Lp∗
. So, there are

r, ρ > 0 such that
In(u) ≥ r for ‖u‖ = ρ.

Note that by taking the extension by zero of u ∈ Wn to IRN we have ‖u‖p
Wn

=
‖u‖p

D1,p . S̃o r, ρ are independent of n.
On the other hand, as above, there is some to > 0 such that

In(toφ) = tpo

∫
ω

|∇φ|p − tq+1o

q + 1

∫
ω
hφq+1 ≤ 0

and, taking e ≡ toφ, we have In(e) ≤ 0.
Now, letting In = I, Wn = W and Bn = B, assume uk ∈ W is a sequence
such that

I ′(uk) → 0 with I(uk) bounded.
We have

I(uk) − 1
q + 1

〈
I ′(uk), uk

〉
=

(
1
p

− 1
q + 1

)
‖uk‖p

W ,

which shows that
‖uk‖W is bounded,

and thus,
uk ⇀ u in W.

In addition,

uk → u in Lr(B), p ≤ r < p∗ and uk → u a.e. in B.

Hence from 〈
I ′(uk), uk

〉
= ok(1)

we have
‖uk‖p

W →
∫

B
huq+1

+ .

On the other hand, choosing ψj → u in W with ψj ∈ C∞
o , we have∫

B
|∇u|p−2∇u∇ψj →

∫
B

|∇u|p.
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Since ∫
B

|∇u|p−2∇u∇ψj =
∫

B
huq

+ψj

and ∫
B
huq

+ψj →
∫

B
huq+1

+

we infer that
‖uk‖W → ‖u‖W ,

which shows that uk → u in W .

Proof of Lemma 4. We shall use that Wn ⊂ D1,p. By Remark 1,

In(un) = c + on(1)

and since 〈
I

′
n(un), un

〉
= 0, for n > 1,

and recalling that

In(un) − 1
q + 1

〈
I

′
n(un), un

〉
= c + on(1),

we get (
1
p

− 1
q + 1

) ∫
Bn

|∇un|p = c + on(1).

Now, since ∫
Bn

|∇un|p =
∫

|∇un|p

we find some M > 0 such that

‖un‖D1,p ≤ M for all n > 1.

Next we present the proof of Theorem 1 and we leave the proof of Lemma 5
for a later step.

Proof of Theorem 1. At first we remark that from

0 =
〈
I

′
n(un), un−

〉
=

∫
Bn

|∇un−|p

it follows that un ≥ 0 and we have already shown that un �≡ 0. On the other
hand, ∫

Bn

|∇un|p−2∇un∇ψ −
∫

Bn

huq
nψ = 0, ψ ∈ C∞

o .

Now, using Lemma 5 and passing to the limit we get∫
|∇u|p−2∇u∇ψ −

∫
huqψ = 0, ψ ∈ C∞

o ,

which shows that u is a distributional solution of (∗), that is,

−∆pu = h(x)uq in D
′
(IRN ).

Next, we show that u �≡ 0. Indeed, assuming that p − 1 < q < p∗ − 1, we
have

In(un) = c + on(1) and
1

q + 1

〈
I

′
n(un), un

〉
= 0.
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Therefore,

c + on(1) =
(

1
p

− 1
q + 1

) ∫
huq+1

n ≤
(

1
p

− 1
q + 1

) ∫
Ω
huq+1

n .

Passing to the limit, we infer that

0 < r ≤ c ≤
(

1
p

− 1
q + 1

) ∫
Ω
huq+1

which shows that u �≡ 0. A similar argument works for the case 0 ≤ q < p−1,
recalling that In(un) ≤ ĉ < 0.
Now, u ∈ W 1,p

loc when 1 < p < N , by Sobolev embeddings, and u ∈ W p,s
loc

for s > N when p = 2 by elliptic regularity theory (see DiBenedetto [6] for
p �= 2.)
The proof of Lemma 5 is adapted from arguments by Noussair-Swanson and
Jianfu [10] (see also Alves and Goncalves [2] and their references).

Proof of Lemma 5. We shall only show that

(iii) ∇un → ∇u a.e. in IRN .

since (i)(ii) are more standard.
So, let us consider the cut-off function

η ∈ C∞
o , 0 ≤ η ≤ 1, η = 1 on B1, η = 0 on Bc

2.

Let ρ > 0 and ηρ(x) = η(x
ρ ) and let n > 1 such that B2ρ ⊂ Bn. We have〈
I ′
n(un), φ

〉
= 0, φ ∈ Wn

and since un − u ∈ D1,p, we get (un − u)ηρ ∈ Wn, so that we also have∫
Bn

|∇un|p−2∇un∇[(un − u)ηρ] =
∫

Bn

huq
n(un − u)ηρ.

Hence ∫
Bn

|∇un|p−2∇un(∇un − ∇u)ηρ =∫
Bn

huq
n(un − u)ηρ −

∫
Bn

|∇un|p−2(un − u)∇un∇ηρ.

We claim that

(A)
∫

Bn

|∇un|p−2(un − u)∇un∇ηρ = on(1)

(B)
∫

Bn

huq
n(un − u)ηρ = on(1)

Assume that (A) and (B) hold. Then∫
Bn

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un − ∇u)ηρ =

−
∫

Bn

|∇u|p−2∇u(∇un − ∇u)ηρ + on(1).

Recalling that

Un ≡ (|∇un|p−2∇un − |∇u|p−2∇u)(∇un − ∇u) ≥ 0 a.e. in IRN ,
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we get ∫
Bρ

Un ≤
∫

Bn

Unηρ = −
∫

Bn

|∇u|p−2∇u(∇un − ∇u)ηρ + on(1).

We claim that

(C)
∫

Bn

|∇u|p−2∇u(∇un − ∇u)ηρ = on(1).

Let us assume that (C) holds. Then we have∫
Bρ

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un − ∇u)ηρ ≤ on(1).

Now, from Tolksdorff [12, Lemma 1], we have∫
Bρ

(1 + |∇un| + |∇u|)p−2|∇un − ∇u|2 ≤ on(1), 1 < p < 2

and ∫
Bρ

|∇un − ∇u|p ≤ on(1), 2 ≤ p < ∞
which shows that

∇un → ∇u a.e. in Bρ.

Taking a sequence ρn → ∞ and using a diagonal argument, we infer that

∇un → ∇u a.e. in IRN .

Verification of (A). We recall that

D1,p → W 1,p(B2ρ) ↪→ Lr(B2ρ), p ≤ r < p∗

so that
un → u in Lr(B2ρ)

and hence, using Hölder’s inequality,∫
Bn

||∇un|p−2(un − u)∇un∇ηρ| =
∫
B2ρ

||∇un|p−2(un − u)∇un∇ηρ|
≤ Cρ

∫
B2ρ

|∇un|p−1|un − u|
≤ Cρ||∇un||p−1

Lp(B2ρ)
|un − u|Lp(B2ρ).

Verification of (B). We have∫
Bn

|huq
n(un − u)ηρ| =

∫
B2ρ

|huq
n||un − u|ηρ

≤ Ch,ρ

∫
B2ρ

|uq
n||un − u|

≤ Ch,ρ|un|qLq+1(B2ρ)
|un − u|Lq+1(B2ρ)

Verification of (C). Letting

〈F,w〉 ≡
∫

B2ρ

|∇u|p−2∇u∇wηρ, w ∈ W 1,p(B2ρ)

and using Hölder’s inequality we infer that

F ∈ (W 1,p(B2ρ))
′
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and, consequently,

〈F, un − u〉 =
∫

B2ρ

|∇u|p−2∇u(∇un − ∇u)ηρ → 0

This proves lemma 5.
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