
ON THE MANN AND ISHIKAWA ITERATION PROCESSES

ZHOU HAIYUN AND JIA YUTING

Abstract. It is shown that a result of Chidume, involving the strong con-
vergence of the Mann iteration process for continuous strongly accretive
operators, is actually a corollary to a result by Nevanlinna and Reich. It is
then shown that the Nevanlinna and Reich result can be extended to the
case of an Ishikawa iteration process.

1. Introduction and preliminaries

In [4, Theorem 1] Chidume gave a strong convergence theorem on the
Mann iterative process for a class of continuous strongly accretive maps. We
are going to show that Chidume’s theorem is a corollary of a result by
Nevanlinna and Reich [5, Theorem 3].

Recently, the authors have proved in [9, Theorem 2.1] a considerably more
general strong convergence theorem for the Ishikawa iterative process for a
class of strongly quasi-accretive operators. Theorem 2.1 of [9] is closely
related to those strong convergence theorems of [5], [3]. We shall discuss the
relations between Theorem 2.1 of [9] and the corresponding results in [5], [3].

Let X be a real Banach space with a dual X∗, and let J : X → 2X∗
be

the normalized duality mapping defined by

Jx = {f ∈ X∗ :< f, x >= ‖f‖‖x‖, ‖f‖ = ‖x‖},
where < ·, · > denotes the generalized duality pairing.

It is well known that if X∗ is strictly convex, then J is single-valued and
such that J(tx) = tJx for all t ≥ 0, x ∈ X. If X is uniformly smooth, then
J is uniformly continuous on bounded subsets of X.

An operator T with domain D(T ) and range R(T ) in X is said to be
“accretive” if for every x, y ∈ D(T ), there exists j(x − y) ∈ J(x − y) such
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that

(1.1) < Tx− Ty, j(x− y) >≥ 0.

The operator T is said to be “strongly accretive” if for each x, y ∈ D(T )
there exists j(x− y) ∈ J(x− y) such that

(1.2) < Tx− Ty, j(x− y) >≥ k‖x− y‖2,
for some fixed real constant k > 0.

An accretive operator T is “m-accretive” if R(I + rT ) = X for all r > 0,
where I denotes the identity operator.

We let N(T ) = {x ∈ D(T )|Tx = 0}. If N(T ) 
= φ and the inequality
(1.1) ((1.2)) holds for all x ∈ D(T ) and y ∈ N(T ), then the corresponding
operator T is said to be “quasi-accretive” (“strongly quasi-accretive”).

We denote the distance between a point x ∈ X and a set V ⊂ X by
d(x, V ). Recall that a point z ∈ V is said to be a “best approximation” to
x ∈ X if ‖x − z‖ = d(x, V ). A set V ⊂ X is said to be a “sun” (see [5])
if: whenever z ∈ V is a best approximation to x ∈ X, then z is also a best
approximation to z+t(x−z) for all t ≥ 0. It is well known that every convex
set is a sun. If V is a sun and z ∈ V is a best approximation to x ∈ X, then
there exists j(x − z) ∈ J(x − z) such that < y − z, j(x − z) >≤ 0 for all
y ∈ V . The set V is said to be “proximinal” if for every x ∈ X has at least
one best approximation in V .

We need the following Lemmas.

Lemma 1.1. Let X be a reflexive Banach space and le C be a closed convex
subset of X. Then C is proximinal.

Proof. The proof is straightforward.

Lemma 1.2. Let {an} be a nonnegative sequence satisfying

(1.3) an+1 ≤ an + σn

with
∑∞

n=1 σn < +∞. Then lim
n→∞ an exists.

Proof. Note that, for all m ≥ 1,

an+m ≤ an +
n+m−1∑

k=n

σk,

which implies lim
n→∞ sup an ≤ lim

n→∞ inf an.

Lemma 1.3. (Xu and Roach [8]) Let X be a real uniformly smooth Banach
space. Then

(1.4) ‖x + y‖2 ≤ ‖x‖2 + 2 < y, Jx > +K max{‖x‖ + ‖y‖, c
2
}ρX(‖y‖),

for all x, y ∈ X, where K and c are positive constants, and ρ(τ) is the
modulus of smoothness of X (defined by

ρX(τ) = sup{1
2
‖x + y‖ +

1
2
‖x− y‖ − 1|‖x‖ = 1, ‖y‖ ≤ τ},
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and satisfying

lim
τ→0

ρX(τ)
τ

= 0).

Lemma 1.4. If X is uniformly smooth and T : X ⊃ D(T ) → X is m-
accretive, then T is demiclosed, i.e., for any sequence {xn} ⊂ D(T ), with
xn → x strongly and Txn → y weakly as n → ∞, we have x ∈ D(T ) and
Tx = y.

Proof. See Barbu [1].

Lemma 1.5. If X is uniformly smooth and T : X → X is demi-continuous
and accretive, then T is m-accretive.

Proof. See Browder [2].

2. Main results

Before we show our main results, we give a slight extension of [5, Theorem
3]. For the sake of simplicity, we only consider the following Mann iterative
process

(2.1) xn+1 = xn − λnTxn, n ≥ 0,

where x0 ∈ X and {λn} is a positive sequence. We shall study the conver-
gence of {xn} under more general assumptions.

In the sequel, we always assume that X is uniformly smooth and N(T )
has a nonempty convex subset N0(T ).

Theorem 2.1. Let T be a quasi-accretive and demiclosed operator, and let

{λn} be a positive sequence such that
∞∑

n=0
λn = ∞ and

∞∑
n=0

ρX(λn) < ∞. As-

sume that {xn} satisfies (2.1) and {Txn} is bounded. Let P0 be an arbitrary
selection of the nearest point mapping from X onto N0(A) such that

< y − P0x, J(x− P0x) >≤ 0 for all y ∈ N0(A).

If there exists a strictly increasing function ψ : R+ → R+, ψ(0) = 0, such
that

(2.2) < Txn, J(xn − P0xn) >≥ ψ(‖xn − P0xn‖)‖Txn‖, n ≥ 0,

then {xn} converges strongly to a zero of T .

Proof. Since T is demiclosed, we know that N0(T ) is closed. By Lemma 1.1
we see that N0(T ) is proximinal. Thus we can choose a section P0 : X →
N0(T ) of the nearest point operator such that

< y − P0x, J(x− P0x) >≤ 0 for all y ∈ N0(T ).
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Let jn = J(xn − P0xn) and M = sup{‖Txn‖|n ≥ 0}. By (2.1) and (1.4) we
have

(2.3)

‖xn+1−P0xn+1‖2 ≤ ‖xn+1 − P0xn‖2
= ‖xn − P0xn − λnTxn‖2
≤ ‖xn − P0xn‖2 − 2λn < Txn, jn >

+ K max{‖xn − P0xn‖ + λn‖Txn‖, c
2
}ρX(λn‖Txn‖)

≤ ‖xn − P0xn‖2 − 2λn < Txn, jn >

+ M1 max{‖xn − P0xn‖ + λnM,
c

2
}ρX(λn),

for some M1 > 0. Here we have used the fact that ρX(τ) is nondecreasing
and that there exists a constant c0 > 0 such that ρX(η)

η2 ≤ c0
ρX(τ)

τ2 for any

η ≥ τ > 0. The condition
∞∑

n=0
ρX(λn) < +∞ implies λn → 0 as n → ∞.

We claim that ‖xn − P0xn‖ is bounded. Assume the contrary and let dn =
‖xn − P0xn‖. We may also assume that dn + λnM ≥ c

2 for all n ≥ 0. Then
(2.2) leads to

d2n+1 ≤ d2n + M1(dn + λnM)ρX(λn)
and, consequently, for λn ∈ (0, c

4M ),

dn+1 ≤ dn + M1ρX(λn).

In view of Lemma 1.2 we see that lim
n→∞ dn exists, which contradicts with the

assumption that {dn} is unbounded. Hence, from (2.3) we get

(2.4) ‖xn+1 − P0xn+1‖2 ≤ ‖xn − P0xn‖2 + M2ρX(λn),

for some constant M2 > 0, since ‖xn −P0xn‖ is bounded. By Lemma 1.2 we
see that lim

n→∞ ‖xn − P0xn‖ exists. Furthermore,

(2.5) 2
∞∑

n=0
λn < Txn, jn >≤ ‖x0 − P0x0‖2 + M2

∞∑
n=0

ρX(λn) < +∞.

Multiplying by λn both sides of (2.2), we obtain

λn < Txn, jn >≥ ψ(‖xn − P0xn‖)‖λnTxn‖.
Using (2.1), we have

λn < Txn, jn >≥ ψ(‖xn − P0xn‖)‖xn+1 − xn‖.
It follows that

∞∑
n=0

λn < Txn, jn >≥
∞∑

n=0
ψ(‖xn − P0xn‖)‖xn+1 − xn‖.

Hence ∞∑
n=0

ψ(‖xn − P0xn‖)‖xn+1 − xn‖ < ∞.

Now we consider the following two possible cases:
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Case 1. lim
n→∞ inf ψ(‖xn − P0xn‖) = 0.

Since ψ : R+ → R+ is strictly increasing, we have lim
n→∞ inf ‖xn −P0xn‖ =

0. Since lim
n→∞ ‖xn −P0xn‖ exists, we get lim

n→∞ ‖xn −P0xn‖ = 0. On the other
hand, by (2.3), we have

‖xn − P0xk‖2 ≤ ‖xk − P0xk‖2 + M2

∞∑
i=k

ρX(λi), for alln > k.

Consequently, ‖xn −xk‖ ≤ ‖xn −P0xk‖ + ‖P0xk −xk‖ → 0, as k → ∞, n →
∞. Hence {xn} must be a Cauchy sequence. Let lim

n→∞xn = z. Then P0xn → z

as n → ∞ because ‖xn − P0xn‖ → 0 as n → ∞.
Note that the closedness of N0(T ) and {P0xn} ⊂ N0(T ) imply z ∈ N0(T ).

Case 2.
∞∑

n=0
‖xn+1 − xn‖ < ∞.

Observing that ‖xn+m − xn‖ ≤
n+m−1∑

i=n
‖xi+1 − xi‖ → 0 as n,m → ∞, we

assert that {xn} is a Cauchy sequence. Assume that xn → x as n → ∞.
By (2.5) we know that Txn → 0 as n → ∞. Hence x ∈ N0(T ), since T is
demiclosed.

The proof is complete.

Remark 1. In [6, p. 89] Reich considered a continuous nondecreasing func-
tion b : [0,∞) → [0,∞) such that b(0) = 0, b(ct) ≤ cb(t) for c ≥ 1. In [7, p.
337] he established a relationship between the function b and the modulus
of smoothness of the Banach space X. Since any map satisfying the conver-
gence condition introduced in [5] certainly satisfies condition (2.2), and the

condition
∞∑

n=0
λnb(λn) < ∞ in [5] implies the condition

∞∑
n=0

ρX(λn) < ∞, We

see that our Theorem 2.1 generalizes the strong convergence results in [5,
Theorem 3], [3, Theorem 3.1] and others.

Chidume [4] proved the following theorem:

Theorem 1 of [4]. Let X be a real Banach space with a uniformly convex
dual space, X∗. Suppose that T : X → X is a continuous strongly accretive
map such that (I − T ) has bounded range. For a given f ∈ X, define S :
X → X by Sx = f −Tx+x for each x ∈ X. Consider the sequence {xn}∞

n=0
defined iteratively by x0 ∈ X and

xn+1 = (1 − λn)xn + λnSxn,

for n ≥ 0, where {λn}∞
n=0 is a real sequence satisfying the following:

(i) 0 < λn ≤ 1 for all n ≥ 0;

(ii)
∞∑

n=0
λn = ∞;

(iii)
∞∑

n=0
λnb(λn) < ∞.

Then the sequence {xn}∞
n=0 converges strongly to the solution of Tx = f .

We have the following theorem:
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Theorem 2.2. Theorem 1 of Chidume [4] is a corollary of Theorem 2.1
above.

Proof. Set A = T − f , for any given f ∈ X. Under the assumptions of
Chidume [4, Theorem 1], N0(A) = {q}, where q is the unique solution to
Tx = f . Observe that

(2.6)

xn+1 = (1 − λn)xn + λn(f − Txn + xn)

= xn − λnxn + λnf − λnTxn + λnxn

= xn − λnAxn,

and
Axn = Txn − f = xn − (xn − Txn + f).

Since {xn − Txn} ⊂ R(I − T ) is bounded, the only thing we need to do is
to verify the boundedness of {xn}. We consider the two possible cases:
Case 1. There exists an n0 ≥ 0 such that ‖xn0 − q‖ ≤ 1.

We let M3 = sup{‖f + xn − Txn‖|n ≥ 0}, M4 = max{1, 2M3}. By (2.6)
we have

‖xn+1 − q‖ ≤ (1 − λn0) + 2λn0M3 ≤ M4,

and, by induction, we find

‖xn0+m − q‖ ≤ M4 for all m ≥ 1.

This shows that {xn} is bounded.
Case 2. For all n ≥ 0, ‖xn − q‖ > 1.

We shall show that this case is impossible.
Since T is strongly accretive, so is A. Thus there exists some constant

k ∈ (0, 1) such that

(2.7) < Axn, J(xn − q) >≥ k‖xn − q‖2.
By using [10, Lemma 1.1] and (2.7) we have

(2.8)

‖xn+1 − q‖2
≤ ‖xn − q‖2 − 2λn < Axn, J(xn+1 − q) >

= ‖xn − q‖2 − 2λn < Axn, J(xn − q) >

− 2λn < Axn, J(xn+1 − q) − J(xn − q) >

≤ ‖xn − q‖2 − 2λnk‖xn − q‖2

− 2λn <
Axn

‖xn − q‖ , J
xn+1 − q

‖xn − q‖ − J
xn − q

‖xn − q‖ > ‖xn − q‖2

= ((1 − 2λnk) − 2λnan)‖xn − q‖2,
where an =< Axn

‖xn−q‖ , J
xn+1−q
‖xn−q‖ − J xn−q

‖xn−q‖ > .

Now, we want to show that an → 0 as n → ∞. It follows from
∞∑

n=0
λnb(λn) <

∞ that λn → 0 as n → ∞, ‖Axn‖
‖xn−q‖ ≤ 1 + M3 + ‖q‖ and

xn+1 − q

‖xn − q‖ − xn − q

‖xn − q‖ = −λn
Axn

‖xn − q‖ → 0 as n → ∞.
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Hence we have

J
xn+1 − q

‖xn − q‖ − J
xn − q

‖xn − q‖ → 0 as n → ∞,

since J is uniformly continuous on bounded subset of X. Consequently,
an → 0 as n → ∞.

Now, we may choose n1 ≥ 0 such that for every n ≥ n1, k+2an > 0. Thus
we have

‖xn+1 − q‖2 ≤ (1 − kλn)‖xn − q‖2

≤ exp{−
n∑

j=0

kλj}‖x0 − q‖2 → 0 as n → ∞,

which contradicts with the assumption that for all n ≥ 0, ‖xn − q‖ > 1.

Remark 2. In Theorems 2.1 and 2.2, all assumptions are satisfied except the
boundedness of {Txn} and R(I−T ) which are replaced by the boundedness
of T , then the conclusions of Theorems 2.1 and 2.2 hold true. See Xu and
Roach [8], and authors [9].

The next result extends [5, Theorem 3] to the case of an Ishikawa iterative
process. Namely, we consider the following Ishikawa process:

(IS)
{
xn+1 = xn − αnAyn − αnβnAxn,
yn = xn − βnAxn, n ≥ 0.

Theorem 2.3. Let A : X → X be a demiclosed quasi-accretive opera-
tor. Assume that there exists a strictly increasing function ψ : R+ → R+, ψ(0) =
0, such that

(2.9) < Ayn, J(yn − P0yn) >≥ ψ(‖yn − P0yn‖)‖Ayn‖, n ≥ 0.

Furthermore, assume that the following conditions are satisfied:

(H1) 0 < αn < 1, 0 ≤ βn < 1 and
∞∑

n=0
αn = ∞,

∞∑
n=0

αnβn < ∞;

(H2) sup{‖Axn‖;n ≥ 0} < ∞ and sup{‖Ayn‖|n ≥ 0} < ∞;

(H3)
∞∑

n=0
((J(xn − P0xn) − J(yn − P0yn)) < ∞ and

∞∑
n=0

ρX(αn) < ∞;

(H4) ‖P0xn − P0yn‖ → 0 as n → ∞.

Then {xn}, defined by (IS), converges strongly to an element of N(A).

Proof. Set j(xn) = J(xn−P0xn), j(yn) = J(yn−P0yn), c1 = sup{‖Axn‖|n ≥
0}, and c2 = sup{‖Ayn‖|n ≥ 0}.
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Using Lemma 1.3 and (IS) we have

(2.10)

‖xn+1−P0xn+1‖2 ≤ ‖xn+1 − P0xn‖2
= ‖xn − αnAyn − αnβnAxn − P0xn‖2
≤ ‖xn − P0xn‖2 − 2αn < Ayn, J(xn − P0xn) >

− 2αnβn < Axn, J(xn − P0xn) >

+ kmax{‖xn − P0xn‖ + αn‖Ayn‖ + αnβn‖Axn‖, c
2
}

· ρX(αn‖Ayn‖ + αnβn‖Axn‖)

≤ ‖xn − P0xn‖2
− 2αn < Ayn, J(xn − P0xn) − J(yn − P0yn >

− 2αn < Ayn, J(yn − P0yn) >

+ k1 max{‖xn − P0xn‖ + αn(c1 + c2),
c

2
}ρX(αn)

≤ ‖xn − P0xn‖2 − 2αnbn − 2αnψ(‖yn − P0yn‖)‖Ayn‖
+ k1 max{‖xn − P0xn‖ + αn(c1 + c2),

c

2
}ρX(αn),

where k1 is some positive constant and

bn =< Ayn, J(xn − P0xn) − J(yn − P0yn) > .

Here we have used the fact that ρX(τ) is nondecreasing and there exists
some constant c0 > 0 such that ρX(η)

η2 ≤ c0ρX(τ)
τ2 , for all η ≥ τ > 0. Arguing

as in the proof of Theorem 2.1, we can show that ‖xn − P0xn‖ is bounded
and lim

n→∞ ‖xn − P0xn‖ exists. From (2.10) we see that

∞∑
n=0

αnψ(‖yn − P0yn‖)‖Ayn‖ < ∞.

Now, we consider the following two possible cases:
Case 1. lim

n→∞ inf ψ(‖yn − P0yn‖) = 0.
In this case, by the properties of ψ, we see that lim

n→∞ inf ‖yn − P0yn‖ =
0. Assumption (H1) implies lim

n→∞ inf βn = 0. Without any loss of generality,
we assume that βn → 0 as n → ∞. Then yn −xn = −βnAxn → 0 as n → ∞.
By (H4), we have lim

n→∞ inf ‖xn − P0xn‖ = 0. Consequently, lim
n→∞ ‖xn −

P0xn‖ = 0 since lim
n→∞ ‖xn−P0xn‖ exists. Arguing as in the proof of Theorem

2.1, we can prove that xn → x as n → ∞. Hence x ∈ N(A).

Case 2.
∞∑

n=0
αn‖Ayn‖ < ∞.

In this case, by (H1) and (IS), we have

∞∑
n=0

‖xn+1 − xn‖ ≤
∞∑

n=0
αn‖Ayn‖ + c1

∞∑
n=0

αnβn < ∞,
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and hence {xn} must be Cauchy. Assume that xn → z as n → ∞ Then

yn → z as n → ∞. On the other hand,
∞∑

n=0
αn‖Ayn‖ < ∞ and

∞∑
n=0

αn = ∞
implies lim

n→∞ inf ‖Ayn‖ = 0. Therefore, z ∈ N(A) since A is demiclosed.

Remark 3. If we take βn ≡ 0, then (IS) becomes xn+1 = xn−αnAxn, n ≥ 0.

In this case, conditions
∞∑

n=0
αnβn < ∞,

∞∑
n=0

(J(xn−P0xn)−J(yn−P0yn)) < ∞
and ‖P0xn − P0yn‖ → 0 as n → ∞ are satisfied trivially.

Remark 4. It is easy to see that our Theorem 2.3 works for the case that
A is multi-valued.

Remark 5. We don’t know whether the assumptions
∞∑

n=0
(J(xn − P0xn) −

J(yn −P0yn)) < ∞ and (H4) can be removed. It is also interesting to discuss
the relations between Theorem 2.3 and Chidume [4, Theorem 2].
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