ON QUASILINEAR ELLIPTIC EQUATIONS IN \mathbb{R}^{N}

C. O. ALVES* J. V. CONCALVES* AND L. A. MAIA ${ }^{\dagger}$

Abstract

In this note we give a result for the operator p-Laplacian complementing a theorem by Brézis and Kamin concerning a necessary and sufficient condition for the equation $-\Delta u=h(x) u^{q}$ in \mathbb{R}^{N}, where $0<q<1$, to have a bounded positive solution. While Brézis and Kamin use the method of sub and super solutions, we employ variational arguments for the existence of solutions.

1. Introduction

We are concerned with existence of solutions for the quasilinear elliptic problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=h(x) u^{q} \text { in } \mathbb{R}^{N}, \tag{*}\\
u \geq 0, \quad u \not \equiv 0, \quad \int|\nabla u|^{p}<\infty
\end{array}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), 1<p<N, 0 \leq q<p^{*}-1, p^{*}=\frac{N p}{N-p}$, and $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a measurable function with $h \not \equiv 0$.
In [3] Brézis and Kamin studied $(*)$ in the case $p=2$ and obtained necessary and sufficient conditions for it to have bounded solutions. More precisely it was shown in [3], for $p=2$ and by using a priori estimates and the method of sub and super solutions, that $(*)$ has a bounded solution iff both

$$
\begin{equation*}
h \in L_{l o c}^{\infty} \text { and } h \geq 0 \text { a.e. in } \Omega \tag{1}
\end{equation*}
$$

and the linear problem

$$
-\Delta u=h(x) \text { in } \mathbb{R}^{N}
$$

have a bounded solution.

Key words and phrases. Quasilinear elliptic equation, p-Laplacian, variational method.

* Supported in part by CNPq/Brasil.
\dagger Partially supported by FAP-DF/Brasil.
Received: September 15, 1996.

The study of problem $(*)$ in this case $(p=2)$ is related to the study of the asymptotic behaviour of solutions $U(x, t)$ (as $t \rightarrow \infty)$ of

$$
h(x) U_{t}+\Delta U^{\frac{1}{q}}=0 \text { in } \mathbb{R}^{N} \times(0, \infty) .
$$

Actually,

$$
U(x, t) \equiv A v(x) \frac{1}{(t+B)^{\frac{q}{1-q}}},
$$

where $B>0$ is any constant and $A>0$ is an appropriate number, solves the evolution equation above if $v(x) \geq 0$ is a solution of the equation $-\Delta v^{\frac{1}{q}}=$ $h(x) v$ in \mathbb{R}^{N}, i.e., $u \equiv v^{\frac{1}{q}}$ solves (*). Eidus [7] treats a situation in which $h(x) \rightarrow 0$ at ∞.
We point out that $(*)$ does not always have a solution, see again [3] and also Gidas and Spruck [8] for an important non-existence result.
There is by now an extensive literature on this kind of problem. We refer the reader also to Brézis and Nirenberg [4], Noussair and Swanson [9], Tshinanga [13], Alves-Goncalves and Maia [1], Rabinowitz [11], Costa and Miyagaki [5] and their references.
Our aim in this work is to use variational methods to prove the following result.

Theorem 1. Assume that

$$
\begin{equation*}
h \in L_{l o c}^{\infty} \text { and } h(x) \leq 0 \text { a.e. in } \Omega^{c} \tag{2}
\end{equation*}
$$

for some bounded domain $\Omega \subset \mathbb{R}^{N}$ and

$$
\begin{equation*}
\inf _{\omega} h>0 \tag{3}
\end{equation*}
$$

for some domain $\omega \subset \Omega$. Then $(*)$ has a solution $u \in \mathcal{D}^{1, p}$ provided that either

$$
\begin{equation*}
0 \leq q<p-1 \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
p-1<q<p^{*}-1 \tag{ii}
\end{equation*}
$$

Moreover, $u \in W_{l o c}^{1, p}$ when $1<p<N$ and $u \in W_{l o c}^{p, s}$ for $s>N$ when $p=2$.
Our approach to prove Theorem 1 will involve the consideration of the family of problems in the ball of radius $R>0$ centered at the origin $\mathbb{R}^{N}, B_{R} \equiv$ $B_{R}(0)$, namely
$(*)_{R}$

$$
\left\{\begin{array}{l}
-\Delta_{p} u=h(x) u^{q} \text { in } B_{R}, \\
u \in W_{R} \equiv W_{o}^{1, p}\left(B_{R}\right), \\
u \geq 0 \text { in } B_{R}, u \neq 0,
\end{array}\right.
$$

and the finding of critical points of the associated energy functional I_{R} : $W_{R} \rightarrow \mathbb{R}$ given by

$$
I_{R}(u)=\frac{1}{p} \int_{B_{R}}|\nabla u|^{p}-\frac{1}{q+1} \int_{B_{R}} h u_{+}^{q+1} .
$$

Actually, under appropriate assumptions such as the ones we have stated above, $I_{R} \in \mathcal{C}^{1}\left(W_{R}, \mathbb{R}\right)$ and its derivative $I_{R}^{\prime}(u)$ is given by

$$
\left\langle I_{R}^{\prime}(u), \phi\right\rangle=\int_{B_{R}}|\nabla u|^{p-2} \nabla u \nabla \phi-\int_{B_{R}} h u_{+}^{q} \phi, \phi \in W_{R} .
$$

A distributional solution of $(*)$ will be found by estimating and passing to the limit as $R \rightarrow \infty$.
One reason for working out this reduction procedure is that the EulerLagrange functional of $(*)$ is not defined over either $W^{1, p}\left(\mathbb{R}^{N}\right)$ or $D^{1, p}\left(\mathbb{R}^{N}\right)$ since the integral

$$
\int h u_{+}^{q+1}
$$

may not be defined.

2. Preliminaries

Let $W_{n} \equiv W_{o}^{1, p}\left(B_{n}\right)$. Under the conditions of Section 1 we have $I_{n} \in$ $C^{1}\left(W_{n}, \mathbb{R}\right)$. We state below some technical lemmas and remarks which will be useful in the next section.

Lemma 1. Assume $\left(H_{2}\right),\left(H_{3}\right)$ and $0 \leq q<p-1$. Then

$$
\begin{equation*}
I_{n}(u) \rightarrow \infty \text { as }\|u\|_{W_{n}} \rightarrow \infty \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
I_{n}(t \phi)<0,0<t<t_{n} \text { for some } t_{n}>0 \text { and } \phi \in C_{0}^{\infty} \tag{ii}
\end{equation*}
$$

We remark that by Lemma 1 there is some $u_{n} \in W_{n}$ such that

$$
I_{n}\left(u_{n}\right)=\inf _{W_{n}} I_{n}<0
$$

and

$$
\left\langle I_{n}^{\prime}\left(u_{n}\right), \phi\right\rangle=0, \phi \in W_{n}
$$

so that in particular u_{n} is a weak solution of $(*)_{n}$ for each $n>1$.
Lemma 2. There are constants $\widehat{c}<0$, and $M>0$ independent of n such that

$$
\begin{align*}
I_{n}\left(u_{n}\right) & \leq \widehat{c}, n>1 \tag{i}\\
\left\|u_{n}\right\|_{D^{1, p}} & \leq M, n>1
\end{align*}
$$

Lemma 3. Assume $p-1<q<p^{*}-1$ and $\left(H_{2}\right),\left(H_{3}\right)$. Then there are constants $\rho, r>0$ independent of n and $e \in C_{o}^{\infty}(\Omega),\|e\|_{W_{n}}>\rho$ such that

$$
\begin{equation*}
I_{n}(u) \geq r \text { for }\|u\|_{W_{n}}=\rho \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
I_{n}(e) \leq 0, n>1 \tag{ii}
\end{equation*}
$$

Moreover, I_{n} satisfies the (PS) condition.
Remark 1. By the Ambrosetti-Rabinowitz Mountain Pass theorem we find a critical point $u_{n} \in W_{n}$ of I_{n} such that

$$
I_{n}\left(u_{n}\right)=c_{n} \geq r>0
$$

where

$$
c_{n}=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} I_{n}(\gamma(t))
$$

and

$$
\Gamma=\left\{\gamma \in C\left([0,1], W_{n}\right) \mid \gamma(0)=0, \gamma(1)=e\right\}
$$

and using the fact that $W_{n} \subset W_{n+1}$ we actually have

$$
c_{1} \geq c_{2} \geq \ldots c_{n} \geq \ldots \geq r>0
$$

so that in particular

$$
I_{n}\left(u_{n}\right)=c_{n} \rightarrow c \text { for some } c \geq r>0 .
$$

Lemma 4. The sequence $u_{n} \in W_{n} \subset D^{1, p}$ given above by the Mountain Pass theorem is bounded in $D^{1, p}$.

Lemma 5. Under either conditions (i) or (ii) of Theorem 1 we have

$$
\begin{gather*}
u_{n} \rightharpoonup u \text { in } D^{1, p}, \tag{i}\\
u_{n} \rightarrow u \text { a.e. in } \mathbb{R}^{N} \tag{ii}
\end{gather*}
$$

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \mathbb{R}^{N} \tag{iii}
\end{equation*}
$$

for some $u \in D^{1, p}$.

3. Proofs

We now give the proofs of Theorem 1 and Lemmas 1-5.

Proof of Lemma 1.

(i). Since $h \in L_{l o c}^{\infty}$, we have $h \in L^{\theta}\left(B_{n}\right)$. Thus, by Hölder's inequality and Sobolev's embedding theorem,

$$
\int_{B_{n}} h u_{+}^{q+1} \leq C|h|_{\theta, B_{n}}\|u\|_{W_{n}}^{q+1}
$$

where $\theta \equiv \frac{p^{*}}{p^{*}-(q+1)}$.
Hence

$$
I_{n}(u) \geq \frac{1}{p}\|u\|_{W_{n}}^{p}-\frac{C|h|_{\theta, B_{n}}}{q+1}\|u\|_{W_{n}}^{q+1}
$$

which shows that I_{n} is coercive along W_{n}.
(ii). Letting $\phi \in C_{o}^{\infty}$ with $\phi \geq 0, \phi \not \equiv 0$ and $\operatorname{supt}(\phi) \subset \omega$, we get

$$
I_{n}(t \phi)<0 \text { for } 0<t<t_{n}
$$

for some $t_{n}>0$.
Proof of Lemma 2. We have

$$
\begin{aligned}
I_{n}\left(u_{n}\right) & =\frac{1}{p} \int_{B_{n}}\left|\nabla u_{n}\right|^{p}-\frac{1}{q+1} \int_{B_{n}} h u_{n+}^{q+1} \\
& \geq \frac{1}{p} \int_{B_{n}}\left|\nabla u_{n}\right|^{p}-\frac{1}{q+1} \int_{\Omega} h u_{n+}^{q+1} \\
& \geq \frac{1}{p}\left\|u_{n}\right\|_{W_{n}}^{p}-\frac{|h| \theta, \Omega}{q+1}\left|u_{n}\right|_{p^{*}, \Omega}^{q+1} \\
& \geq \frac{1}{p}\left\|u_{n}\right\|_{W_{n}}^{p}-C \frac{|h|_{\theta, \Omega}}{q+1}\left\|u_{n}\right\|_{W_{n}}^{q+1} .
\end{aligned}
$$

Now, it is easy to see that

$$
I_{n}\left(u_{n}\right) \leq I_{n}\left(t^{*} \phi\right)=t^{* p} \int_{\omega}|\nabla \phi|^{p}-\frac{\left(t^{*}\right)^{q+1}}{q+1} \int_{\omega} h \phi^{q+1} \equiv \widehat{c}<0
$$

for some $t^{*}>0$. Thus, we get

$$
\left\|u_{n}\right\|_{W_{n}}^{p}=\left\|u_{n}\right\|_{D^{1, p}}^{p} \leq M
$$

for some $M>0$.
Proof of Lemma 3. We remark first that

$$
\begin{aligned}
I_{n}(u) & \geq \frac{1}{p} \int_{B_{n}}|\nabla u|^{p}-\frac{1}{q+1} \int_{\Omega} h u_{+}^{q+1} \\
& \left.\geq \frac{1}{p}\|u\|_{W_{n}}^{p}-\frac{|h|_{\theta, \Omega}}{q+1} \right\rvert\, u u_{p^{*}, \Omega}^{q+1} \\
& \geq \frac{1}{p}\|u\|_{W_{n}}^{p}-S^{-\frac{q+1}{2}} \frac{|h| \theta, \Omega}{q+1}\|u\|_{W_{n}}^{q+1},
\end{aligned}
$$

where S is the best constant for the embedding $D^{1, p} \rightarrow L^{p^{*}}$. So, there are $r, \rho>0$ such that

$$
I_{n}(u) \geq r \text { for }\|u\|=\rho
$$

Note that by taking the extension by zero of $u \in W_{n}$ to \mathbb{R}^{N} we have $\|u\|_{W_{n}}^{p}=$ $\|u\|_{D^{1, p}}^{p}$. S̃o r, ρ are independent of n.
On the other hand, as above, there is some $t_{o}>0$ such that

$$
I_{n}\left(t_{o} \phi\right)=t_{o}^{p} \int_{\omega}|\nabla \phi|^{p}-\frac{t_{o}^{q+1}}{q+1} \int_{\omega} h \phi^{q+1} \leq 0
$$

and, taking $e \equiv t_{o} \phi$, we have $I_{n}(e) \leq 0$.
Now, letting $I_{n}=I, W_{n}=W$ and $B_{n}=B$, assume $u_{k} \in W$ is a sequence such that

$$
I^{\prime}\left(u_{k}\right) \rightarrow 0 \text { with } I\left(u_{k}\right) \text { bounded. }
$$

We have

$$
I\left(u_{k}\right)-\frac{1}{q+1}\left\langle I^{\prime}\left(u_{k}\right), u_{k}\right\rangle=\left(\frac{1}{p}-\frac{1}{q+1}\right)\left\|u_{k}\right\|_{W}^{p}
$$

which shows that

$$
\left\|u_{k}\right\|_{W} \text { is bounded, }
$$

and thus,

$$
u_{k} \rightharpoonup u \text { in } W
$$

In addition,

$$
u_{k} \rightarrow u \text { in } L^{r}(B), p \leq r<p^{*} \text { and } u_{k} \rightarrow u \text { a.e. in } B .
$$

Hence from

$$
\left\langle I^{\prime}\left(u_{k}\right), u_{k}\right\rangle=o_{k}(1)
$$

we have

$$
\left\|u_{k}\right\|_{W}^{p} \rightarrow \int_{B} h u_{+}^{q+1}
$$

On the other hand, choosing $\psi_{j} \rightarrow u$ in W with $\psi_{j} \in C_{o}^{\infty}$, we have

$$
\int_{B}|\nabla u|^{p-2} \nabla u \nabla \psi j \rightarrow \int_{B}|\nabla u|^{p} .
$$

Since

$$
\int_{B}|\nabla u|^{p-2} \nabla u \nabla \psi j=\int_{B} h u_{+}^{q} \psi_{j}
$$

and

$$
\int_{B} h u_{+}^{q} \psi_{j} \rightarrow \int_{B} h u_{+}^{q+1}
$$

we infer that

$$
\left\|u_{k}\right\|_{W} \rightarrow\|u\|_{W}
$$

which shows that $u_{k} \rightarrow u$ in W.
Proof of Lemma 4. We shall use that $W_{n} \subset D^{1, p}$. By Remark 1,

$$
I_{n}\left(u_{n}\right)=c+o_{n}(1)
$$

and since

$$
\left\langle I_{n}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0, \text { for } n>1,
$$

and recalling that

$$
I_{n}\left(u_{n}\right)-\frac{1}{q+1}\left\langle I_{n}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=c+o_{n}(1)
$$

we get

$$
\left(\frac{1}{p}-\frac{1}{q+1}\right) \int_{B_{n}}\left|\nabla u_{n}\right|^{p}=c+o_{n}(1)
$$

Now, since

$$
\int_{B_{n}}\left|\nabla u_{n}\right|^{p}=\int\left|\nabla u_{n}\right|^{p}
$$

we find some $M>0$ such that

$$
\left\|u_{n}\right\|_{D^{1, p}} \leq M \text { for all } n>1
$$

Next we present the proof of Theorem 1 and we leave the proof of Lemma 5 for a later step.

Proof of Theorem 1. At first we remark that from

$$
0=\left\langle I_{n}^{\prime}\left(u_{n}\right), u_{n-}\right\rangle=\int_{B_{n}}\left|\nabla u_{n-}\right|^{p}
$$

it follows that $u_{n} \geq 0$ and we have already shown that $u_{n} \not \equiv 0$. On the other hand,

$$
\int_{B_{n}}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \psi-\int_{B_{n}} h u_{n}^{q} \psi=0, \psi \in C_{o}^{\infty}
$$

Now, using Lemma 5 and passing to the limit we get

$$
\int|\nabla u|^{p-2} \nabla u \nabla \psi-\int h u^{q} \psi=0, \psi \in C_{o}^{\infty}
$$

which shows that u is a distributional solution of $(*)$, that is,

$$
-\Delta_{p} u=h(x) u^{q} \text { in } D^{\prime}\left(\mathbb{R}^{N}\right)
$$

Next, we show that $u \not \equiv 0$. Indeed, assuming that $p-1<q<p^{*}-1$, we have

$$
I_{n}\left(u_{n}\right)=c+o_{n}(1) \text { and } \frac{1}{q+1}\left\langle I_{n}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0
$$

Therefore,

$$
c+o_{n}(1)=\left(\frac{1}{p}-\frac{1}{q+1}\right) \int h u_{n}^{q+1} \leq\left(\frac{1}{p}-\frac{1}{q+1}\right) \int_{\Omega} h u_{n}^{q+1}
$$

Passing to the limit, we infer that

$$
0<r \leq c \leq\left(\frac{1}{p}-\frac{1}{q+1}\right) \int_{\Omega} h u^{q+1}
$$

which shows that $u \not \equiv 0$. A similar argument works for the case $0 \leq q<p-1$, recalling that $I_{n}\left(u_{n}\right) \leq \widehat{c}<0$.
Now, $u \in W_{l o c}^{1, p}$ when $1<p<N$, by Sobolev embeddings, and $u \in W_{l o c}^{p, s}$ for $s>N$ when $p=2$ by elliptic regularity theory (see DiBenedetto [6] for $p \neq 2$.)
The proof of Lemma 5 is adapted from arguments by Noussair-Swanson and Jianfu [10] (see also Alves and Goncalves [2] and their references).

Proof of Lemma 5. We shall only show that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \mathbb{R}^{N} . \tag{iii}
\end{equation*}
$$

since $(i)(i i)$ are more standard.
So, let us consider the cut-off function

$$
\eta \in C_{o}^{\infty}, 0 \leq \eta \leq 1, \eta=1 \text { on } B_{1}, \eta=0 \text { on } B_{2}^{c}
$$

Let $\rho>0$ and $\eta_{\rho}(x)=\eta\left(\frac{x}{\rho}\right)$ and let $n>1$ such that $B_{2 \rho} \subset B_{n}$. We have

$$
\left\langle I_{n}^{\prime}\left(u_{n}\right), \phi\right\rangle=0, \phi \in W_{n}
$$

and since $u_{n}-u \in D^{1, p}$, we get $\left(u_{n}-u\right) \eta_{\rho} \in W_{n}$, so that we also have

$$
\int_{B_{n}}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left[\left(u_{n}-u\right) \eta_{\rho}\right]=\int_{B_{n}} h u_{n}^{q}\left(u_{n}-u\right) \eta_{\rho} .
$$

Hence

$$
\begin{gathered}
\int_{B_{n}}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) \eta_{\rho}= \\
\int_{B_{n}} h u_{n}^{q}\left(u_{n}-u\right) \eta_{\rho}-\int_{B_{n}}\left|\nabla u_{n}\right|^{p-2}\left(u_{n}-u\right) \nabla u_{n} \nabla \eta_{\rho} .
\end{gathered}
$$

We claim that

$$
\begin{equation*}
\int_{B_{n}}\left|\nabla u_{n}\right|^{p-2}\left(u_{n}-u\right) \nabla u_{n} \nabla \eta_{\rho}=o_{n}(1) \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\int_{B_{n}} h u_{n}^{q}\left(u_{n}-u\right) \eta_{\rho}=o_{n}(1) \tag{B}
\end{equation*}
$$

Assume that (A) and (B) hold. Then

$$
\begin{aligned}
\int_{B_{n}} & \left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) \eta_{\rho}= \\
& -\int_{B_{n}}|\nabla u|^{p-2} \nabla u\left(\nabla u_{n}-\nabla u\right) \eta_{\rho}+o_{n}(1)
\end{aligned}
$$

Recalling that

$$
U_{n} \equiv\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) \geq 0 \text { a.e. in } \mathbb{R}^{N},
$$

we get

$$
\int_{B_{\rho}} U_{n} \leq \int_{B_{n}} U_{n} \eta_{\rho}=-\int_{B_{n}}|\nabla u|^{p-2} \nabla u\left(\nabla u_{n}-\nabla u\right) \eta_{\rho}+o_{n}(1) .
$$

We claim that

$$
\begin{equation*}
\int_{B_{n}}|\nabla u|^{p-2} \nabla u\left(\nabla u_{n}-\nabla u\right) \eta_{\rho}=o_{n}(1) . \tag{C}
\end{equation*}
$$

Let us assume that (C) holds. Then we have

$$
\int_{B_{\rho}}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) \eta_{\rho} \leq o_{n}(1) .
$$

Now, from Tolksdorff [12, Lemma 1], we have

$$
\int_{B_{\rho}}\left(1+\left|\nabla u_{n}\right|+|\nabla u|\right)^{p-2}\left|\nabla u_{n}-\nabla u\right|^{2} \leq o_{n}(1), 1<p<2
$$

and

$$
\int_{B_{\rho}}\left|\nabla u_{n}-\nabla u\right|^{p} \leq o_{n}(1), 2 \leq p<\infty
$$

which shows that

$$
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } B_{\rho} .
$$

Taking a sequence $\rho_{n} \rightarrow \infty$ and using a diagonal argument, we infer that

$$
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \mathbb{R}^{N}
$$

Verification of (A). We recall that

$$
D^{1, p} \rightarrow W^{1, p}\left(B_{2 \rho}\right) \hookrightarrow L^{r}\left(B_{2 \rho}\right), p \leq r<p^{*}
$$

so that

$$
u_{n} \rightarrow u \text { in } L^{r}\left(B_{2 \rho}\right)
$$

and hence, using Hölder's inequality,

$$
\begin{aligned}
\left.\int_{B_{n}}| | \nabla u_{n}\right|^{p-2}\left(u_{n}-u\right) \nabla u_{n} \nabla \eta_{\rho} \mid & =\left.\int_{B_{2 \rho}}| | \nabla u_{n}\right|^{p-2}\left(u_{n}-u\right) \nabla u_{n} \nabla \eta_{\rho} \mid \\
& \leq C_{\rho} \int_{B_{2 \rho}}\left|\nabla u_{n}\right|^{p-1}\left|u_{n}-u\right| \\
& \leq C_{\rho}| | \nabla u_{n} \|_{L^{p}\left(B_{2 \rho}\right)}^{p-1}\left|u_{n}-u\right|_{L^{p}\left(B_{2 \rho}\right)} .
\end{aligned}
$$

Verification of (B). We have

$$
\begin{aligned}
\int_{B_{n}}\left|h u_{n}^{q}\left(u_{n}-u\right) \eta_{\rho}\right| & =\int_{B_{2 \rho} \rho}\left|h u_{n}^{q}\right|\left|u_{n}-u\right| \eta_{\rho} \\
& \leq C_{h, \rho} \int_{B_{2 \rho} \rho}\left|u_{n}^{q}\right|\left|u_{n}-u\right| \\
& \leq C_{h, \rho}\left|u_{n}\right|_{L^{q+1}\left(B_{2 \rho}\right)}^{q}\left|u_{n}-u\right|_{L^{q+1}\left(B_{2 \rho}\right)}
\end{aligned}
$$

Verification of (C). Letting

$$
\langle F, w\rangle \equiv \int_{B_{2 \rho}}|\nabla u|^{p-2} \nabla u \nabla w \eta_{\rho}, w \in W^{1, p}\left(B_{2 \rho}\right)
$$

and using Hölder's inequality we infer that

$$
F \in\left(W^{1, p}\left(B_{2 \rho}\right)\right)^{\prime}
$$

and, consequently,

$$
\left\langle F, u_{n}-u\right\rangle=\int_{B_{2 \rho}}|\nabla u|^{p-2} \nabla u\left(\nabla u_{n}-\nabla u\right) \eta_{\rho} \rightarrow 0
$$

This proves lemma 5.

References

[1] C. O. Alves, J. V. Goncalves and L. A. Maia, Existence of a ground state solution for a sublinear elliptic equation in \mathbb{R}^{N}, (preprint 1996).
[2] C. O. Alves and J. V. Goncalves, Existence of positive solutions for m-Laplacian equations in R^{N} involving critical Sobolev exponents, (preprint 1996).
[3] H. Brézis and S. Kamin. Sublinear elliptic equations in \mathbb{R}^{N}, Manuscripta Math. 74 (1992) 87-106.
[4] H. Brézis and L. Nirenberg, Some variational problems with lack of compactness, Proc. Sympos. Pure Math. 45 (1986), 165-201.
[5] D. Costa and O. Miyagaki, Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains, Preprint Series, UNLV 1994.
[6] E. DiBenedetto, $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonl. Anal. TMA, 7 (1983), 827-850.
[7] D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium. J. Differential Equations, 84 (1990), 309-318.
[8] B. Gidas and J. Spruck, A priori bound for solutions of semilinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
[9] E. S. Noussair, C. A. Swanson, An $L^{q}\left(\mathbb{R}^{N}\right)$-theory of subcritical semilinear elliptic problems, J. Differential Equations, 84 (1990), 52-61.
[10] E. S. Noussair, C. A. Swanson and Y. Jianfu, Positive finite energy solutions of critical semilinear elliptic problems, Canad. J. Math. 44 (1992), 1014-1029.
[11] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992), 290-291.
[12] P. Tolksdorff, On quasilinear boundary value problems in domains with corners, Nonl. Anal. TMA, 5 (1981), 721-735.
[13] S. B. Tshinanga, Positive and multiple solutions of subcritical Emden-Fowler equations, Differential Integral Equations, 9 (1996), 363-370.
C. O. Alves

Departamento de Matemática
Universidade Federal da Paraiba
58100-240 - Campina Grande-(PB), BRASIL
E-mail address: coalves@dme.ufpb.br
J. V. Goncalves and L. A. Maia

Departamento de Matemática
Universidade de Brasília
70.910-900 Brasilia-DF, BRASIL

E-mail addresses: jv@mat.unb.br, liliane@mat.unb.br

